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Abstract: Some pediatric patients with cryptorchidism preserve cells with gonocyte characteristics
beyond their differentiation period, which could support the theory of the gonocyte as a target
for malignancy in the development of testicular neoplasia. One of the key molecules in gonocyte
malignancy is represented by microRNAs (miRNAs). The goal of this review is to give an overview
of miRNAs, a class of small non-coding RNAs that participate in the regulation of gene expression.
We also aim to review the crucial role of several miRNAs that have been further described in the
regulation of gonocyte differentiation to spermatogonia, which, when transformed, could give rise to
germ cell neoplasia in situ, a precursor lesion to testicular germ cell tumors. Finally, the potential
use of miRNAs as diagnostic and prognostic biomarkers in testicular neoplasia is addressed, due
to their specificity and sensitivity compared to conventional markers, as well as their applications
in therapeutics.

Keywords: microRNAs; gonocytes; germ cell neoplasia in situ (GCNIS); cryptorchidism; testicular
germ cell tumor

1. Introduction

The genome contains all the hereditary information of an organism that specifies
the genetic instructions for its development and functioning. However, only 1.5% of the
information transmitted transversely has a coding function, while the rest includes spacer
and regulatory regions, as well as many other sequences with unknown function [1]. In
recent years, with the introduction of omic sciences, the study of gene expression using
microarray expression assays, and whole-transcriptome sequencing, it has been shown that
at least 90% of the genome is actively transcribed and that the human transcriptome is more
complex than the set of genes that encode proteins [2]. MicroRNAs (miRNAs) are small
non-coding RNAs that participate in the regulation of the expression of a large number of
genes in multiple biological processes at the post-transcriptional level [3]. miRNAs can
have tissue- and organ-specific expression patterns and can even be used as a powerful tool
for histological classification in tumor samples of unknown origin [4]. While single-cell
expression patterns of messenger RNAs can distinguish different cell populations and their
states of differentiation in the testis, miRNAs may be more specific compared to transcript
analyses [5].

Int. J. Mol. Sci. 2022, 23, 10526. https://doi.org/10.3390/ijms231810526 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms231810526
https://doi.org/10.3390/ijms231810526
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-0187-1994
https://orcid.org/0000-0002-7988-2231
https://orcid.org/0000-0002-1361-3573
https://orcid.org/0000-0002-0787-5593
https://orcid.org/0000-0001-9583-3790
https://orcid.org/0000-0001-9226-7412
https://doi.org/10.3390/ijms231810526
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms231810526?type=check_update&version=1


Int. J. Mol. Sci. 2022, 23, 10526 2 of 18

In particular, in gonocytes, miRNAs regulate the maintenance of pluripotency, apopto-
sis, cell metabolism, and their differentiation into spermatogonia, essential processes that
ensure fertility and prevent the development of testicular neoplasia in adulthood [6].

It has been proposed that gonocytes are responsible for the development of testicular
neoplasia, because these cells and atypical cells of germ cell neoplasia in situ (GCNIS)
share morphological characteristics and protein expression patterns, such as KIT, POU5F1,
AP-2γ, and SALL4 [7,8]. GCNIS is considered to be a precursor lesion for the development
of testicular germ cell tumors (TGCT) [9], because it has been reported that patients with
GCNIS develop TGCT within 5 years [10]. Furthermore, common epigenetic markers have
also been described between the cells that constitute GCNIS and gonocytes, finding elevated
expression of H3K4me, H2A.Z, H3K9ac, and H4/H2A R3me2 and decreased expression of
5mC, H3K9me2, and H3K27me3, which are related to more open chromatin and low levels
of DNA methylation [11].

In addition, in recent years, the persistent presence of gonocytes and the abnormal ex-
pression of their typical markers have been described in some patients with cryptorchidism
(CO) [12], where they are associated with high proliferative activity and the expression of
gene markers related to neoplastic transformation [11]. This suggests that these cells are
unable to differentiate into spermatogonial stem cells (SSC), and, in turn, a proportion of
these gonocytes do not follow the normal process of apoptosis in the testis [7]. This explains
why patients with CO have a higher risk of developing TGCT in adulthood compared to
the general population [13].

Currently, little information exists on the differential expression of various miRNAs in
both GCNIS and CO [14,15]. Conversely, in the case of gonocytes and TGCT, the information
is robust [16,17]. Due to the high specificity and sensitivity of the hsa-miR-371-373 and
hsa-miR-302/367 clusters as biomarkers for the diagnosis and prognosis of TGCT, in the
future, these miRNAs could displace classical markers such as lactate dehydrogenase
(LDH), human alpha-fetoprotein (AFP), and human chorionic gonadotropin (HCG) [18,19].

