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Abstract: The incorporation and effects of hollow mesoporous nanospheres in the system
510,-CaO (nanoMBGs) containing ipriflavone (IP), a synthetic isoflavone that prevents osteoporosis,
were evaluated. Due to their superior porosity and capability to host drugs, these nanoparticles are
designed as a potential alternative to conventional bioactive glasses for the treatment of periodontal
defects. To identify the endocytic mechanisms by which these nanospheres are incorporated within
the MC3T3-E1 cells, five inhibitors (cytochalasin B, cytochalasin D, chlorpromazine, genistein
and wortmannin) were used before the addition of these nanoparticles labeled with fluorescein
isothiocyanate (FITC-nanoMBGs). The results indicate that nanoMBGs enter the pre-osteoblasts
mainly through clathrin-dependent mechanisms and in a lower proportion by macropinocytosis.
The present study evidences the active incorporation of nanoMBG-IPs by MC3T3-E1 osteoprogenitor
cells that stimulate their differentiation into mature osteoblast phenotype with increased alkaline
phosphatase activity. The final aim of this study is to demonstrate the biocompatibility and osteogenic
behavior of IP-loaded bioactive nanoparticles to be used for periodontal augmentation purposes and
to shed light on internalization mechanisms that determine the incorporation of these nanoparticles
into the cells.

Keywords: endocytosis; ipriflavone; mesoporous nanospheres; nanoparticles; oxidative stress;
pre-osteoblasts

1. Introduction

Bioactive glasses are a group of bioceramics that exhibit bone regeneration properties. Since their
discovery in 1971, over 1.5 million patients have been treated with Bioglass 45S5, the original
four-component Bioglass composition (45 wt % SiO,, 24.5 wt % CaO, 24.5 wt % NayO, 6 wt % P»0s).
In addition to orthopedic surgery as bone graft substitutes, bioactive glasses applications in dentistry
involve their use as dental restorative materials, mineralizing agents, coating material for dental
implants, pulp capping and root canal treatment [1]. The first particulate form of Bioglass, trademark
PerioGlass®, in 1993, is still sold for the treatment of periodontal defects and has become a standard
for the treatment of these types of clinical defects [2].

The research developed during the subsequent decades has resulted in new materials that
significantly differs from the original melt-derived Bioglass 4555. The use of the sol-gel process in the

Nanomaterials 2020, 10, 2573; d0i:10.3390/nan010122573 www.mdpi.com/journal/nanomaterials


http://www.mdpi.com/journal/nanomaterials
http://www.mdpi.com
https://orcid.org/0000-0002-6104-4889
http://dx.doi.org/10.3390/nano10122573
http://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/2079-4991/10/12/2573?type=check_update&version=2

Nanomaterials 2020, 10, 2573 20f17

1990s [3,4], the preparation of bioactive star gels [5] and the development of mesoporous bioactive
glasses (MBG) revealed new potential applications in the field of bone tissue regeneration and drug
delivery platforms [6-8]. Compared to conventional bioactive glasses, MBGs exhibit higher surface area
and porosity, which give them excellent drug-loading ability and superior bone-forming capacity [9-11].
These characteristics make MBGs very attractive as bone-graft material to be used in the regeneration
of periodontal bone defects since they can augment the height and bone volume of the alveolar ridge
for the insertion of dental implants, whereas they can deliver antibiotic or antiosteoporotic drugs
to prevent infection or promote bone healing in the case of patients with diminished bone-forming
capability, respectively.

The advances in nanomedicine have opened new research lines involving the synthesis and
development of nanoparticles, including carbon-based nanomaterials, hydroxyapatite, iron oxide,
zirconia, silica, silver or titania, among others [12]. Thus, nanodentistry is a consequence of the
progress in nanomaterials, tissue engineering and nanomedicine, being very beneficial for diagnostic
procedures, treatment and prevention of oral and dental diseases. Currently, the use of nanoparticles
in dentistry comprises dental filling, reinforcement of dental implants, polishing of enamel surface,
prevention of caries, teeth whitening and anti-sensitivity agents [13]. In this sense, recent advances
have been made with gold nanoparticles as a biomaterial in dentistry due to their antifungal and
antibacterial activity, mechanical properties and availability of different sizes and concentrations [14].
However, the studies focused on the use of bioactive nanoparticles for periodontal bone augmentation
are very scarce, and most of them have been carried out with hydroxyapatite nanoparticles [15,16].
In this context, the recent developments in the preparation of mesoporous bioactive glass nanoparticles
could provide a very interesting alternative for this purpose [17-20]. On the other hand, the coupling
of osteogenesis and angiogenesis is crucial in periodontal tissue regeneration and biomaterials loaded
with different agents that act synergistically on both processes are very recently being designed to
achieve periodontal regeneration [21].

