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Abstract
Study Objectives: Polysomnography is the gold standard for diagnosis of obstructive sleep apnea (OSA) but it is costly and access is often limited. The aim of this 

study is to develop a clinically useful support vector machine (SVM)-based prediction model to identify patients with high probability of OSA for nonsleep specialist 

physician in clinical practice.

Methods: The SVM model was developed using the features routinely collected at the clinical evaluation from 6,875 Chinese patients referred to sleep clinics for 

suspected OSA. Three apnea-hypopnea index (AHI) cutoffs, ≥5/h, ≥15/h, and ≥30/h were used to define the severity of OSA. The continuous and categorized features 

were selected separately and were further selected through stepwise forward feature selection. The modeling was achieved through fivefold cross-validation. The 

model discriminative ability was evaluated for the whole data set and four subgroups categorized with gender and age (<65 versus ≥65 years old [y/o]).

Results: Two features were selected to predict AHI cutoff ≥5/h with six features selected for ≥15/h, and six features selected for ≥30/h, respectively, to reach Area 

under the Receiver Operating Characteristic (AUROC) 0.82, 0.80, and 0.78, respectively. The sensitivity was 74.14%, 75.18%, and 70.26%, while the specificity was 

74.71%, 68.73%, and 70.30%, respectively. Compared to logistic regression, Berlin questionnaire, NoSAS Score, and Supersparse Linear Integer Model (SLIM) scoring 

system, the SVM model performs better with a more balanced sensitivity and specificity. The discriminative ability was best for male <65 y/o and modest for 

female ≥65 y/o.

Conclusion: Our model provides a simple and accurate modality for early identification of patients with OSA and may potentially help prioritize them for sleep 

study.
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Statement of Significance

The prediction models for identifying patients with high probability of obstructive sleep apnea (OSA) reported in previous studies tend to 
have high sensitivity but low specificity which may lead to overprescription of polysomnography. Moreover, physiological signals or phys-
ical examination findings are required in some models which may limit their clinical application. This data mining-driven study proposed a 
support vector machine (SVM)-based prediction model built with 2, 6, and 6 features commonly collected at clinic visits to identify patients 
with apnea-hypopnea index (AHI) ≥5/h, ≥15/h, and ≥30/h, respectively. The model was fivefold cross-validated and had a balanced sensi-
tivity (74.14%, 75.18%, and 70.26%) and specificity (74.71%, 68.73%, and 70.30%) which performed better than Berlin questionnaire, NoSAS 
Score, and Supersparse Linear Integer Model (SLIM) scoring system, particularly for man <65 years old.
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Introduction

Obstructive sleep apnea (OSA) is characterized by repeated 
episodes of upper airway obstruction that results in cessation 
of airflow during sleep [1]. OSA is a common disease with a 
prevalence of 9%–38% in the general population [2]. Risk fac-
tors for OSA included age, male, obesity, smoking, anomalies of 
craniofacial features, and menopause in women [3]. Symptoms 
suggestive of OSA included habitual snore, witnessed apnea, 
choking or gasping at sleep, frequent awakening, nocturia, 
unrefreshed sleep, and daytime sleepiness [3]. Early diagnosis 
of OSA is essential because untreated OSA may increase the 
probability of developing cardiovascular diseases, metabolic 
disorders, and neurocognitive dysfunctions [4]. The overnight 
polysomnography (PSG) is the gold standard for the diagnosis of 
OSA, and the OSA severity is commonly determined by apnea-
hypopnea index (AHI) with cutoff ≥5/h for the presence of OSA, 
≥15/h for the presence of moderate–severe OSA, and ≥30/h for 
the presence of severe OSA [2]. However, PSG is costly and the 
access is often limited. As a result, prioritizing patients with 
high risk for moderate–severe OSA for PSG can be crucial for 
many sleep labs.

A recent meta-analysis showed that care of patients with 
OSA by nonsleep specialist physician (NSSP) and sleep spe-
cialist physician brought similar outcomes in terms of mor-
tality, quality of life, adherence, and symptom score. Since 
most NSSPs in the included studies had extensive training in 
sleep medicine, the results may be inferior in the NSSP who 
were less seasoned or inadequately trained [5]. Hence, the 
development of a screening model based on clinical features 
commonly collected at clinic visits to predict the likelihood of 
OSA would be extremely practical for NSSP. Such a model can 
also help NSSP to prioritize patients with high pretest prob-
ability of OSA for PSG [6].

Prediction models reported in the literature were mostly built 
using clinical features including demographics (age, gender, 
smoking, alcohol consumption), comorbidities, anthropomet-
rics, OSA symptoms, physical findings [7], and physiologic 
measurements (e.g. blood pressure, overnight pulse oximetry, 
and pulmonary function) [8] collected from either sleep lab- or 
community-based population. Among prediction models pro-
posed so far, the sensitivity to predict AHI ≥5/h ranged from 
66% to 100% while specificity ranged from 30.8% to 76.2%, and 
the sensitivity to predict AHI ≥15/h ranged from 60.3% to 92.7% 
while specificity ranged from 33.3% to 90.7% (Supplementary 
Table S1). The wide-range discriminative ability of models could 
be attributed to the model complexity, number of participants, 
prevalence of OSA, and imbalance between different OSA se-
verity proportion. Moreover, most prediction models for OSA 
tend to have a higher sensitivity with a lower specificity to pro-
mote early diagnosis (Supplementary Table S1). These models 
can potentially cause a high false-positive rate and lead to over-
prescription of PSG. Nevertheless, some models were estab-
lished based on the data of which patients with comorbidities 
were excluded [9], where the generalizability of clinical implica-
tion would be constrained.

It is also crucial to validate the model efficacy in subgroups 
categorized with different features. For example, male patients 
often have fat distributed to the upper body and a higher per-
centage of snoring than female patients [10, 11]. Elder patients 
with OSA may be less susceptible to adverse effects of OSA like 
sleepiness, impaired quality of life, and mortality compared to 

middle-aged patients [12, 13]. It is also known that the Asian 
patients have higher AHI compared to body mass index (BMI)-
matched Caucasians due to narrower craniofacial features [14].

