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Here we present genomic and in vitro analyses of temporally separated episodes of herpes simplex virus type 1 (HSV-1) shedding by 
an HSV-1–seropositive and human immunodeficiency virus (HIV)/HSV-2–seronegative individual who has frequent recurrences 
of genital HSV-1. Using oligonucleotide enrichment, we compared viral genomes from uncultured swab specimens collected on dif-
ferent days and from distinct genital sites. We found that viral genomes from 7 swab specimens and 3 cultured specimens collected 
over a 4-month period from the same individual were 98.5% identical. We observed a >2-fold difference in the number of minority 
variants between swab specimens from lesions, swab specimens from nonlesion sites, and cultured specimens. This virus appeared 
distinct in its phylogenetic relationship to other strains, and it contained novel coding variations in 21 viral proteins. This included 
a truncation in the UL11 tegument protein, which is involved in viral egress and spread. Normal immune responses were identified, 
suggesting that unique viral genomic features may contribute to the recurrent genital infection that this participant experiences.
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Herpes simplex virus type 1 (HSV-1) is a neurotropic pathogen 
that is transmitted via close contact of mucosal surfaces. This large, 
double-stranded DNA virus is geographically widespread, with the 
highest seroprevalence (up to 90%) in low-income countries [1]. 
HSV-1 typically causes painful oral and/or genital lesions, and it 
can also cause infectious keratitis, eczema herpeticum, or, in rare 
cases, encephalitis [2]. The virus can transit via nerve endings from 
the skin or mucosa into neuronal nuclei, such as the trigeminal 
ganglia and dorsal root ganglia. By establishing latency in these 
neurons, HSV can evade the immune system and remain in the 
host throughout life [3, 4]. Upon reactivation in neurons, viral 
progeny transit back to the epithelium, where they may replicate 
further and transmit to new hosts [3]. Viral genome shedding can 
be detected in skin swabs by polymerase chain reaction (PCR) 
analysis. Although viral lesions generally have a higher genome 
copy number than nonlesion sites, both symptomatic and asymp-
tomatic shedding can transmit virus to new hosts [5, 6].

There are 2 serotypes of HSV: historically, type 1 was the 
more prevalent cause of oral lesions, and type 2 was the more 
prevalent cause of genital lesions [3]. However, the proportion 
of first-episode genital HSV-1 cases has risen in recent years in 
high-income countries [1, 7]. Unlike genital HSV-2, which is 
characterized by frequent outbreaks, genital HSV-1 recurrences 
tend to be infrequent, even in the first year of infection [8, 9]. 
Recent studies have characterized the range of human immune 
control of HSV-1 and HSV-2 in the oral and genital mucosa 
[10–13]. These studies also demonstrated that specific HSV-1 
proteins such as UL39 (large ribonucleotide reductase sub-
unit) and UL48 (VP16 transactivator) are recognized by human 
CD8+ T cells [11, 13]. Owing to the similarity in pathogenesis 
of HSV-1 and HSV-2, it is likely that genital HSV-1 infection 
would cause comparable immune responses and mucocutane-
ous T-cell infiltration as genital HSV-2 [14].

A small percentage of individuals with genital HSV-1 in-
fection have a high rate of recurrence beyond the first year of 
infection. It is unknown whether HSV-1 in these individuals 
differs genetically from other HSV-1 isolates that are success-
fully controlled by the host immune system, or if the ongoing 
recurrences represent an innate failure of the immune system. 
Prior approaches studying HSV-1 genetic variation in clinical 
cases such as these have relied on PCR analysis of single genes 
or on viral samples that have been expanded in tissue culture 
[15, 16]. Recent advancements in next-generation sequencing 
and targeted oligonucleotide enrichment now enable capture 
of whole viral genomes directly from mucosal surfaces, without 
expansion in culture [17–21]. This approach has been applied 
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to viruses such as human immunodeficiency virus (HIV) and 
human cytomegalovirus to reveal viral adaptation or evolution 
within a host and to deduce its potential impacts on pathogen-
esis and disease [18, 22, 23].