One of the most interesting strategies to promote bone regeneration under osteoporotic conditions
consists of loading bioactive materials with different drugs to treat osteoporotic bone by either
promoting the osteogenesis process or inhibiting the activity of osteoclasts, or both [22,23]. Among the
drugs used for this purpose, it has been shown that ipriflavone (IP) prevents osteoporosis by inhibiting
bone resorption [24]. On the other side, oral administration of IP (1200 mg daily) to subjects diagnosed
of primary hyperparathyroidism indicated that this drug has great potential in the therapy of metabolic
bone pathologies in which there is high bone turnover [25]. As a nanotherapeutic strategy, different
inorganic nanoparticles have been designed for drug incorporation and intraosseous administration
in osteoporosis and regenerative therapies for bone diseases [26,27]. This type of administration,
with nanoparticles loaded with drugs that will be released inside the bone cells, allows significantly
reducing the quantity of drug required to carry out the desired effect.

In the present work, we have evaluated the effects of mesoporous bioactive nanospheres
(nanoMBGs) loaded with IP on MC3T3-E1 osteoprogenitor cells, the most relevant model of in vitro
osteogenesis [28], as a nanotherapeutic strategy to promote bone regeneration. The rationale behind
this selection is the osteogenic potential and drug delivery capabilities of nanoMBGs, which could
provide an excellent strategy as a bone graft for periodontal defects and also for the treatment of
infections and inflammatory processes such as those that occur in periodontitis. These nanospheres
are synthesized in the ternary system SiO,—CaO-P,0s5 and have shown excellent in vitro bioactive
behavior in previous studies [29]. Since the effectiveness of treatment with nanoparticles designed for
intracellular drug release depends on their efficient incorporation into cells, we have investigated the
mechanisms of incorporation of these nanospheres into pre-osteoblasts. Thus, to identify the endocytic
mechanisms by which these nanoMBGs are incorporated within the MC3T3-E1 cells, five inhibitors
(cytochalasin B, cytochalasin D, chlorpromazine, genistein and wortmannin) were used before the
addition of these nanoparticles labeled with fluorescein isothiocyanate (FITC-nanoMBGs). On the other
hand, to assess the intracellular action of the drug, the effects of unloaded and IP-loaded nanospheres
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(nanoMBG-IPs) on MC3T3-E1 pre-osteoblasts were evaluated in a comparative study by analyzing
the following cellular parameters: cell viability, apoptosis, cell cycle, intracellular content of reactive
oxygen species, intracellular content of Ca?*, production of interleukin 6, alkaline phosphatase activity
and matrix mineralization. The study of all these parameters is focused on testing the absence of
cytotoxicity of nanoMBG-IPs and their potential as a nanotherapeutic strategy for the intracellular
delivery of ipriflavone to promote osteogenesis in the periodontal defects. The final aim of this study
is to demonstrate the biocompatibility and osteogenic behavior of nanoMBG-IP and to shed light on
the mechanisms that rule the incorporation of these nanoparticles into the cells.

2. Materials and Methods

2.1. Preparation, Characterization and Labeling of Mesoporous SiO»,—CaO Nanospheres

Mesoporous SiO,—CaO-P,05 nanospheres (nanoMBGs) were synthesized following the
method described in previous work [30]. This method consists of the preparation of an O/W
emulsion where two different templates are dissolved. Briefly, poly(styrene)-block-poly(acrylic acid)
(PS-b-PAA) with average Mw = 38,000, was dissolved in tetrahydrofuran (THF) and poured on a
hexadecyltrimethylammonium bromide (CTAB) water solution. Then, the appropriated amounts of
Ca(NO3),-4H,0, triethyl phosphate (TEP) and tetraethyl orthosilicate (TEOS) were added dropwise
dissolved in water and ethanol, respectively. After 24 h stirring, the product was collected by
centrifugation, dried and calcined at 550 °C to remove the organic templates (see Supplementary
Materials for a detailed description of the synthesis).

Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images were
collected with a JEOL F-6335 microscope and a JEOL-1400 microscope (JEOL, Tokyo, Japan), respectively.

Textural properties were studied by means of nitrogen adsorption analysis using an ASAP 2020
equipment (Micromeritics, Norcross, GA, USA). For this aim, nanoMBGs were degassed at 150 °C for
15 h. Fourier-transform infrared spectroscopy (FT-IR) was carried out using a Nicolet Magma IR 550
spectrometer (Nicolet Instruments, Madison, WI, USA). In order to collect more information from the
surface of the nanoparticles, the spectra were collected by means of the attenuated total reflectance
(ATR) sampling technique. Thermogravimetric analysis (TGA) was performed using a TG/DTA Seiko
SSC/5200 thermobalance (SEIKO instruments, Chiba, Japan). The samples were heated from 50 to
600 °C at a heating rate of 1 °C min~!, using a-Al,Oj3 as reference.