Machine learning has been found to be a potential means 
in addressing these problems by its massive parallelism, self-
organization, adaptive learning capability, and robustness. sup-
port vector machine (SVM) has been increasingly applied in 
medical healthcare during the past few years since it can pro-
vide systematized architecture for analyzing and extracting im-
portant information from complex data [15]. Hence, SVM-based 
machine learning model may be promising for the prediction 
of OSA.

The present study aimed to propose an easy-to-use and ac-
curate model to identify patients with OSA at three AHI cutoffs 
(≥5/h, ≥15/h, ≥30/h). We developed a data mining-driven SVM 
prediction model using a large-scale sleep lab database with 
features routinely collected at clinic visits. The model discrim-
inative ability was also tested in the subgroups categorized with 
gender (men versus women) and age (<65 versus ≥ 65 years old 
(y/o)). The model discriminative ability was also compared with 
that of logistic regression, Berlin questionnaire (BQ), NoSAS 
Score, and Supersparse Linear Integer Model (SLIM) scoring 
system.

Methods

Data set

The data set developed from information prospectively col-
lected from 7,830 adult patients who underwent initial over-
night PSG for the first time in the Center of Sleep Disorder of 
National Taiwan University Hospital between January 2009 and 
December 2016. For data mining, only patients who had any fol-
lowing conditions were excluded: non-Chinese (n = 11), total re-
cording time <240 min (n = 7), and missing data (n = 936). A total 
of 6,875 patients, with 5,223 men and 1,652 women (5,985 < 65 
y/o and 890  ≥ 65 y/o), were included (Table  1; Supplementary 
Table S2).

Thirty-two clinical features including demographics, an-
thropometrics, comorbidities, self-reported habitual sleep 
patterns, and OSA symptoms were collected through self-
administered questionnaires and medical records (Table  2). 
The demographics included age, gender, smoking, alcohol con-
sumption, and hypnotic use defined as taking hypnotics ≥1 
time/week over the past month. Anthropometrics included BMI, 
neck circumference, and waist circumference. Sleep history and 
OSA symptoms were collected with a self-administered ques-
tionnaire (description and definition listed in Supplementary 
Table S3). Sleep history included unrefreshed sleep, subjective 
sleepiness, frequency of awakening, awakening ≥3 times/night 
during sleep, minutes of sleep onset latency (SOL), and hours 
of sleep duration over the past month. In addition, the SOL < 
30 min and the sleep duration categorized as <6 h/day, 6–8 h/day, 
and ≥8  h/day were added. Subjective sleepiness was assessed 
by the Sleepiness Scale (ESS) with excessive daytime sleepi-
ness (EDS) defined as ESS ≥ 10 [16]. The OSA symptoms included 
snore, witnessed apnea, frequency of nocturia, witnessed leg 
jerks at sleep, morning headache, nocturia ≥2 times/night, and 
dry throat at wake up.

The BQ consists of three categories including snore, fatigue, 
and hypertension, with each category including 2–5 questions 
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Table 1. Comparison of clinical features between patients with and without OSA at three AHI cutoffs

Feature name
Overall 
(N = 6,875)

AHI < 5 
(N = 1,206)

AHI ≥ 5 
(N = 5,669)

AHI < 15 
(N = 2,664)

AHI ≥ 15 
(N = 4,211)

AHI < 30 
(N = 4,084)

AHI ≥ 30 
(N = 2,791)

Age (y/o) 47.8 ± 14.5 40.6 ± 15.1 49.4 ± 13.9 44.1 ± 15.0 50.2 ± 13.7 46 ± 14.8 50.47 ± 13.8
Man, n (%) 5,223 (76.0) 660 (54.8) 4,563 (80.5) 1,673 (62.8) 3,550 (84.3) 2,798 (68.5) 2,425 (86.9)
BMI (kg/m2) 27.0 ± 5.0 23.5 ± 3.5 27.7 ± 4.9 24.6 ± 3.9 28.4 ± 5.0 25.3 ± 4 29.3 ± 5.3
Neck circumference (cm) 37.7 ± 4.1 34.6 ± 3.4 38.3 ± 4.0 35.6 ± 3.7 39.0 ± 3.9 36.3 ± 3.8 39.7 ± 3.8
Waist circumference (cm) 91.4 ± 13.0 80.9 ± 10.2 93.6 ± 12.5 84.4 ± 10.9 95.8 ± 12.3 86.8 ± 11.2 98 ± 12.7
Current smoker, n (%) 1,104 (16.1) 135 (11.2) 969 (17.1) 334 (12.5) 770 (18.3) 520 (12.7) 584 (20.9)
Alcohol consumption, n (%) 688 (10.0) 80 (6.6) 608 (10.7) 182 (6.8) 506 (12.0) 328 (8) 360 (12.9)
Hypnotic, n (%) 634 (9.2) 151 (12.5) 483 (8.5) 314 (11.8) 320 (7.6) 435 (10.7) 199 (7.1)
Comorbidity
 Hypertension, n (%) 2,021 (29.4) 126 (10.4) 1,895 (33.4) 435 (16.3) 1,586 (37.7) 835 (20.4) 1,186 (42.5)
 Diabetes, n (%) 580 (8.4) 31 (2.6) 549 (9.7) 117 (4.4) 463 (11) 231 (5.7) 349 (12.5)
 CAD, n (%) 248 (3.6) 16 (1.3) 232 (4.1) 62 (2.3) 186 (4.4) 119 (2.9) 129 (4.6)
 CHF, n (%) 101 (1.5) 6 (0.5) 95 (1.7)† 22 (0.8) 79 (1.9) 37 (0.9) 64 (2.3)
 CVA, n (%) 124 (1.8) 5 (0.4) 119 (2.1) 31 (1.2) 93 (2.2)† 54 (1.3) 70 (2.5)
 CKD, n (%) 62 (0.9) 7 (0.6) 55 (1.0)& 13 (0.5) 49 (1.2)† 18 (0.4) 44 (1.6)
 COPD, n (%) 67 (1.0) 14 (1.2) 53 (0.9)& 22 (0.8) 45 (1.1)& 37 (0.9) 30 (1.1)&

 Asthma, n (%) 490 (7.1) 105 (8.7) 385 (6.8)† 210 (7.9) 280 (6.6)& 321 (7.9) 169 (6.1)†