Based on this information, this work recapitulates various studies of miRNA expres-
sion in cancer, and considers how regulation by these miRNAs could influence gonocyte
persistence, possibly resulting in a pathological outcome, such as GCNIS and CO, which
finally culminates in the development of TGCT in adulthood.

2. General Characteristics of miRNAs

miRNAs are a class of single-stranded non-coding RNAs (ncRNAs) with an average
length of between 19 and 25 nucleotides. They regulate the abundance of a number of
mRNAs at the post-transcriptional level. miRNAs generally bind to the 3′-UTR region
of their target mRNAs, inducing their degradation or inhibiting translation [20,21]. Thus
far, approximately 1917 miRNA precursors and 2654 mature miRNA sequences have been
reported in humans. It is currently estimated that approximately 60% of genes are probably
regulated by miRNAs [22,23]. miRNAs can be found in intergenic or intronic regions,
approximately between 52% and 40%, respectively, while the remaining 8% are found in ex-
onic regions [24]. The expression of miRNAs found in intergenic zones is produced by their
own regulatory elements, while the expression of those found in intragenic zones (intronic
or exonic) is dependent on the expression machinery of the host gene [25]. Additionally,
miRNAs can be generated from a single precursor or from a common precursor forming
clusters, expressed jointly and then being split into individual miRNAs, regulating genes
with related functions [26].

Each miRNA can regulate hundreds of mRNAs, while one mRNA can be regulated
by several miRNAs, having several binding sites in the UTR region. Notably, the miRNA–
mRNA interactions that determine the post-transcriptional regulation of a gene are con-
served between homologous genes and homologous miRNAs, establishing regulatory
networks conserved in evolution [27].

miRNAs can also be regulated by nucleotide modifications mediated by the RNA-
acting adenosine deaminase (ADAR) family of proteins, which edit adenosines to inosines
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(A to I) in miRNA precursors, disrupting miRNA–target mRNA binding and redirect-
ing them to a different target, as shown in Figure 1A. In addition, the cytidine deami-
nase/apolipoprotein B-induced activation protein family of cytidine deaminase mRNA
editing enzymes (AID/APOBEC) can convert cytidine to uridine (C to U), thus generating
cytidine variants. These miRNAs, called “isomiRs”, can regulate the same or different
target mRNAs [28,29]. Another mechanism that can regulate miRNA expression is the
presence of single-nucleotide variants (SNVs), which affects the secondary structure of
the miRNA, as well as the maturation process and their functions [30]. SNVs within the
miRNA seed region sequence can lead to the gain or loss of interactions with their target
mRNA, while SNVs in the 3′-UTR of mRNA can likewise affect miRNA–mRNA binding,
as shown in Figure 1B [31].
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tation of SNVs in pri-miRNAs or pre-miRNAs that can alter miRNA processing, secondary struc-
ture, and splicing, causing an increase or decrease in mature miRNAs, as well as SNVs in the miRNA 
seed region. These modifications can increase or decrease affinity to their target genes, recognize 
new target genes, or inhibit binding to their target genes. Created with Biorender.com. 

Another important mechanism for regulating miRNA expression is epigenetic con-
trol, such as DNA methylation or acetylation, as well as histone and chromatin modifica-
tions. These are the main reasons for alterations in miRNA expression in cancer. Some 
miRNAs can participate as epigenetic regulators called “epi-miRNAs” that regulate the 

Figure 1. Mechanisms of miRNA regulation by nucleotide modification. (A) Pri and pre-miRNA
precursors that undergo ADAR sequence modifications from adenosine to inosine, affecting their
maturation, binding to the RISC complex, or redirection to other new target mRNAs. (B) Representa-
tion of SNVs in pri-miRNAs or pre-miRNAs that can alter miRNA processing, secondary structure,
and splicing, causing an increase or decrease in mature miRNAs, as well as SNVs in the miRNA seed
region. These modifications can increase or decrease affinity to their target genes, recognize new
target genes, or inhibit binding to their target genes. Created with Biorender.com.
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Another important mechanism for regulating miRNA expression is epigenetic control,
such as DNA methylation or acetylation, as well as histone and chromatin modifications.
These are the main reasons for alterations in miRNA expression in cancer. Some miRNAs
can participate as epigenetic regulators called “epi-miRNAs” that regulate the expression of
DNA methyltransferases (DNMT), histone deacetylases (HDAC), and histone methyltrans-
ferases (HMT), affecting gene expression, as shown in Figure 2A [32,33]. The interaction of
miRNAs with their target mRNAs can also be altered by the expression of other RNAs, such
as circular RNAs (circRNA) and lncRNA, which participate as endogenous competitors
(ceRNA) of some miRNA targets, as shown in Figure 2B [34,35].
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Figure 2. Other mechanisms of miRNA regulation. (A) epi-miRNAs are involved in the regulation
of epigenetic factors associated with DNA methylation, such as DNMT1, DNMT3A, DNMT3B,
which participate in the regulation of expression of some miRNAs that, through DICER, regulate
epi-miRNAs, giving rise to a regulatory loop that is frequently altered in cancer. (B) Competing
endogenous RNAs (ceRNAs), such as some long non-coding RNAs (lncRNAs) and circular RNAs
(circRNAs), affect the interactions of miRNAs with their target mRNA, competitively sequestering
miRNAs, reducing the repression of target mRNAs. Created with Biorender.com.