Here, we present the first genome sequences of uncultured mucosal 
swab specimens of HSV-1, which were collected from a study partici-
pant who has an unusually high recurrence rate of genital HSV-1. We 
used oligonucleotide enrichment to capture and sequence uncultured 
viral genomes directly from symptomatic lesions and nonlesion sites, 
and standard library preparation methods to sequence viral genomes 
from diagnostic lesion material expanded in culture. With these data, 
our goal was to establish the level of viral diversity present within a sin-
gle host over a time period involving several rounds of latency, reac-
tivation, and shedding. We were particularly interested in capturing 
viral genomes from nonlesion sites, as this has proven difficult prior to 
oligonucleotide enrichment. We hypothesize that the unique genetic 
signatures of this virus may correlate with the clinical characteristics of 
genital HSV-1 disease that this participant experiences.

METHODS

Participant and Sample Collection

The participant had positive results of a type-specific HSV immu-
noblot assay [24]. Swab specimens were collected every weekday for 

4 weeks by using a spatial grid of the female genital tract, as previ-
ously described [25]. An aliquot of each swab specimen was used 
for column-based DNA isolation and quantitative real-time PCR 
(qPCR) analysis to detect HSV-1 genomes [25, 26]. The participant 
also had symptomatic genital HSV-1 recurrences before and after the 
swabbing study; specimens from associated lesions were collected 
for HSV-1 culture. This individual’s virus is referred to hereafter 
as “v.29.” The University of Washington Human Subjects Division 
approved the study, and the participant provided informed consent.

Cell Culture and Virus Expansion

Virus stocks were propagated and titered on African green mon-
key kidney cells (Vero cells [ATCC CCL-81]; Supplementary 
Materials). Cultured virus was obtained from samples collected 
over 4  months: v.29_day(-88)_culture1 was collected in March, 
v.29_day1_culture2 was collected in June, and v.29_day32_cul-
ture3 was collected in July (Figure 1). HSV-1 strain McKrae was 
provided by Lynda Morrison [27], and strain KOS63 was provided 
by Richard Dix [15]. Viral nucleocapsid DNA was isolated from 
v.29 cultures after 5 passages, using published protocols [28].

Sample Library Prep, Illumina Sequencing, and Viral Assembly

HSV-positive swab specimens were processed using phe-
nol:chloroform DNA extraction (Supplementary Materials). 
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Figure 1.  Cultures and a 30-day survey of spatially distinct viral shedding in a participant with frequent recurrence of genital herpes simplex virus type 1 (HSV-1). A, 
Genital HSV-1 shedding detected over 1 month in a single study participant is depicted on spatial grids (expanded view, center) of the female genital tract. HSV-1 genome 
copy number was detected by real-time quantitative polymerase chain reaction (qPCR) analysis and color-coded as log10 copies/mL detected in each genital location (see 
color-coded legend on right). The time line depicts days on which lesions (L) were observed, asymptomatic shedding (A) was present, and no swab specimens were collected 
(eg, on weekends; white boxes). Lesion sites are outlined in a thick black line on the genital grids. B, Expanded view of individual genital grids from 3 consecutive days, where 
the extracted regions illustrate the specific day and site of each swab used for viral genome sequencing (Figure 4). C, Tiled phase image of v.29 plaque size and morphology 
72 hours after infection of a Vero cell monolayer. The v.29 culture is from the third round of passaging of v.29_day(-88)_culture1. This image highlights the heterogeneity 
present in the plaque phenotypes of this participant’s virus, similar to what has been observed for other HSV-1 isolates [30]. The inset is an expanded view of the entire well. 
The scale bar represents 25 μm.
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Sample DNA was sheared into approximately 500-bp frag-
ments, processed using a KAPA LTP Library Preparation Kit, 
and enriched for viral DNA by using Roche/Nimblegen custom 
oligonucleotide baits designed and validated by the Bloom lab 
(Dhummakupt et al, unpublished). Enriched libraries were 
sequenced on an Illumina MiSeq, using version 3 chemistry 
and 300-bp paired-end reads. Viral genomes were assem-
bled using the VirGA work flow as previously described [29]. 
Supplementary Table  1 contains GenBank identifiers and 
sequencing statistics for all v.29 genomes.