 Hypothyroidism, n (%) 156 (2.3) 25 (2.1) 131 (2.3)& 63 (2.4) 93 (2.2)& 103 (2.5) 53 (1.9)&

Habitual sleep pattern
 Habitual SOL (min) 20.9 ± 22.5 25 ± 29.9 20 ± 20.5 23.7 ± 26.7 19.1 ± 19.3 22.6 ± 24.2 18.4 ± 19.6
 Habitual SOL < 30 min, n (%) 4,794 (69.7) 770 (63.8) 4,024 (71.0) 1,744 (65.5) 3,050 (72.4) 2,752 (67.4) 2,042 (73.2)
 Habitual sleep duration (h) 6.6 ± 3.3 6.6 ± 2.7 6.5 ± 3.5 6.5 ± 2.6 6.6 ± 3.7† 6.5 ± 2.8 6.6 ± 4&

 Unrefreshed sleep, n (%) 3,685 (53.6) 770 (63.8) 2,915 (51.4) 1,613 (60.5) 2,072 (49.2) 2,325 (56.9) 1,360 (48.7)
 Frequency of awakening in sleep 

(time/night)
0.5 ± 1.5 0.5 ± 1.5 0.6 ± 1.5& 0.5 ± 1.5 0.6 ± 1.5& 0.5 ± 1.5 0.6 ± 1.5

 Awakening at sleep ≥3 times/ 
night

1,504 (21.9) 237 (19.7) 1,267 (22.3)† 526 (19.7) 978 (23.2)† 802 (19.6) 702 (25.2)

 ESS 10.3 ± 4.9 10.0 ± 4.9 10.4 ± 4.9† 9.8 ± 4.8 10.6 ± 4.9 9.9 ± 4.7 11 ± 5
 EDS, n (%) 3,764 (54.7) 628 (52.1) 3,136 (55.3)† 1,355 (50.9) 2,409 (57.2) 2,098 (51.4) 1,666 (59.7)
Symptom suggestive of OSA
 Snoring, n (%) 5,480 (79.7) 753 (62.4) 4,727 (83.4) 1,912 (71.8) 3,568 (84.7) 3,099 (75.9) 2,381 (85.3)
 Witnessed apnea, n (%) 1,066 (15.5) 79 (6.6) 987 (17.4) 221 (8.3) 845 (20.1) 417 (10.2) 649 (23.3)
 Frequency of nocturia (times/ 

night) 
1.1 ± 1.2 0.9 ± 1.1 1.2 ± 1.2 1 ± 1.1 1.3 ± 1.2 1 ± 1.1 1.3 ± 1.3

 Nocturia ≥2 times/night, n (%) 2,352 (34.2) 308 (25.5) 2,044 (36.1) 746 (28.0) 1,606 (38.1) 1,203 (29.5) 1,149 (41.2)
 Witnessed leg jerks in sleep, n (%) 3,278 (47.7) 603 (50) 2,675 (47.2)& 1,303 (48.9) 1,975 (46.9)& 1,974 (48.3) 1,304 (46.7)&

 Morning headache, n (%) 799 (11.6) 192 (15.9) 607 (10.7) 351 (13.1) 448 (10.6)† 513 (12.6) 286 (10.2)†

 Dry throat at waking up, n (%) 3,856 (56.1) 577 (47.8) 3,279 (57.8) 1,324 (49.7) 2,532 (60.1) 2,132 (52.2) 1,724 (61.8)
AHI (/h) 29.6 ± 26.0 1.9 ± 1.5 35.5 ± 24.9 6.1 ± 4.5 44.5 ± 22.8 11.6 ± 8.7 56 ± 19.5

The data were presented as mean ± standard deviation or number (percentage). CAD, coronary artery disease; CHF, congestive heart failure; CVA, cerebrovascular 

accident; COPD, chronic obstructive pulmonary disease; CKD, chronic kidney disease. The comparisons between non-OSA and OSA participants were analyzed 

with the independent t-test and chi-square test. All p-values were <0.001, except for variable marked with & and †, of which the p-values were >0.05 and <0.05, 

respectively.

Table 2. Thirty-two features input in both SVM model and logistic regression

Demographics Anthropometric Comorbidities Sleep history Symptoms suggestive of OSA

Age BMI Hypertension SOL (min) Snore
Gender Neck circumference Diabetes SOL < 30 min Witnessed apnea
Alcohol consumption Waist circumference CAD Sleep duration, <6, 6–8, and ≥8 h Frequency of nocturia (time/night)
Current smoking  CHF Unrefreshed sleep Nocturia ≥2 times/night
Hypnotics  CVA Frequency of awakenings at sleep  

(time/night)
Witnessed leg jerks in sleep

  CKD Awakenings in sleep ≥3 times/night Morning headache
  COPD ESS Dry throat at waking up 
  Asthma EDS  
  Hypothyroidism   

CAD, coronary artery disease; CHF, congestive heart failure; CVA, cerebrovascular accident; CKD, chronic kidney disease; COPD, chronic obstructive pulmonary 

disease.
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with a total of 11 questions. Presence of positive responses to two 
or more categories indicates high risk for OSA [17]. The NoSAS 
Score is a 5-item questionnaire which includes neck circumfer-
ence, BMI, snore, age, and gender. With a range of 0–17, NoSAS 
Score 4 for neck circumference ≥ 40 cm, scores 3 for BMI 25–30 kg/
m2, scores 5 for BMI ≥ 30 kg/m2, scores 2 for snoring, scores 4 for 
>55 y/o, and scores 2 for male gender. The total score ≥ 8 is con-
sidered as high risk for OSA [18]. The SLIM scoring system (size 
10)  is a 10-feature machine learning model which include age, 
BMI, diabetes, hypertension, smoking, and female gender. The 
total points >29 is considered as high risk for OSA [19].

All methods were carried out in accordance with relevant 
guidelines and regulations. The study protocol was approved 
by the Research Ethics Committee of NTUH (protocol number 
201603113RIND) and the need for consent from participants was 
waived by the Research Ethics Committee.