miRNAs are normally involved in multiple biological functions and cellular processes,
as well as in the development of various pathologies, such as cancer. An example of this
is cell to cell communication through packing in exosomes or binding proteins that are
transported to the extracellular environment and then are taken by other cells [3,35]. Some
miRNAs can be transported to the nucleus and bind to double-stranded DNA to modulate
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the repression of target genes [36], while others can regulate the transcription and functions
of their host gene [25].

In addition, miRNAs can present cell-type and/or tissue-dependent expression, and
alteration of this specificity is related to different tumors [37]. Alterations of the miRNA
expression in tumors allow also alterations in the regulation of different mRNAs. According
to the targets of tumor suppressor genes or oncogenes, miRNAs could be classified as
oncomiRs or tumor suppressor miRNAs. They can regulate initiation and progression, as
well as the development of metastasis, which implies their functional role in migration,
invasion, evasion of the immune response, and uncontrolled cell proliferation [38,39].
miRNAs also participate in other fundamental processes, such as embryonic differentiation,
in the development of the male germ line, and in spermatogenesis, strictly regulated
processes, both at the transcriptional and post-transcriptional levels [40].

3. From the Gonocyte to TGCT
3.1. miRNAs Expressed in Primordial Germinal Cells/Gonocytes

The testicle is a fundamental organ, where male gametes are produced. Gonadal
somatic cells are responsible for both normal gonadal development and sex determination,
as well as guiding the development of germ cells. These processes involve interactions of
several genes, signaling pathways, and different types of cells, such as primordial germ
cells (PGC), which are formed in the proximal epiblast, mediated by bone morphogenetic
protein 4 (BMP4) signaling, which then promotes the differentiation and migration of PGCs
to the genital ridges, where they proliferate. Once established in the seminiferous cords,
they are called gonocytes, which are round cells with a prominent nucleus and condensed
nucleolus located in the center of the seminiferous cords. At birth and until approximately
6 months of life in humans, gonocytes migrate to the basement membrane, resuming their
proliferation and differentiation towards spermatogonial stem cells (SSCs) [41,42]. It has
been reported that the activation of the hypothalamic–pituitary–testis axis is important for
the differentiation of gonocytes in the first few months of life, during the process called
“mini puberty”; thus, androgen and gonadotropin deficiencies alter this process [43].

In this sense, some miRNAs differentially expressed in gonocytes have been identified
in both mice and humans. Some of these are the mmu-miR-290-295 cluster, mmu-miR-136,
mmu-miR-743a, and mmu-miR-463-3p. The expression of these miRNAs changes during
gonocyte differentiation to spermatogonia, and they participate in signaling pathways
related to Cxcr4, Pten, and Wnt/β, associated with TGCT development [16]. The mmu-
miR-290-295 cluster is important for the migration and survival of mouse embryonic stem
cells, participating in proliferation, and, together with the miR-302/367 cluster, is exclu-
sively expressed in undifferentiated pluripotent stem cells and is involved in embryonic
development in both mice and humans [44,45]. The mmu-miR-290-295 cluster regulates
the expression of pluripotency genes such as Pou5f1, Sox2, and Nanog [16], and its ortholo-
gous cluster, hsa-miR-371-373, is overexpressed in embryonic stem cells. Later, during the
differentiation of these cells, there is decreased expression of these miRNAs [46,47]. Other
miRNAs that are overexpressed during the development of primordial germ cells are the
mmu-miR-17-92 cluster, mmu-let-7, mmu-miR-125a, and mmu-miR-9. In turn, miR-19a and
miR-19b are conserved between the mouse and human, and participate in the proliferation
of primordial germ cells by regulating the PTEN gene. Furthermore, hsa-miR-141-/200c, in
both the mouse and human, perform similar functions and are believed to be involved in
the development of TGCT in humans [48,49].