Consensus Genome Comparison and Phylogenetic Analysis

Trimmed versions of viral genomes were used for consensus 
genome comparison [30]. MAFFT, version 7.313, was used for 
pair-wise global nucleotide alignments; ClustalW2, version 2.1, 
was used for pair-wise amino acid alignments; and custom Python 
scripts were used to calculate protein coding and DNA differ-
ences between samples (Supplementary Materials). Phylogenetic 
networks were constructed with SplitsTree4, version 4.13.1. 
Supplementary Table 2 has details of previously sequenced isolates. 
Additional files related to comparative genomics analyses are avail-
able at: https://scholarsphere.psu.edu/collections/bcc08hg256.

Intrastrain Minority Variant (MV) Detection and Validation

Each consensus genome was analyzed for MV loci, using 
VarScan, version 2.2.11; SnfEff; SnpSift; and the Integrative 
Genomics Viewer (Supplementary Materials). Parameters used 
to differentiate true MVs from technical artifacts were as fol-
lows [17]: minimum variant allele frequency of ≥0.02 (2%), 
base call quality of ≥20, position read depth of ≥100, and ≥5 
independent reads supporting the minor allele. Polymorphisms 
with directional strand bias of ≥90% were excluded.

T-Cell Responses

CD8+ T-cell responses were studied by an interferon-γ enzyme-
linked immunospot assay, using peripheral blood mononu-
clear cells and 3 pools of 117 HSV-1 peptides (Supplementary 
Materials). Single peptides were identified through deconvo-
lution, as previously described, with a peptide concentration 
of 1 μg/mL [11]. Interferon-γ expression by CD4+ T cells was 
determined using UV-inactivated HSV-infected Vero cells [31]. 
Net values were obtained by normalizing experimental findings 
to values for the negative control wells.

Western Blotting

Vero cells were lysed in radio immunoprecipitation assay buffer, 
and soluble protein supernatants were electrophoresed and 
blotted (Supplementary Materials).

RESULTS

Genital Shedding of HSV-1 Varies in Space and Time

During a study of spatial localization of HSV-2 shedding pat-
terns, we enrolled a single participant with a clinically severe 

phenotype of genital HSV-1 infection. This 32-year-old HSV-1–
seropositive, HIV/HSV-2–seronegative woman (participant 
29)  acquired genital HSV-1 five years earlier and had experi-
enced 4 recurrences in the past year.

Swab specimens were collected from 22 sites throughout 
the genital tract of the  participant during every weekday over 
a 30-day period (Figure  1). HSV-1 shedding was detected by 
qPCR on 15 of 20 days (75%), with a lesion observed on 8 (40%). 
On day 1 of the anatomic shedding survey, there was a genital 
lesion at site 16, which persisted until day 5 (Figure 1A). A sep-
arate lesion developed at a physically distant location (site 5) on 
days 8–10. On other days, there was either asymptomatic shed-
ding or no virus detected (Figure 1A). On days when a lesion 
was present, the median number of sites with HSV-1 detected 
was 20, and the median quantity of virus detected was 7.2 log10 
genome copies/mL. On days with only asymptomatic shedding, 
the median number of HSV-positive sites was 4, and the median 
quantity of virus was 2.3 log10 copies/mL. These data were sim-
ilar to those found previously for HSV-2, where shedding was 
detected throughout the female genital tract in the presence of 
a lesion [25].