Polysomnography

Overnight PSG (Embla N7000, Medcare Flaga, Reykjavik, Iceland) 
was performed as previously reported [20]. Sleep stages and 
respiratory events were scored according to the 2007 AASM 
scoring rule [21]. Apnea was defined as ≥90% decrease in airflow 
for ≥10 s while hypopnea was ≥30% decrease in airflow ≥10 s as-
sociated with ≥4% reduction in arterial oxygen saturation. The 
PSG parameters collected included sleep efficiency, percentage 
of slow-wave sleep (%  SWS) and % rapid eye movement, AHI, 
oxygen desaturation index (ODI), percentage of total sleep time 
with SpO2 < 90% (%TST-SpO2 < 90%), and arousal index (AI).

Feature selection and prediction model design

Figure 1 illustrates the flowchart of SVM prediction model de-
velopment (Supplementary Table S4 shows the detail of model 

development). The training procedure of the proposed predic-
tion model includes data input, data exclusion, feature selec-
tion, and OSA classification. The training procedure conducted 
in this study was based only on the training data set to prevent 
overfitting (i.e. a model that just repeats the samples that it 
has just seen would have a perfect score but would fail to pre-
dict unseen data). Subsequently, a comprehensive blind val-
idation using the testing data set was conducted during the 
testing stage. In the proposed method, we applied the cross-
validation (CV) approach in this study to test the effectiveness 
of the selected features and the machine learning model. CV is a 
resampling procedure used to hold out part of the available data 
as a testing set for model evaluation when data are limited. To 
perform CV, we put aside a portion of the data not used in model 
training for testing/validation (Supplementary Figure S1).

To optimize the discriminative ability using the fewest 
features, continuous and categorical features were selected 
by single-feature SVM Area under the Receiver Operating 
Characteristic (AUROC) and Matthews Correlation Coefficient 
(MCC), respectively, during the feature selection [22]. Due to dif-
ferent mathematical characteristics between continuous and 
categorical features, this study developed a two-stage feature 
selection procedure to prevent the selection relying on a single 
type of feature set in the proposed model. In the first stage, 
only the continuous and categorical features with the top half 
of AUROC (Table 3) and MCC (Figure 2), respectively, were re-
served to reduce the interference from the redundant features, 
in which these features may be robustly related to different 
AHI cutoffs. Subsequently, forward stepwise feature selection 
(FSFS) was exploited in the second half of feature selection. 
The feature set selected by FSFS was increased stepwise based 
on the greedy approach [23]. Specifically, the features with the 
maximum AUROC or MCC in the first stage were regarded as 
the feature candidates in the second stage. Afterward, each 
feature from the feature candidates was randomly integrated 

Figure 1. The flow chart of developing SVM-based prediction model. Non-Chinese (n = 11), total recording time <240 min (n = 7), and any missing data (n = 936) were 

excluded. In the first feature selection stage, we observed that the top half of AUROC and MCC feature ranks were similar in all three different AHI cutoffs suggesting 

the robustness of these features. Therefore, only features with AUROC or MCC higher than median remained in the model. During the last feature selection, the fewest 

features were selected to keep AUROC ≥ 0.80.

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsz295#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsz295#supplementary-data
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then used to train a new SVM for evaluating classification per-
formance. During each iteration in the second stage, the add-on 
feature with the superior SVM performance was reserved 
for updating the selected feature. Accordingly, the updated 
selected set was used to evaluate the next incoming feature 
candidate (Supplementary Table S5). The whole training pro-
cedure of FSFS was iterated until the stopping criteria (AUROC 
≥ 0.8). To achieve significant clinical application, the selected 
feature set based on FSFS was aimed to achieve target criteria 
in AUROC in three AHI cutoffs during the selection procedure. 
Eventually, the selected feature set after the two-stage feature 
selection was used to establish the prediction model for OSA 
recognition based on SVM [24]. The posterior probability of the 
SVM was used to determine the class of the incoming datum 
[25], either OSA or non-OSA. To further optimize the classi-
fication result, the Youden’s index was employed to find the 
optimal threshold of SVM posterior probability to determine 
categories. In addition, the fivefold CV was randomly repeated 
five times to verify the model reliability. The average AUROC 
of the fivefold CV for each of the three AHI cutoffs was cal-
culated. The prediction model was trained by sleep lab-based 
data set with three AHI cutoff 5/h, 15/h, and 30/h, respectively, 
which means the models based on three AHI cutoffs were fairly 
trained and validated. To further evaluate the model robust-
ness, the learning curves of three AHI cutoffs were depicted 
(Supplementary Figure S2).

Data analysis

The discriminative ability of the proposed SVM model was 
evaluated using average of fivefold CV of AUROC, F1 score, ac-
curacy, sensitivity, specificity, positive predictive value (PPV), 
negative predictive value (NPV), and positive likelihood ratio 
(LR+), and negative likelihood ratio (LR−) for each of the three 
AHI cutoffs. The performance was expressed as mean (95% 
confidence interval [CI]). The cutoff of AUROC value was iden-
tified using the Youden’s index. The SVM model was tested in 
subgroups categorized by gender (men versus woman) and age 
(<65 y/o versus ≥65 y/o) to identify subgroups for which the 
model worked best. The performance of the SVM model was 
compared to logistic regression, BQ, NoSAS Score, and SLIM 
scoring system.

For logistic regression, 67% of participants were randomly 
selected as training set, while the remaining 33% of the partici-
pants were selected as testing set. Logistic models with forward 

selection were used to identify suitable factors to establish the 
prediction model for AHI ≥5/h, ≥15/h, and ≥30/h in the training 
test. Each parameter has to be significant at the 0.0001 level to 
remain in the model. All the remaining variables were listed 
with odds ratio (OR) and 95% CI. The predictability of AHI ≥5/h, 
≥15/h, and ≥30/h was assessed by the AUROC. In addition, sen-
sitivity, specificity, PPV, and NPV were calculated by using the 
cutoff of Youden’s index.

The clinical features were compared between patients with 
and without OSA and among four subgroups at three AHI cutoffs. 
Continuous variables were expressed as mean ± standard de-
viation (SD) and categorical variables were expressed as per-
centage. Independent samples t-test and chi-square test were 
applied as appropriate in comparison of OSA data sets and non-
OSA data sets as well as in the subgroups. A two-tailed p-value 
<0.05 was considered statistically significant. All statistical ana-
lyses were conducted by Python (Python Software Foundation. 
Python Language Reference, version 3.6.1. Available at http://
www.python.org), and SAS Version 9.3 (SAS Institute, Cary, NC).