In addition, it has been reported that some transcription factors such as Pou5f1/POU5F1
can bind to promoters and then activate the transcription of mmu-miR-290-295 and hsa-
miR-302/367 [50,51]. The mmu-miR-290 cluster is overexpressed in mouse embryonic stem
cells, while its counterpart, the hsa-371-373 cluster, is overexpressed in human embryonic
stem cells, as is the hsa-miR-302/367 cluster. Both clusters participate in the maintenance
of pluripotency. They are also found abundantly during the reprogramming and self-
renewal of embryonic stem cells, and finally their expression decreases when these cells
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differentiate [52]. Other miRNAs that participate in the maintenance of stem cell pluripo-
tency are mmu-miR-203, mmu-miR-369, and mmu-miR-200c, the latter being activated
by Pou5f1 [53]. It has also been reported that the reduction of hsa-miR-145 in humans
inhibits the expression of pluripotency genes such as POU5F1, SOX2, and KLF4, inducing
differentiation and the inhibition of human embryonic stem cells (hESCs) self-renewal [54].
Conversely, miRNAs such as mmu-miR-134, mmu-miR-470, and mmu-miR-21 inhibit genes
related to pluripotency, such as Nanog, Sox2, and Pou5f1, participating in cell differentia-
tion [55]. In the case of mmu-Let-7, mmu-miR-23b, and mmu-miR-21, these participate in
the differentiation of primordial germ cells by regulating the Lin28 and Blimp1 genes [56].

3.2. miRNAs Expressed in Cryptorchidism

CO, or undescended testicle, is a common anomaly in newborn males and can affect
one (unilateral) or both (bilateral) testicles [57]. Based on the anatomical location of the
testis, CO is classified as (1) abdominal, (2) inguinal, and (3) ectopic [58]. This malformation
has a variable prevalence between one population and another, reporting a frequency of
9.0% in Denmark and 2.4% in Finland [59]. Despite extensive knowledge of testicular
physiology, the etiology remains largely unknown. However, it is considered to be a
multifactorial condition [60], common and of great importance in pediatric age, due to its
frequency and possible repercussions in adulthood [61]. This malformation is clinically
associated with the development of TGCT [62], since it has been shown that patients
with CO have a higher relative risk (RR) of 4.8 (95% confidence interval: 4.0–5.7) for the
development of TGCT [63] compared to the general population.

Some reports on the testicular tissue of young patients with CO showed the depletion
of Ad spermatogonia in the germinal epithelium, which led the authors of this work to
interpret these cells as stem cells of all future spermatozoa [64], in line with the theory
that proposes the gonocyte as the precursor of the GCNIS, attributed to the failure of
differentiation in primordial germ cells [65].

Moreover, it is suggested that failure of mini puberty has an effect on gonocyte
maturation; however, this is still under debate. There are studies that show that the
maturation of gonocytes is independent of androgens; in addition to this, it was reported in
the testicular tissue of patients with undervirilization syndromes that gonocytes appeared
to transform earlier and in greater numbers than normally; therefore, a lack of androgens
may stimulate non-androgenic regulators to trigger gonocyte transformation, highlighting
the need to identify non-androgenic regulatory pathways [66–68]. There are no reports of
the hormonal effect on the expression of miRNAs in gonocytes from CO patients. However,
the effect of GnRh on the expression of some LncRNAs and its possible relationship with the
expression of certain genes in the Ad spermatogonia of CO patients has been described [69].
In this report, the authors assume a relationship between some LncRNAs such as HOTAIR
and EGFR-AS1 with the expression of certain genes, but the study lacks a strict correlation
due to not validating the results in a greater number of CO patients, and ignoring the
functional validation to assert that these LncRANs regulate the target genes that they
propose in Ad spermatogonia from CO patients. LncRNAs have been reported to silence
the expression of certain miRNAs by sponging them in different tumors [70–72], which
is interesting since some LncRNAs could probably exert direct action on the silencing
of the cluster hsa-miR-371-373 or its homologue mmu-miR-290-295, which are widely
characterized in the gonocyte, GCNIS, and TGCT.

On the other hand, it is believed that these persistent gonocytes could be the origin
of TGCT in patients with CO [73–75]. In addition, the overexpression of proteins such as
KIT, POU5F1, AP-2γ, and SALL4 has been identified in undescended testes in patients at
ages at which they should not be expressed [7]. Thus, it is believed that this neoplasm has
a fetal origin [76]. However, the specific mechanisms of the transformation of the gonocyte
to GCNIS are unknown.