For fluorescein isothiocyanate (FITC)-labeling, aminopropyl triethoxysilane (APTES) was
dissolved in ethanol. Subsequently, 0.6 mg of fluorescein isothiocyanate was added and stirred
for 5 h. This solution was added dropwise on the nanoMBG particle suspension, and the labeled
particles were washed and collected by centrifugation (see Supplementary Materials for a detailed
description of the labeling).

2.2. Antiosteoporotic Drug Loading

Ipriflavone (IP) was chosen as an antiosteoporotic drug for this study. For this aim, 300 mg of
IP (7-isopropoxy-3-phenyl-4H-1-benzopyran-4-one) were dissolved in 6 mL of acetone as previously
reported [31]. Subsequently, 80 mg of nanoMBGs were poured on this solution and stirred in a rotatory
incubator at 100 rpm for 24 h. Ipriflafone-loaded nanoparticles (nanoMBG-IP) were filtered and washed
with acetone and water, thus removing the excess of IP physically adsorbed on the external surface.

2.3. Cell Culture of MC3T3-E1 Pre-Osteoblasts for FITC-NanoMBG Incorporation. Evaluation of the
Endocytic Mechanisms for FITC-NanoMBG Cell Entry

Since MC3T3-E1 osteoprogenitor cells are the most relevant model of in vitro osteogenesis [28],
this cell line was chosen to investigate the entry mechanisms of these mesoporous bioactive nanospheres
labeled with FITC in undifferentiated osteoblasts. This cell line was kindly provided by Dr. B.T.
Pérez-Maceda (CIB, CSIC, Madrid, Spain). On the other hand, in this study, we have analyzed the
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effects of these nanospheres loaded with ipriflavone on the differentiation of pre-osteoblasts into mature
osteoblasts, as explained below. For FITC-nanoMBG incorporation studies, MC3T3-E1 pre-osteoblasts
(10° cells/mL) were seeded in 24 well culture plates with Dulbecco’s Modified Eagle’s Medium (DMEM,
Sigma Chemical Company, St. Louis, MO, USA) with fetal bovine serum (FBS, Gibco, BRL, 10% vol/vol),
1 mM L-glutamine (BioWhittaker Europe, Verviers, Belgium) and antibiotics (200 pg penicillin and
200 pg streptomycin per mL, BioWhittaker Europe, Verviers, Belgium). Cells were cultured for 24 h
in a 5% CO; incubator at 37 °C, and different doses of FITC-nanoMBGs (10, 30 and 50 pug/mL) were
added afterward into the culture medium and maintained several times. Cells were harvested with
trypsin-EDTA (0.25%), and FITC-nanoMBG incorporation was quantified through flow cytometry.
The FITC-nanoMBG fluorescence was detected in a FACScalibur Becton Dickinson flow cytometer
with a 530/30 filter, exciting the sample at 488 nm. The data acquisition and flow cytometric analysis
conditions were set through negative and positive controls using the CellQuest Program of Becton
Dickinson and maintained for all measurements. A total of 10* cells were analyzed in each sample in
order to ensure a correct statistical significance.

To identify the endocytic mechanisms by which these FITC-nanoMBG nanospheres are
incorporated within the MC3T3-E1 cells, the inclusion in the culture medium of several specific
endocytosis inhibitors was carried out before adding the nanoparticles, maintaining the cells 2 h under
these conditions. The endocytosis inhibitors were: 20 uM cytochalasin B (MP Biomedicals, Eschwege,
Germany), 4 uM cytochalasin D (MP Biomedicals, Eschwege, Germany), 30 uM chlorpromazine
(Enzo Life Sciences, Barcelona, Spain), 3.7 uM genistein (Enzo Life Sciences, Barcelona, Spain),
and 23 uM wortmannin (Enzo Life Sciences, Barcelona, Spain). Then, the culture medium was changed
by a fresh medium containing 50 pug/mL FITC-nanoMBGs and cells were maintained for 2 h at 37 °C in
a 5% COy incubator. Finally, cells were collected with trypsin-EDTA (0.25%) and the FITC-nanoMBG
incorporation in each case was quantified by flow cytometry as stated above. All the analyses were
compared with their respective controls without inhibitors.

2.4. Cell Size and Complexity Analysis

To study the cell size and complexity, forward angle (FSC) and side angle (SSC) scatters were
detected, respectively, in a FACScalibur Becton Dickinson flow cytometer. A total of 10* cells were
analyzed in each sample in order to ensure a correct statistical significance.