Results
The clinical features of patients are listed in Table  1 and 
Supplementary Table S2. The mean age was 47.8 y/o and 76% 
were men. The mean AHI was 29.6/h with a prevalence of 82.5%, 
61.3%, and 40.6% at AHI ≥5/h, ≥15/h, and ≥30/h cutoffs, respect-
ively. Compared to patients without OSA, those with OSA were 
older, more obese, sleepier, and had higher percentage of men, 
history of smoking and alcohol consumption, comorbidities, 
and OSA symptoms as well as shorter SOL. The patients without 
OSA had longer SOL, higher percentage of witnessed leg jerks in 
sleep, and morning headache than those with OSA. The habitual 
SOL is weakly correlated with SOL recorded by PSG (Pearson cor-
relation, γ = 0.202, p < 0.001).

Feature selection

The MCCs of categorical features for different AHI cutoffs are 
listed in Figure  2. Twelve categorical features with top half of 
MCC value were selected for each AHI cutoff. The results of 
AUROC evaluation with SVMs trained by each single continuous 
feature are listed in Table 3. Four continuous features with top 
half of AUROC in predicting OSA were waist, neck circumfer-
ence, BMI, and age. In total, 16 features were selected.

Table 3. AUROC of single continuous feature at SVM model for three AHI cutoffs

Order

AHI ≥ 5/h AHI ≥ 15/h AHI ≥ 30/h

Feature AUROC Feature AUROC Feature AUROC

1 Waist 0.794 Waist 0.763 Waist 0.754
2 BMI 0.772 Neck 0.747 Neck 0.742
3 Neck 0.769 BMI 0.739 BMI 0.736
4 Age 0.665 Age 0.561 Age 0.584
Features not selected
5 SOL 0.525 Frequency of nocturia 0.520 Frequency of nocturia 0.510
6 Frequency of nocturia 0.513 ESS 0.516 ESS 0.518
7 Frequency of awakening in sleep 0.513 Frequency of awakening in sleep 0.494 Frequency of awakening in sleep 0.503
8 ESS 0.495 SOL 0.488 SOL 0.493

The features were in order according to the AUROC value. In the first stage of feature selection, features with AUROC higher than median were selected.

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsz295#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsz295#supplementary-data
http://www.python.org
http://www.python.org
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsz295#supplementary-data
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Figure 2. MCC values of categorical features correlated with AHI ≥ 5/h, AHI ≥ 15/h, and AHI ≥ 30/h. The feature order was sorted by absolute MCC. The solid bars indi-

cated features with MCC higher than median while the bars with stripe indicate features with MCC lower than median. CKD, chronic kidney disease; CAD, coronary 

artery disease; CHF, congestive heart failure; CVA, cerebrovascular accident; COPD, chronic obstructive pulmonary disease.



Huang et al. | 7

In the final feature selection, 2, 6, and 6 features were 
selected with FSFS for AHI ≥5/h, ≥15/h, and ≥30/h, respectively 
(Table  4; Figure  3) where the detailed iterations are listed in 
Supplementary Table S5. The learning curve showed no evi-
dence of overfitting (Supplementary Figure S2). In addition to 
waist circumference and age, snoring, neck circumference, wit-
nessed apnea, and SOL < 30 min were selected for AHI ≥ 15/h 
and AHI ≥ 30/h (Table 4). For logistic regression, 7, 10, and 10 fea-
tures were selected for AHI ≥5/h, ≥15/h, and ≥30/h, respectively 
(Table 4; Supplementary Table S6). Five features selected in the 
SVM model including waist circumference, age, neck circumfer-
ence, snoring, and witnessed apnea were also selected in the 

LR. The SOL was selected instead of SOL < 30 min. Additional 
selected features in LR includes BMI, dry throat, gender, hyp-
notic, and hypertension (Table 4).

Model discriminative ability

The discriminative ability of the SVM model and logistic re-
gression, BQ, NoSAS Score, and SLIM scoring system for three 
AHI cutoffs are shown in Table  5. The performance of SVM 
model remains good consistently across three AHI criteria. The 
AUROC was 0.82, 0.80, and 0.78 for AHI ≥5/h, ≥15/h, and ≥30/h, 
respectively, while the accuracy was 74.24%, 72.68%, and 70.28%, 

Table 4. The features selected with forward stepwise feature selection of SVM model and logistic regression for three AHI cutoffs

Method Order AHI ≥ 5/h AHI ≥ 15/h AHI ≥ 30/h

SVM 1 Waist circumference Waist circumference Waist circumference
2 Age Age Witnessed apnea
3  Neck circumference Age
4  Snoring Neck circumference
5  Witnessed apnea Snoring 
6  SOL < 30 min SOL < 30 min

Logistic regression N/A Snoring Snoring Witnessed apnea
Gender Witnessed apnea Gender
Age Dry throat Snoring
Neck circumference Gender Hypertension
SOL Hypnotic Dry throat
BMI Age Waist circumference
Waist circumference Waist circumference Age

 Neck circumference Neck circumference
 SOL BMI
 BMI SOL 

In SVM model, the minimal feature set was selected to achieve the target criteria in the AUROC. When AHI cutoffs were 5/h and 15/h, the target AUROC was set as 

0.8. While AHI cutoff was 30/h, the experiment showed that the maximum AUROC was 0.78, so we selected minimum features to achieve the performance. N/A, not 

applicable.

Figure 3. This figure illustrates the relationship between AUROC of prediction model and corresponding numbers of features in the stepwise forward feature selection. 

The results show that fewest numbers of features to achieve AUROC ≥ 0.80 were 2, 6, and 6 for AHI ≥ 5/h, 15/h, and 30/h, respectively. The solid dot and bar indicated 

mean and standard deviation, respectively. The green circles indicated selected feature numbers with specific AHI cutoff.

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsz295#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsz295#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsz295#supplementary-data
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respectively. The sensitivity was 74.14%, 75.18%, and 70.26%, for 

AHI ≥5/h, ≥15/h, and ≥30/h, respectively, while the specificity 

was 74.71%, 68.73%, and 70.30% respectively. Compared to lo-

gistic regression, SVM model had similar AUROC and accuracy 

across three AHI cutoffs. Moreover, at higher AHI cutoffs, the 

SVM model upheld good sensitivity and NPV without losing spe-

cificity and PPV. Compared to BQ, the SVM model had higher 

AUROC, accuracy, specificity, PPV, and NPV across three AHI cri-

teria while it had higher AUROC, accuracy, sensitivity, and NPV 

compared to NoSAS Score. Compared to SLIM scoring system, 

the SVM model had higher AUROC, accuracy, and sensitivity 

across three AHI criteria.