Huang et al. [77] assessed the expression of miR-34c in the testicular tissue of patients
with CO in mice, finding subexpression of miR-34c and the consequent overexpression
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of its target gene Nanos2, which promotes the development of male PGC and causes
alteration of spermatogonia homeostasis, affecting spermatogenesis in CO. Therefore, it
has been suggested that miR-34c could give information about infertility caused by CO
and serve as a treatment target for infertility [77]. hsa-miR-210 is related to infertility and
germ cell maturation arrest, participating in spermatogenesis and in the development
of CO by regulating the NR1D2 gene that is overexpressed in patients with CO [78].
Therefore, this miRNA could serve as a biomarker for CO in clinical tests. hsa-miR-7-5p
and hsa-miR-519d-3p are related to the AKT3 gene and are believed to also participate in
the development of CO [79]. The hsa-miR-22-5p is overexpressed in patients with CO and
regulates EZH2, participating in the renewal of SSCs. Therefore, this miRNA could serve
as a biomarker of infertility in CO [80].

Interestingly, Tang et al. [14], conducted a study using next-generation sequencing
(NGS) and proposed a profile of multiple miRNAs that were differentially expressed in
three patients with CO (Table 1). Interestingly, in the supplementary data of this report,
hsa-miR-371-373 was downregulated in CO patients, compared to controls, which is to be
expected because only some CO patients will be at risk of developing TGCT, as has been
proposed in other studies [7]. Notably, to date, no miRNA has been reported related to CO
with GCNIS or even with TGCT. Therefore, a study of this type could help to determine the
molecular relationship between these conditions, with the purpose of finding diagnostic
and prognostic biomarkers in this malformation.

Table 1. Differential expression of miRNAs in CO.

Downregulated

miRNA log2FoldChange p adj

hsa-miR-3663-5p −4.426 2.39 × 10−10

hsa-miR-1233-3p −4.228 1.84 × 10−8

hsa-miR-552-5p −4.056 1.21 × 10−10

hsa-miR-449b-5p −3.973 5.26 × 10−13

hsa-miR-7153-5p −3.813 5.18 × 10−8

hsa-miR-122-5p −3.791 1.60 × 10−9

hsa-miR-552-3p −3.761 2.31 × 10−9

hsa-miR-449a −3.741 5.97 × 10−11

hsa-miR-122-3p −3.722 0.0017

hsa-miR-34b-5p −3.688 3.56 × 10−9

hsa-miR-449c-5p −3.638 1.93 × 10−12

hsa-miR-34c-5p −3.554 5.26 × 10−13

hsa-miR-449c-3p −3.441 0.0011

hsa-miR-375 −3.409 9.99 × 10−18

hsa-miR-3663-3p −3.385 9.63 × 10−6

hsa-miR-7159-5p −3.259 5.29 × 10−5

hsa-miR-449b-3p −3.212 2.75 × 10−6

hsa-miR-4700-5p −3.209 0.0043

hsa-miR-522-3p −3.153 1.46 × 10−9

hsa-miR-1273a −3.118 2.44 × 10−8

hsa-miR-1295a −3.076 0.0005

hsa-miR-34b-3p −2.971 2.16 × 10−7

hsa-miR-1283 −2.798 2.41 × 10−7
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Table 1. Cont.

Downregulated

miRNA log2FoldChange p adj

hsa-miR-3150b-3p −2.768 0.0203

hsa-miR-4423-3p −2.703 0.0023

hsa-miR-6507-5p −2.699 0.0049

hsa-miR-7154-5p −2.647 0.0253

hsa-miR-517c-3p −2.639 9.92 × 10−10

hsa-miR-3925-3p −2.613 0.0025

hsa-miR-515-5p −2.600 8.84 × 10−10

Upregulated

hsa-miR-7151-3p 2.634 0.0137

hsa-miR-376a-2-5p 2.202 0.0109

hsa-miR-1224-5p 2.193 0.0024

hsa-miR-1299 1.958 5.73 × 10−5

hsa-miR-142-5p 1.898 0.0060

hsa-miR-543 1.869 0.0004

hsa-miR-487a-3p 1.865 0.0079

hsa-miR-584-3p 1.830 0.0060

hsa-miR-665 1.799 0.0362

hsa-miR-134-3p 1.778 0.0130

hsa-miR-369-3p 1.692 0.0008

hsa-miR-377-3p 1.665 0.0113

hsa-miR-33a-5p 1.665 0.0113

hsa-miR-376a-3p 1.602 0.0016

hsa-miR-758-3p 1.589 0.0020

hsa-miR-654-3p 1.588 0.0004

hsa-miR-134-5p 1.558 0.0017

hsa-miR-889-3p 1.552 0.0052

hsa-miR-127-3p 1.549 0.0007

hsa-miR-1185-1-3p 1.539 0.0110

hsa-miR-1185-2-3p 1.534 0.0305

hsa-miR-154-5p 1.516 0.0001

hsa-miR-381-3p 1.511 0.0007

hsa-miR-127-5p 1.511 0.0013

hsa-miR-337-5p 1.510 0.0036

hsa-miR-379-3p 1.508 0.0013

hsa-miR-136-3p 1.506 0.0010

hsa-miR-376c-3p 1.492 0.0015

hsa-miR-495-3p 1.443 0.0016

hsa-miR-376b-5p 1.442 0.0449
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3.3. miRNAs Expressed in Germ Cell Carcinoma In Situ