Genomic Comparison of v.29 to Other Known HSV-1 Isolates

We hypothesized that the severe phenotype of genital HSV-1 
infection in this  participant might be related to unique genetic 
features of this virus (referred to as v.29). Using HSV-positive 
DNA from 7 mucosal swab specimens collected from anatomi-
cally-separate areas during days 1–3 (Figure 1B), we performed 
oligonucleotide enrichment and high-throughput sequencing, fol-
lowed by de novo genome assembly, of this virus (Supplementary 
Table  1). These swab specimens were chosen because they had 
relatively high viral loads (≥5.0 log10 HSV-1 genome copies/mL) 
and included lesions as well as nonlesion sites (Figure 1B). Using 
the viral consensus genome assembled from each swab specimen, 
we graphed a network of genetic relatedness between v.29 and 47 
other published HSV-1 genomes. We found that v.29 formed its 
own branch in this network, separate from viral isolates of known 
geographic clades (Figure 2).

We also performed amino acid alignments of every HSV-1 
protein to compare the coding sequences of v.29 to those of 
other known HSV-1 strains. This revealed 21 viral proteins con-
taining a total of 27 unique amino acid differences that have not 
been previously observed in any HSV-1 strain (Supplemental 
Table 3). These novel coding variations likely contributed to the 
distinct location of v.29 in the phylogenetic network (Figure 2). 
We also identified a truncation of the last 10 amino acids of 
UL11 (Figure  3A and 3B), a viral tegument protein involved 
in secondary envelopment, viral egress, and cell-to-cell spread 
[32]. This UL11 truncation has been observed only once before, 
in an HSV-1 isolate from a German patient with eczema herpe-
ticum, whose viral genome clustered near v.29 in the phyloge-
netic network (Figure 2) [33]. To test whether this truncation 
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had an effect on UL11 protein size or expression in v.29, we used 
Western blot analysis. We identified a shift in the observed mo-
lecular weight of the UL11 protein in v.29 and a loss in overall 
expression of UL11 relative to strains of HSV-1 with an intact 
UL11 (Figure 3C).

Comparison of HSV-1 Genomes From Genital Swab Specimens Versus 

Cultured Specimens, at the Consensus Level

To determine whether genital HSV-1 genomes vary over space and 
time in an infected individual, we compared the v.29 genomes de-
rived from 7 swab specimens collected over 3 days to each other 
and to those of 3 culture specimens of v.29 collected over 4 months 
(Figure 1B and 1C). Viral cultures were analyzed using standard 
techniques for the isolation of viral nucleocapsid DNA and subse-
quent viral genome sequencing [28, 29]. Comparison of the con-
sensus-level viral genomes from each swab specimen and culture to 
one another revealed an average pair-wise DNA identity of 98.5% 
(Figure 4). Comparing among these, genomes from the day 1 lesion 
swab specimen and cultured specimen were 98.4% identical, those 
from the day 2 swab specimens were 98.5% identical, and those 

from both day 3 swab specimens were 98.6% identical. We observed 
1 single-nucleotide variant (SNV)  at the consensus level, which 
occurred in the v.29_day32_culture3 sample (Figure 4). This SNV 
was located in a noncoding section of the genes LAT and RL2 in the 
repeat region, and no micro-RNAs were impacted. There were 27 
unique insertions or deletions (in/dels) observed in the alignment 
of these 10 viral genomes, and many of these in/dels manifested as 
fluctuations in length of homopolymers and tandem repeats. The 
overall level of viral nucleotide identity between swab specimens 
and related viral cultures was comparable to that observed between 
subclones of a single HSV-1 strain [29].

Different Minority Variants Detected in Anatomically- and Spatially-

Separated Swabs and Cultures

Minority variants (MVs) within a viral popula-
tion can provide insights on viral fitness, evolution, 
and intra-host and inter-host bottlenecks [17, 23, 34].  
In contrast to SNVs, which occur at the consensus level and rep-
resent the major allele in the population at a particular nucleotide 
position, MVs exist below the consensus level as alternative minor 