The discriminative ability of SVM model in four subgroups 

are shown in Table  6. The AUROC and accuracy were similar 

between male and female while AUROC, accuracy, specificity, 
PPV, and NPV were higher in <65 y/o than ≥65 y/o subgroup. 
Moreover, the discriminative ability was best for male <65 y/o 
and modest for female ≥65 y/o. To make this proposed predic-
tion model available to researchers and clinicians, we have 
built an easy-to-use website (http://howareyou.csie.ntu.edu.tw), 
which provides OSA probability prediction based on our ma-
chine learning model.

Discussion
In this study, we proposed a data mining-driven SVM model 
using a large-scale sleep lab-based data set to predict OSA with 
three different AHI cutoffs. The features selected in the model 

Table 5. The performance of SVM, logistic regression, BQ, NoSAS Score, and SLIM scoring system at three AHI cutoffs

Model AHI cutoff (/h) Feature no. AUROC F1 factor Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) LR+ LR−

SVM ≥5 2 0.82 
(0.79–
0.85)

0.83 
(0.81–
0.85)

74.24 
(71.59– 
76.89)

74.14  
(71.33– 
76.95)

74.71 
(70.88– 
78.54)

93.23 
(92.17– 
94.29)

38.15 
(34.79– 
41.52)

2.96 
(2.52– 
3.41)

0.35 
(0.30– 
0.40)

≥15 6 0.80 
(0.79–
0.81)

0.77 
(0.74–
0.80)

72.68 
(70.52– 
74.84)

75.18  
(67.61– 
82.76)

68.73 
(61.72– 
75.75)

79.32 
(76.84– 
81.80)

64.03 
(59.75– 
68.31)

2.45 
(2.04– 
2.87)

0.36 
(0.29– 
0.43)

≥30 6 0.78 
(0.77–
0.80)

0.66 
(0.61–
0.70)

70.28 
(68.68– 
71.88)

70.26  
(60.21– 
80.31)

70.30 
(64.18– 
76.43)

61.93 
(59.21– 
64.35)

77.86 
(73.68– 
82.03)

2.39 
(2.14– 
2.64)

0.42 
(0.32– 
0.52)

LR ≥5 7 0.84 
(0.83–
0.86)

— 73.77 94.41 37.87 72.55 79.56 1.52 0.15

≥15 10 0.81 
(0.80–
0.82)

— 72.14 79.94 62.69 72.21 72.03 2.14 0.32

≥30 10 0.79 
(0.78–
0.81)

— 72.83 65.01 78.77 69.94 74.77 3.06 0.44

BQ ≥5 — 0.54 
(0.52–
0.56)

— 67.58 74.95 32.91 84.01 21.89 1.11 0.76

≥15 — 0.53 
(0.52–
0.55)

— 58.39 76.09 30.41 63.34 44.58 1.09 0.79

≥30 — 0.53 
(0.51–
0.54)

— 48.09 76.68 28.55 42.31 64.17 1.07 0.81

NoSAS  
Score

≥5 4 0.70 
(0.68–
0.71)

— 57.25 50.62 88.39 95.31 27.58 4.36 0.56

≥15 4 0.68 
(0.67–
0.70)

— 66.01 57.99 78.67 81.13 54.23 2.72 0.53

≥30 4 0.68 
(0.67–
0.69)

— 68.30 64.88 70.64 60.16 74.64 2.20 0.50

SLIM  
(10 size)

≥5 10 0.69 
(0.67–
0.70)

0.63 54.68 47.10 90.30 95.80 26.64 4.86 0.59

≥15 10 0.68 
(0.67–
0.69)

0.65 64.77 54.33 81.27 82.10 52.96 2.90 0.56

≥30 10 0.68 
(0.67–
0.70)

0.62 69.40 62.24 74.29 62.33 74.22 2.42 0.51

The data were presented as mean (95% confidence interval). LR, logistic regression.

http://howareyou.csie.ntu.edu.tw
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were as few as 2, 6, and 6 for AHI ≥5/h, ≥15/h, and ≥30/h, re-
spectively, and all were collected at the clinics. Compared to lo-
gistic regression, the SVM model had noninferior discriminative 
ability, balanced sensitivity and specificity, and with fewer fea-
tures. The discriminative ability of SVM model was better than 
BQ, NoSAS Score, and SLIM scoring system. The SVM model 
worked best for male <65 y/o.

A major strength of our model is that our SVM prediction 
is built using a large-scale data set from sleep clinics with 
very few exclusions which enhance the representativeness of 
the data set and minimize the selection bias of small samples 
(Supplementary Table S1) [9, 18, 19, 26–36]. Moreover, all 32 fea-
tures are information routinely collected at the clinic visits and 
are not physiological parameters derived from overnight pulse 
oximetry or pulmonary function test. Unlike certain model [7] 
that includes physical findings of oral cavity which may be diffi-
cult to measure precisely [27], we did not include such features 

for the model development. Similarly, we were concerned that 
single office blood pressure may not be representative so we did 
not include it as an input feature.