GCNIS is represented by atypical cells with irregularly shaped nuclei, prominent
nucleoli, and clear cytoplasm, aligned in a single row in contact with the basement mem-
brane of the seminiferous tubules. It is considered to be the precursor lesion for TGCT.
GCNIS cells can be dormant and later transform into cancer cells, arresting the process
of spermatogenesis [81,82]. To date, the cause for the malignant transformation of cells
to GCNIS is unknown. This is a lesion that remains inactive and begins to proliferate
in adolescence, possibly due to hormonal stimulation. Therefore, TGCT is considered a
late-onset pathology. GCNIS shares similar characteristics with PGCs and gonocytes—for
example, morphological features and expression of fetal germ cell markers KIT, KITL,
POU5F1, PLAP, AP-2γ, and NANOG. The expression of this protein is inhibited when
gonocytes differentiate into spermatogonia [9].

Some of the miRNAs expressed in GCNIS are the hsa-miR-371-373 and hsa-miR-302/367
clusters, which are also associated with TGCT [15]. Specifically, hsa-miR-371a-3p is the
most studied as a biomarker for TGCT and has also been reported in GCNIS cells, where it
presents higher expression levels compared to healthy cells [15,83].

hsa-miR-141 has also been related to the development of GCNIS and its detection, along
with hsa-miR-200c, which is expressed in GCNIS and not in normal testes [15]. Meanwhile,
it has been shown that the hsa-miR-17-92 cluster inhibits the E2F1 gene, participating in
the progression of this precursor lesion [84].

3.4. miRNAs Expressed in Testicular Germ Cell Tumors

TGCT, which can develop in one or both testes, are genitourinary neoplasms that
comprise a heterogeneous class of solid, malignant tumors that are clinically silent in their
early stages. Treatment is generally successful; however, they have a significant morbidity
and mortality rate [85]. TGCT occur in young men, between 15 and 44 years of age, and
their incidence has been increasing in the last 30 years [86] and is highly variable in different
populations, reporting higher incidences in Caucasian populations than in the African
and Asian populations [87]. It has been postulated that the genetic background of each
population plays an important role in the susceptibility to TGCT [88]. The global incidence
of TGCT is 2.8 per 100,000 male live births [89]. TGCT are classified into three types,
presenting at different ages in men. Type I includes yolk sac tumors that occur in infants.
Type II is the most common type of tumor; it is divided into seminoma TGCT (sTGCT) and
non-seminoma TGCT (nsTGCT) that occur in young men between 15 and 44 years of age.
Lastly, type III, spermatocytic seminomas, occurs in adults over 50 years of age [90].

The cells that comprise sTGCT have a homogeneous composition and are similar
to PGCs and gonocytes, while nsTGCT include embryonal carcinoma, yolk sac tumors,
choriocarcinoma, and teratoma. The embryonal carcinoma cells present a similar pattern
of expression to undifferentiated stem cells; teratoma cells may contain somatic tissues or
extraembryonic derivatives, while yolk sac tumor cells present extraembryonic differen-
tiation. Choriocarcinoma contains cytotrophoblast, trophoblast, and syncytiotrophoblast
cells, the latter being more differentiated [9,91]. Another characteristic of seminomas is the
hypomethylation profile similar to those of their progenitors, the GCNIS cells. In the case
of embryonic carcinoma cells, they present hypermethylation similar to that of embryonic
stem cells [13].

GCNIS is thought to develop from gonocytes that fail to differentiate during the first
6 postnatal months, on average, possibly due to altered signaling or a lack of response to
differentiation signals; this event occurs prior to the clinical manifestation of TGCT [92].
Some of the miRNAs that have been found expressed in GCNIS and have been reported to
be involved in the development of TGCT are the miR-371-373 and miR-302/367 clusters,
which are normally expressed in human embryonic stem cells and at high levels in TGCT,
independent of histological subtype, anatomical site, or patient age [93]. Additionally, they
are considered sensitive and specific biomarkers for TGCT prognosis [94]. However, the
function of many other miRNAs related to TGCT has also been reported (Table 2).
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Table 2. miRNAs that participate in the development of TGCT.

miRNA Target Genes Function References

cluster-miR-302

Akt
SPRY4
NR2F2
CDK2/4

CyclinD1

Participates in the maintenance of embryonic stem
cell pluripotency and is highly expressed in

seminoma. Regulates Akt, which inhibits the
expression of other cell cycle inhibitors such as

CDK2 and CDK4, and thus accelerates the transition
from G1 to S phase. Inhibition of Spry4 in TGCT

decreases cell growth and invasion.