E07

African

E23
E15

E06E25
E10

E11

E22

2158/2007

North American
European

0.001

CJ970
172/2010

H129

132/1998

KOS79
160/1982

270/2007

Mclntyre

1394/2005

HF10

SC16 17 McKrae
134

CJ311 369/2007

F

E35

E14
E12

E08
E19

E13
R-13 N-7

66/2007

L2

India

CR38 KOS63

3083/2008
R11 S25

S23
R62

Eczema herpeticum
(1319/2005)

v.29 Genital HSV-1
samples

KOS

EurAsian
RE
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alleles (with a frequency ≥2% and <50%). We examined the MVs 
in each v.29 sample to determine whether their frequencies or ge-
nomic locations differed between spatially or temporally separated 
swab specimens or cultured specimens. Although only a portion 
of MVs occurred inside of genes, the codon-specific annotation of 
these “genic” variants allowed for straightforward comparison across 
samples. We found that MVs in the 7 swab specimens and 3 cultured 
specimens were distributed across the genome, with many in the 
viral genes UL13 (7 MV), UL36 (66 MV), RL1 (15 MV), and RL2 (6 
MV) (Figure 5A). After normalization of these data for gene length, 
UL11, UL36, and RL1 contained the most MVs (data not shown). We 
found that the largest number of MVs were present in the uncultured 
lesion swab specimens isolated on days 1 and 2 (302 total). Nonlesion 
swab specimens had 29–83 MVs present per sample, while cultured 
specimens had 46–72 MVs each (Figure 5A). Surprisingly, the cul-
tured specimen collected on day 1 had only 67 MVs, in contrast to 

the matching day 1 uncultured lesion swab specimen (271 MVs). 
We also examined the penetrance or frequency of each minor allele 
and found that most had a frequency of ≤10% (Figure 5B). Higher-
frequency MVs (>10%) occurred in the cultured virus samples, in 
genes UL13 and UL14, and in all genomes at sites of homopolymer 
or tandem repeats (eg, in UL36 and RL1). Taken together, these data 
suggested that there was substantial variation present in the viral 
populations of lesions, compared with nonlesion sites, and that vari-
ation decreased during viral introduction to culture.

Analysis of HSV-1–Specific Immune Responses

Another explanation for the high rate of genital HSV-1 shedding 
and recurrence in this participant could be an insufficient immune 
response. To test this, we analyzed CD8+ T-cell responses to HSV-1 
peptides in a standard assay used in prior HSV studies [11, 31]. We 
found that this individual had CD8+ T-cell responses to peptide 
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pools containing HSV-1 epitopes (Figure 6A). Following deconvo-
lution, specific epitopes mapping to known HLA-A*0101-restricted 
CD8+ T-cell epitopes in HSV-1 protein VP11/12 (encoded by 
UL46) and VP16 (encoded by UL48) were identified (Figure 6B) 
[10, 13]. The participant was verified as positive for HLA-A*0101. 
The HSV-1–specific CD4+ T-cell interferon-γ response was also in-
tact (Figure 6A). This individual also tested seropositive for HSV-1 
by Western blot (data not shown) [24]. These results suggested that 
a defective cellular immune response was not the cause of the fre-
quent recurrence of genital HSV-1 in this individual.

DISCUSSION

This is the first study to examine anatomically separated genital 
HSV-1 shedding patterns for a single participant over a multi-
day period (Figure 1). We present data from an individual with 

frequent genital HSV-1 lesions and a high rate of viral shedding, 
even several years into her infection. Recurrences of genital 
HSV-1 after the first year occur in only 5% of infected individu-
als [25]. We found that v.29 had unique phylogenetic signatures 
and did not cluster with known HSV-1 genomes (Figure 2). v.29 
also had a unique truncation in the UL11 viral tegument pro-
tein (Figure 3). We observed conservation in viral genomes—
at the consensus level—between swab specimens collected 
over 3  days and cultured specimens collected over 4  months 
(Figure 4). However, at the level of MVs, we observed a >2-fold 
decrease in the average number of MVs—and a 6-fold decrease 
in genic MVs—in nonlesion swab specimens and cultures rel-
ative to the lesion specimens (Figure 5). The available data in-
dicate that this participant has a typical CD4+ and CD8+ T-cell 
response (Figure 6), although it is possible that a quantitative 
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to one another to determine percentage identity (histogram). In the histogram, nucleotide position identity is color-coded: gray denotes 100% identity, yellow denotes ≤99% 
identity, and red denotes ≤25% identity. To illustrate the genome-specific locations of these nonidentical sites, each genome is depicted as a horizontal gray bar (bottom), 
with gaps in the alignment (in/dels) shown as vertical or horizontal black bars. The only single-nucleotide variant (SNV) is shown as a red vertical bar in culture 3 and is within 
the latency-associated transcript (LAT) and noncoding region of RL2. The identity graph was generated using Geneious. TRL/IRL, terminal or internal repeat of the long region; 
TRS/IRS, terminal or internal repeat of the short region; UL, unique long region; US, unique short region.