Another strength of this study is that we designed a two-
stage feature selection process with three AHI cutoffs. First-
stage feature selection allowed categorical features and 
continuous features to be selected separately and thus the in-
clusion of categorical features like witnessed apnea and SOL < 
30 min. Furthermore, the FSFS allowed priorities of features to 
change with different AHI cutoff. Using three AHI cutoffs for 
OSA would be more stringent than single cutoff. Models that 
predict AHI ≥ 5/h tend to have high sensitivity but low specifi-
city [27] and could increase the risk of over prescriptions of PSG 
for those without OSA. Our model achieved a balance in sen-
sitivity and specificity compared to the discriminative ability 
of the previous studies. When compared to the Duarte’s model 
[36], which has a high sensitivity and low specificity with two 

Table 6. The performance of SVM model in subgroups including men, women, <65 y/o, and ≥65 y/o

AHI 

cutoff

No. of 

≥AHI 

cutoff AUROC F1 score Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) LR+ LR−

Male ≥5 4,653 0.80 

(0.77–0.83)

0.82 

(0.80–0.83)

71.82  

(69.59–74.04)

71.21  

(69.04–73.37)

76.06  

(73.04–79.08)

95.35  

(94.67–96.04)

27.69  

(25.55–29.84)

3.00  

(2.59–3.42)

0.38  

(0.34–0.42)

≥15 3,550 0.77 

(0.77–0.78)

0.76 

(0.70–0.81)

69.86  

(65.74–73.98)

69.30  

(59.97–78.63)

71.08  

(63.99–78.16)

83.70  

(81.83–85.58)

52.62  

(48.17–57.07)

2.44  

(2.07–2.82)

0.43  

(0.35–0.51)

≥30 2,425 0.76 

(0.74–0.78)

0.66 

(0.59–0.73)

69.65  

(67.17–72.13)

64.58  

(52.25–76.91)

74.06  

(67.47–80.64)

68.50  

(66.53–70.48)

71.09  

(66.21–75.98)

2.52  

(2.29–2.74)

0.47  

(0.36–0.59)

Female ≥5 1,106 0.78 

(0.73–0.83)

0.79 

(0.74–0.84)

72.76  

(67.28–78.24)

77.75  

(70.55–84.96)

62.64  

(56.94–68.35)

80.79  

(77.74–83.85)

58.64  

(50.32–66.96)

2.11  

(1.65–2.58)

0.36  

(0.23–0.48)

≥15 661 0.79 

(0.75–0.83)

0.67 

(0.65–0.69)

67.92  

(63.79–72.06)

81.84  

(79.15–84.53)

58.64  

(50.16–67.12)

57.13  

(52.74–61.53)

82.87  

(81.88–83.86)

2.02  

(1.65–2.39)

0.31  

(0.29–0.33)

≥30 366 0.79 

(0.75–0.82)

0.52 

(0.47–0.57)

68.17  

(61.43–74.91)

77.04  

(74.41–79.67)

65.64  

(56.66–74.62)

39.47  

(33.20–45.75)

90.91  

(89.86–91.96)

2.33  

(1.68–2.98)

0.35  

(0.31–0.40)

<65 y/o ≥5 4,870 0.82 

(0.79–0.85)

0.83 

(0.80–0.85)

74.52  

(71.62–77.41)

74.68  

(71.42–77.93)

73.81  

(69.80–77.82)

92.56  

(91.41–93.71)

40.14  

(36.42–43.86)

2.88  

(2.46–3.31)

0.34  

(0.29–0.40)

≥15 3,577 0.81 

(0.80–0.82)

0.77 

(0.74–0.81)

73.43  

(71.47–75.39)

76.46  

(68.81–84.10)

68.94  

(62.42–75.46)

78.66  

(76.51–80.82)

66.74  

(62.27–71.22)

2.50  

(2.15–2.85)

0.34  

(0.27–0.41)

≥30 2,347 0.79 

(0.78–0.81)

0.66 

(0.62–0.70)

70.96  

(69.22–72.70)

71.83  

(62.05–81.61)

70.40  

(63.93–76.87)

61.22  

(58.19–64.25)

79.75  

(75.68–83.82)

2.46  

(2.13–2.79)

0.40  

(0.29–0.50)

≥65 y/o ≥5 799 0.70 

(0.64–0.76)

0.78 

(0.76–0.79)

65.84  

(63.68–68.00)

65.83  

(63.37–68.30)

65.73  

(52.01–79.45)

94.47  

(92.42–96.52)

17.94  

(14.85–21.04)

2.19  

(0.88–3.50)

0.53  

(0.43–0.63)

≥15 634 0.69 

(0.67–0.72)

0.72 

(0.66–0.79)

64.94  

(59.99–69.88)

65.75  

(54.68–76.82)

62.92  

(50.00–75.84)

81.77  

(77.98–85.57)

42.92  

(39.06–46.79)

1.87  

(1.33–2.40)

0.54  

(0.46–0.63)

≥30 444 0.70 

(0.68–0.72)

0.62 

(0.54–0.69)

64.16  

(61.20–67.12)

58.52  

(45.19–71.85)

69.74  

(60.90–78.58)

66.07  

(63.15–68.99)

63.23  

(58.75–67.71)

1.97  

(1.71–2.23)

0.59  

(0.47–0.71)

Male < 65 y/o ≥5 3,972 0.81 

(0.78–0.84)

0.82 

(0.80–0.84)

72.47  

(70.56–74.37)

71.80  

(69.64–73.97)

76.81  

(72.96–80.67)

95.29  

(94.52–96.06)

29.46  

(27.70–31.22)

3.14  

(2.63–3.65)

0.37  

(0.33–0.40)

≥15 3,075 0.78 

(0.77–0.79)

0.76 

(0.72–0.81)

70.74  

(67.41–74.07)

70.18  

(61.74–78.62)

71.89  

(64.65–79.14)

83.77  

(81.54–86.01)

54.50  

(50.56–58.44)

2.56  

(2.08–3.05)

0.41  

(0.34–0.48)

≥30 2,077 0.77 

(0.75–0.79)

0.66 

(0.61–0.72)

70.15  

(68.40–71.91)

65.96  

(54.65–77.26)

73.64  

(67.30–79.97)

67.68  

(65.67–69.69)

72.62  

(68.15–77.10)

2.53  

(2.29–2.78)

0.46  

(0.35–0.56)

Male ≥ 65 y/o ≥5 591 0.66 

(0.50–0.82)

0.77 

(0.71–0.84)

64.99  

(56.26–73.71)

65.65  

(58.02–73.28)

57.09  

(30.16–84.02)

94.53  

(90.98–98.08)

13.31  

(5.67–20.95)

1.82  

(0.85–2.79)

0.81  

(-0.07–1.70)

≥15 475 0.69 

(0.64–0.75)

0.72 

(0.59–0.85)

64.67  

(52.79–76.55)

64.21  

(46.97–81.45)

66.08  

(57.94–74.23)

84.07  

(81.07–87.07)

40.99  

(30.06–51.92)

1.91  

(1.45–2.37)

0.54  

(0.31–0.76)

≥30 348 0.68 

(0.65–0.72)