[50,94]

hsa-miR-21 They act as oncomiRs and are found at high levels in
seminoma and spermatocytic seminoma. [95]

hsa-miR-221
hsa-miR-222 Elevated in seminoma. [95]

hsa-miR-146 Downregulated in seminoma and embryonal
carcinoma. [17]

hsa-Let-7 Lin28 Downregulated in TGCT. [96]

hsa-miR-371a-3p Upregulated in TGCT. [97]

hsa-miR-372-3p
hsa-miR-373-3p LATS2

They act as oncomiRs, inhibiting p53-mediated
cyclin-dependent kinase (CDK) by regulating

LATS2, a tumor suppressor, allowing tumor growth
in the presence of WT p53.

They participate in tumorigenesis.

[98]

hsa-miR-142-3p PTPN23 Participates in the pathogenesis of TGCT. [99]

hsa-miR-125b CSF1
CX3CL1

Participates as a tumor suppressor in various types
of tumors and has functions in proliferation and

apoptosis. Found at low levels in TGCT.
[100]

hsa-miR-223-3p FBXW7 It acts as oncomiR, promoting cell growth and
inhibiting apoptosis. [101]

hsa-miR-199a-5p PODXL Participates in the development of TGCT. [102]

hsa-miR-383 IRF1
High expression in embryonal carcinoma. Regulates
cell proliferation by reducing the levels of cyclin D1,

CDK2, and p21.
[103]

hsa-miR-26a
hsa-Let-7a HMGA1 They inhibit proliferation and motility in seminoma. [104]

hsa-miR-449a Found at low levels in TGCT. [105]

hsa-miR-514a-3p PEG3
They have low expression in seminoma and
embryonal carcinoma. They slow down the

apoptotic mechanisms of TGCT.
[106]

hsa-miR-199a-3p SP1
DNMT3A

Participates in aerobic glycolysis, DNA methylation,
and low expression in TGCT. [107]

has-miR-367-3p, Highly expressed in TGCT. [108]

hsa-miR-512-3p,
hsa-miR-515-518

hsa-miR-525
Highly expressed in embryonal carcinoma [109]

hsa-miR-301 Expressed in spermatocytic seminoma, yolk sac
tumors, and teratoma. [17]

hsa-miR-17-5p Expressed in embryonal carcinoma. [17]

hsa-miR-375-5p Expressed in teratoma. [110]

Interestingly, during the passage from the gonocyte towards GCNIS and the develop-
ment of the TGCT, we can consistently find alterations in the expression of several miRNAs,
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particularly in the expression of the hsa-miR-371-373 cluster and hsa-miR-367, which are
consistently associated with germ cells. However, whether the mentioned alterations are
maintained in other risk conditions, such as CO, as shown in Figure 3, is unknown.
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GCNIS, and TGCT. The image shows a summary of the three main biological processes regulated
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GeneCodis 4 tool [111]. Finally, in black is shown the biological processes in common between the
four stages regulated by these miRNAs.

4. miRNAs as Potential Serum Markers of TGCT

For cancer diagnosis, biopsy is still the gold standard, which is an invasive and expen-
sive procedure. Therefore, there is a need to look for alternative techniques, such as the use
of biological fluids, which represent a non-invasive detection method for sample collection
with low cost [112,113]. In this sense, miRNAs have been reported as new diagnostic and
prognostic biomarkers in both tissues and body fluids [114]. They are highly stable in the
extracellular fluid and can withstand unfavorable physiological conditions such as freezing,
thawing, long-term storage, changes in pH, and extreme temperature variations [115]. This
is because some miRNAs are encapsulated in exosomes, apoptotic bodies, lipid vesicles,
high-density lipoproteins (HDL), and nucleophosmin 1 (NPM1), while others bind to AGO
1 and 2 proteins [24]. The conventional biomarkers used for the diagnosis of TGCT are
AFP, which is found at high levels mainly in yolk sac tumors, and hCG, which is elevated
in choriocarcinoma. These biomarkers present low sensitivity and specificity, since high
levels can be induced by chemotherapy, use of marijuana in the case of hCG, and liver
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disease in AFP, which can change the expression levels depending on the progression of
the disease. Therefore, this limits their use as reliable serum biomarkers, in addition to
the fact that only 60% of patients with TGCT show an increase in these markers [115].
In a study conducted by Gillis et al. [116], they demonstrated that hsa-miR-371-373 and
hsa-miR-367, when combined as biomarkers, presented sensitivity of 98%, while AFP and
hCG presented lower sensitivity, between 36% and 57%, respectively. This demonstrates
that miRNAs are superior biomarkers for the diagnosis of TGCT compared to conventional
markers. These miRNAs are found at high levels in both the testicular tissue and blood
serum of TGCT patients compared to healthy men. In addition, it has been shown that, after
orchiectomy in patients with TGCT, the expression levels of these miRNAs decrease [115].
Furthermore, it has been reported that the expression variability of these miRNAs can be
used as a biomarker, due to the high sensitivity and ease of detection; the hsa-miR-371-373
group and hsa-miR-367 exhibit potential to be biomarkers for diagnosis, prognosis, and
cancer therapy response evaluation [18,108].