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy216#supplementary-data


Genomic Study of Genital HSV-1 Shedding  •  JID  2018:218  (15 August)  •  601

or qualitative difference in these responses is casually associ-
ated with her clinical phenotype. These data suggest that viral 
genomic factors may be impacting the relatively severe clinical 
phenotype that this participant experiences. Alternatively, she 
may not have localized HSV-1–specific T-cells to the genital 
region either acutely, during recurrences, or chronically, as tis-
sue-resident memory cells that locally persist after resolution of 
episodic infection [12, 35, 36].

Among the unique amino acid variants observed in v.29, 
we identified a truncation in the viral tegument protein UL11, 
which is involved in secondary envelopment, viral egress, and 
cell-to-cell spread [32]. This truncation, due to the presence of 
an early stop codon, is associated with decreased expression of 
the UL11 protein in v.29 (Figure 3C). UL11 has homologues in 
all known herpesviruses and interacts directly with the HSV-1 
proteins glycoprotein E, UL21, and UL16 [32, 37]. This trun-
cation affected the UL11 C-terminus near its known site of 
interaction with glycoprotein E, which functions in both cell-
to-cell spread and in binding to the Fc domain of HSV-specific 

immunoglobulin antibodies [38]. It is unclear what advantage 
a truncated UL11 would provide, but perhaps it could lead to 
a hyperactive glycoprotein E interaction with the Fc domain of 
immunoglobulin G, resulting in improved immune evasion. 
The effects of UL11 and other unique amino acid variants in 
v.29 warrant exploration in future work.

Prior studies of clinical HSV infection have entirely used 
cultured virus to examine genetic variation, typically via 
restriction fragment–length polymorphism assays [33, 39–41].  
The data from this study suggest that, at the consensus level, 
anatomically-separated swab specimens of genital HSV-1 are 
relatively stable over 3 days (Figure 4). The high level of DNA 
identity between v.29 genomes from swab specimens is com-
parable to that of HSV-2 genomes from longitudinal samples 
of a single person [42, 43], while it is less divergent than HSV 
genomes recovered from different individuals [29, 30, 43].

Deep sequencing of viral genomes can detect variants with 
frequencies below the detection limit of Sanger sequencing (ie, 
approximately 20%). Analyses of RNA viruses such as HIV 
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Figure 5.  Minority variants in v.29 span the entire herpes simplex virus type 1 (HSV-1) genome and are more numerous in lesion swab specimens than in nonlesion swab 
specimens or cultured samples. A, Histogram depicts the total number of minority variants (MVs) per gene and is color-coded to indicate whether the variants were observed 
in the 3 cultured viruses (green), in the 2 lesion swab specimens (red), or in the 5 nonlesion swab specimens obtained during shedding (blue). The legend (inset) lists the 
combined number of genic/total MVs found across the sum total of each sample type. B, Plot depicts the penetrance or percentage frequency of each MV found in a gene. 
The dotted line at 2% represents the limit of detection set for MVs. Owing to the large number of total MVs present in UL36, only the 10 MVs with the highest frequency/
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and hepatitis C virus (HCV) often include MVs at frequencies 
of ≤2% [22, 44]. We used a conservative cutoff of ≥2% to de-
tect, with high confidence, MVs in the v.29 genomes [17, 23]. 
We observed more MV diversity in the viral populations of 
lesions from this participant than from any other sample type 
analyzed (ie, nonlesion swab specimens and cultured speci-
mens; Figure 5A). One of the lesions (Supplementary Table 1) 
had high coverage, so we controlled for depth of coverage 
by randomly downsampling these data to match the average 