0.60 

(0.51–0.70)

61.58  

(57.45–65.71)

54.82  

(40.88–68.77)

69.49  

(61.48–77.50)

67.95  

(66.43–69.47)

57.03  

(52.80–61.27)

1.80  

(1.68–1.92)

0.64  

(0.52–0.77)

Female < 65 y/o ≥5 898 0.78 

(0.72–0.84)

0.78 

(0.74–0.83)

72.32  

(67.63–77.01)

78.52  

(72.21–84.82)

61.35  

(55.96–66.73)

78.23  

(75.33–81.13)

62.05  

(54.74–69.35)

2.06  

(1.67–2.45)

0.35  

(0.24–0.46)

≥15 502 0.79 

(0.76–0.83)

0.66 

(0.62–0.70)

67.70  

(62.00–73.39)

85.67  

(81.39–89.94)

57.70  

(48.59–66.82)

53.22  

(48.26–58.19)

87.83  

(84.22–91.43)

2.07  

(1.68–2.45)

0.25  

(0.17–0.33)

≥30 270 0.79 

(0.76–0.83)

0.49 

(0.43–0.55)

66.83  

(59.86–73.80)

81.11  

(76.69–85.54)

63.44  

(55.04–71.83)

35.01  

(28.68–41.34)

93.33  

(91.53–95.14)

2.30  

(1.61–2.99)

0.30  

(0.21–0.39)

Female ≥ 65 y/o ≥5 208 0.71 

(0.57–0.85)

0.78 

(0.72–0.85)

68.88  

(62.49–75.26)

68.31  

(56.76–79.85)

71.07  

(47.64–94.50)

93.19  

(89.36–97.02)

29.79  

(28.03–31.56)

3.14  

(1.14–5.13)

0.44  

(0.39–0.49)

≥15 159 0.68 

(0.61–0.74)

0.66 

(0.59–0.73)

60.30  

(54.38–66.22)

60.32  

(50.11–70.54)

60.39  

(50.49–70.30)

73.41  

(68.65–78.17)

46.04  

(39.42–52.66)

1.56  

(1.25–1.86)

0.66  

(0.49–0.84)

≥30 96 0.70 

(0.65–0.76)

0.59 

(0.49–0.69)

66.88  

(56.89–76.87)

60.47  

(47.36–73.59)

70.95  

(55.26–86.63)

58.64  

(42.90–74.38)

73.92  

(65.99–81.84)

2.66  

(0.42–4.91)

0.57  

(0.34–0.79)

The data were presented as mean (95% confidence interval).

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsz295#supplementary-data
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features (Supplementary Table S1), our model has a higher 
AUROC, sensitivity, and specificity across three AHI cutoffs. 
The balanced discriminative ability of our model could allow 
early identification of the patients with high probability of OSA 
without overprescribing sleep study.

The six features, with the exception of SOL < 30 min, were 
often selected in the prediction models reported in the litera-
ture while SOL < 30 min has never been described to predict AHI 
≥ 15/h or AHI ≥ 30/h (Supplementary Table S1). The selection of 
SOL < 30 min as a feature in the SVM model was a surprise but 
was echoed by the selection of SOL in logistic regression. Despite 
that SOL was an input feature in the Boosting model proposed 
by Caffo et al., it was not selected for their modeling [30]. The 
difference may be due to the fact that the participants in the 
Caffo study were from a community population and were older 
with more females.

Similar to the findings of other studies, neither ESS nor EDS 
was selected as a model feature, which reflects that there is 
a high prevalence of EDS in OSA patients regardless of AHI. It 
may be related to the clinical practice that patients with EDS are 
more prone to be referred for sleep study and sleepiness is not 
necessarily concordant with OSA severity [27].

Our results are comparable to another model validated in 
the Chinese population. Liu et al. [33] developed an SVM-based 
model to predict OSA with three anthropometric features, i.e. 
waist size, neck size, and BMI. That study included age, BQ, and 
anthropometrics as features. The predictability for AHI ≥ 15/h 
and AHI ≥ 30/h in Liu’s model is highest in females ≤50 y/o. 
Compared to the discriminative ability for AHI ≥ 15/h in the 
model reported by Liu et al., our model has higher AUROC and 
accuracy in elderly males while lower in elderly females. The 
difference in performance is likely due to the inclusion of OSA 
symptoms such as snoring and witnessed apnea. Moreover, 
the age cutoff in our study for subgroup analysis is 65 y/o as 
opposed to 50 y/o in the study by Liu. We arbitrarily chose 65 
y/o as cutoff for subgroup analysis. Elderly OSA patients often 
have poorer association between AHI and body habitus variables 
(neck size, BMI, and waist-to-hip ratio), a lower percentage of 
habitual snoring, and a longer SOL compared to younger pa-
tients [5], which may contribute to the poorer performance of 
our model in the elderly as our model was built with anthropo-
metrics and OSA symptoms.

There are a few limitations in the present study. First, sev-
eral features highly associated with OSA such as hyperlipidemia 
and atrial fibrillation were not included in the database and thus 
not employed for model development. Second, the data set was 
built form the information collected from the patients referred 
to our sleep lab for sleep study in whom the prevalence of OSA is 
high. The result may not be applicable to the general population 
where the prevalence of OSA is much lower. Third, the partici-
pants are all Chinese and the accuracy of this model in other 
ethnic groups remains unclear. The validity of this model needs 
to be confirmed in community populations of multiple ethni-
city to address the significance and implication. Fourth, using 
AHI cutoff as the sole target of prediction is one of the limita-
tions of our study. AHI has been known for its loose association 
with OSA-related outcomes [37] while factors like EDS may have 
a better prediction of cardiovascular outcome than AHI [38]. In 
the future, other parameters such as morbidity should be con-
sidered as targets of prediction. Fifth, we did not compare our 
model with STOP-Bang [39] as STOP-Bang was not included as 

part of our sleep lab routine questionnaires until January 2017. 
Further study comparing our SVM model with STOP-Bang may 
be warranted.

In conclusion, our SVM model provides a simple and ac-
curate modality for early identification of patients with OSA. 
Future studies and machine learning model algorithm de-
velopment should focus on validation in the sleep lab- and 
community-based populations with multiethnicity for greater 
clinical application.
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