5. Application of Therapies Using miRNAs

Since miRNAs in blood and other body fluids can be easily detected using non-invasive
techniques, they are considered a new generation of biomarkers for various pathologies,
including cancer [112,113].

It was recently shown that the regulation of specific miRNA alterations using miRNA
mimics (mimic) or miRNA antagonists (antagomiR) can normalize the gene regulatory
network and signaling pathways and reverse phenotypes in cancer cells [117]. This is based
on the fact that miRNAs can regulate hundreds of genes, which is why they have been used
in several studies as targets for therapy against various pathologies [118]. Several mimic
and antimiR have been investigated. For miRNA delivery in the clinic, various delivery
systems have been tested, such as viral and non-viral vectors; inorganic nanoparticles such
as carbon, gold, and silica; lipid nanoparticles, and polymeric complexes [119].

AntimiRs can reduce the function of aberrantly expressed miRNAs, while mimics
can increase the expression levels of a specific miRNA, resulting in the suppression of
gene expression [120]. AntimiRs are modified antisense oligonucleotides with a sequence
complementary to their target miRNA, so they can interfere in miRNA processing, prevent
it from binding to RISC, or bind to mature miRNAs in RISC [121]. The antimiR must
have a high affinity for its target gene, high specificity, resistance to nucleases, and low
toxicity [122]. Locked nucleic acid (LNA)-modified antimiR (LNA–antimiR) are chemically
modified oligonucleotides used to detect miRNAs and to bind to the miRNA seed sequence
to inhibit its functions, producing increased expression of its target mRNAs [122]. LNAs
can be administered by intraperitoneal injections; to date, no acute or chronic toxic effects
have been observed in laboratory animals [123]. Another type of antimiR is created by
conjugating cholesterol to the 3′ end and O-Me oligonucleotides with a phosphorothioate
linkage at the 5′ terminal region to prevent their degradation and increase their binding
affinity to silence miRNAs [123]. Additionally, there are the so-called miRNA sponges,
which are short oligonucleotides that carry a miRNA binding site and inhibit the aberrant
expression of miRNAs by binding to them in a total or partial complementary manner;
these can block a whole family of miRNAs with similar targets [124].

In contrast, mimics are composed of a strand identical to the mature miRNA that
can be loaded onto the RISC complex and can act as an endogenous miRNA, resulting
in the inhibition of gene expression [122]. In addition to antimiRs and mimics, there are
other techniques used, such as the masking of miRNAs (miR mask). These are composed
of single-chain 2′-O-methyl modified antisense oligonucleotides complementary to the
binding site for an endogenous miRNA that binds to the target mRNA with higher affinity,
thereby blocking the miRNA’s access to its binding site [119]. In short, miRNA mimics
and antagonists, since they are oligonucleotides of small molecular weight, are easier to
administer to target cells. Until now, studies have only been carried out in laboratory
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animals, being effective in rodents. However, strategies to improve tissue-specific delivery,
stability, and cellular uptake are still required for future therapy success [120].

6. Conclusions

In recent years, the participation and function of various miRNAs in testicular germ
cells have been investigated, among which the hsa-miR-371-373 and hsa-miR-302/367
clusters stand out. Various studies have found overexpression of the aforementioned
clusters in the gonocyte, the GCNIS, and TGCT. To date, it has been described that some
patients with CO present persistence of gonocytes and their characteristic protein expression
after 6 months of age, which supports the theory of the gonocyte as a target for malignancy.
Therefore, it could be inferred that the hsa-miR-371-373 and hsa-miR-302/367 clusters
could actively participate in the transformation of the gonocyte towards GCNIS and the
development of TGCT in adulthood. These miRNAs have not yet been described in
pediatric patients with CO, but knowledge of their expression levels could provide insights
into the etiology of this malformation and how some patients develop testicular neoplasia.

The results of the hsa-miR-371-373 and hsa-miR-302/367 clusters are promising; thus,
in the future, they could be used as specific diagnostic and prognostic biomarkers of TGCT
and especially in patients at risk, such as pediatric patients with CO.
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