coverage of the other samples. Following downsampling, we 
still detected more MVs in this lesion swab specimen than in all 
other sample types analyzed (data not shown). This raises the 
intriguing possibility that viral diversity could be linked to the 
level of immune surveillance associated with a viral lesion [25].  
In line with potential evidence of immune selection, we also 
identified 7 MVs in VP11/12 (UL46) and VP16 (UL48), which 
appeared to be under T-cell surveillance in this  participant 
(Figures 5A and 6B). When the v.29 lesions were cultured, there 
was an overall loss of MV diversity, suggesting a bottleneck in 
the viral population at the initial point of culture (Figure 5A). 
However, these cultured isolates also contained MVs that were 
not detected in uncultured swab specimens of v.29, suggesting 
genetic drift or adaptation following culture (Figure 5). These 
“culture-specific” MVs (eg, in UL13 and UL14) resemble those 
documented in other herpesviruses during culture adaptation 
and loss of gene functions while passaging in vitro [29, 45–47].

We studied an individual who acquired HSV-1 5 years prior, 
and, therefore, any viral adaptation to the genital niche or her 
immune response may have already occurred [8, 48]. Although 
it is plausible that daily swabbing of the genital mucosa could 
affect the observed genital shedding patterns, the participant’s 
prior 5  years of repeated recurrences suggests otherwise. We 
also cannot rule out that the viral genomes and shedding pat-
terns observed here could represent spatial cross-contami-
nation, rather than simultaneous reactivation of virus from 
multiple ganglia. However, in previous work exploring ana-
tomic shedding patterns of HSV-2, several controls were used 
to address this possibility [25], and it was concluded that simul-
taneous reactivation, rather than contamination, accounted for 
the observed HSV-2 shedding patterns. In this study, we found 
minor genetic variants between swab specimens collected on 
the same day at different genital sites, providing further support 
for simultaneous shedding, rather than cross-contamination.

One of the strengths of this study was the implementa-
tion of an oligonucleotide enrichment strategy that enabled 
successful sequencing and assembly of the first uncultured 
genital HSV-1 genomes. We observed that the differences in 
HSV-1 genome copy number and the ratio of viral to host 
DNA impacted the overall yield and viral genome recov-
ery of each library. The coverage of all v.29 genomes met or 
exceeded that of prior genomic studies of cultured HSV-1 
[29, 30, 33]. However, the high G+C-content, repetitive ele-
ments, and potential recombination breakpoints in the large 
structural repeats (Figure 4A) could affect the reliability of 
these regions in each viral genome assembly and subsequent 
alignments [30, 49].

Obtaining a genomic snapshot of spatially- and temporally-sep-
arated uncultured HSV-1 swab specimens to study viral adaptation 
within a host is now achievable. This intensive study of a person 
with a phenotypically severe genital HSV-1 infection suggests that 
viral diversity exists over a short time frame within a person, albeit 
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of 1  μg/mL. A  CD8+ T-cell response was detected against known HLA-A*0101–
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on the level of minority variants, rather than consensus-level coding 
changes. These findings also suggest that viral genetic variation may 
be a key factor contributing to clinical phenotype. Future studies can 
now focus on detecting how transmission between individuals affects 
the frequency of these minority variants, and how viral populations 
adapt during the initial phase of infection, when an individual’s innate 
and adaptive immune response are first developing. Determining the 
genetic relationship of virus isolated from oral versus genital niches 
is also of interest, given that oral-genital transmission is likely a key 
component of current trends in HSV epidemiology [1, 9].

Supplementary Data

Supplementary materials are available at The Journal of Infectious 
Diseases online. Consisting of data provided by the authors to 
benefit the reader, the posted materials are not copyedited and 
are the sole responsibility of the authors, so questions or com-
ments should be addressed to the corresponding author.
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