2.5. Cell Viability Studies

Cell viability was measured by adding 0.005% (wt/vol) propidium iodide (PI) in PBS
(Sigma-Aldrich, St. Louis, MO, USA) into the samples to stain the dead cells. The PI exclusion
indicates the plasma membrane integrity. PI fluorescence was detected in a FACScalibur Becton
Dickinson flow cytometer (Becton Dickinson, San Jose, CA, USA) with a 530/30 filter, exciting the
sample at 488 nm. A total of 10* cells were analyzed in each sample in order to ensure a correct
statistical significance.

2.6. Cell-Cycle Analysis and Apoptosis Detection by Flow Cytometry

Cells in 0.5 mL of PBS were mixed with 4.5 mL of ethanol 70% and maintained overnight at 4 °C.
Cell suspensions were then centrifuged for 10 min at 310X ¢ and resuspended in 0.5 mL of RNAsa
solution containing 0.1% Triton X-100, 20 pg/mL of IP and 0.2 mg/mL of RNAsa (Sigma-Aldrich,
St. Louis, MO, USA). After 30 min of incubation at 37 °C, PI fluorescence was detected in a FACScan
Becton Dickinson flow cytometer with a 585/42 filter, exciting the sample at 488 nm. The CellQuest
Program of Becton Dickinson was used to calculate the percentage of cells in each cycle phase: Gy/Gy
(growth), S (DNA synthesis) and G,/M (growth and mitosis). To quantify the cell apoptosis, the SubG
fraction (cells with fragmented DNA) was evaluated. A total of 10 cells were analyzed in each sample
in order to ensure a correct statistical significance.
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2.7. Intracellular Reactive Oxygen Species (ROS) Content

Cell suspensions were incubated for 30 min at 37 °C with 100 uM of 2’,7’-dichlorofluorescein
diacetate (DCFH/DA, Serva, Heidelberg, Germany). DCFH/DA can penetrate the cells and can be
hydrolyzed by cytosolic esterases, producing DCFH, which is instantly oxidized by ROS to DCF,
highly fluorescent and whose fluorescence intensity depends directly on the intracellular content of
reactive oxygen species (ROS). DCF fluorescence was measured in a FACScalibur Becton Dickinson
flow cytometer with a 530/30 filter, exciting the sample at 488 nm. A total of 10* cells were analyzed in
each sample in order to ensure a correct statistical significance.

2.8. Confocal Microscopy Studies

Cells were cultured on circular glass coverslips with 50 ng/mL FITC-nanoMBGs in the culture
medium for 24 h. Afterward, cells were fixed with p-formaldehyde (3.7%) and permeated, adding 500 nL
of Triton-X100 (0.1% in PBS). After 20 min of incubation with BSA (1% in PBS), samples were
stained with 100 pL of rhodamine-phalloidin 1:40, washed with PBS and stained with 100 pL
of 4’,6-diamidino-2-phenylindole (3 x 107® M in PBS, DAPI, Molecular Probes, Inc., Eugene,
OR, USA). Finally, samples were observed through a Leica SP2 confocal laser scanning microscope.
The fluorescence of rhodamine and DAPI were excited at 540 and 405 nm, respectively, and detected at
565 and 420/586 nm, respectively.

2.9. Intracellular Calcium Content

After incubation of cell suspensions for 30 min with the probe Fluo4-AM (5 uM, Thermo Fisher
Scientific, Madrid, Spain), which can penetrate the cells and be hydrolyzed by cytosolic esterases,
Fluo4 fluorescence was measured in a FACScan Becton Dickinson flow cytometer with a 530/30 filter,
exciting the sample at 488 nm. Finally, to check the assay sensitivity, A-23,187 ionophore (5 uM,
Sigma-Aldrich, St. Louis, MO, USA) was added to each sample. A total of 10* cells were analyzed in
each sample in order to ensure a correct statistical significance.

2.10. Alkaline Phosphatase Activity

A total of 2 x 10* cells/mL were cultured in 24 well plates and maintained for 24 h in a 5% CO,
incubator at 37 °C, with 1 mL/well of culture medium (DMEM with 10% FBS, 1 mM L-glutamine 1 mM
and antibiotics), supplemented with 10 mM L-ascorbic acid and 50 pg/mL (3-glycerolphosphate in
order to promote cell differentiation. To evaluate the nanomaterial effects on alkaline phosphatase
(ALP) activity, as a key indicator of osteoblast phenotype expression, 50 ug/mL of nanoMBGs with
or without ipriflavone were added into the wells and cells were maintained for 11 days in a 5% CO,
incubator at 37 °C, refreshing the culture medium every 4 days. ALP activity was detected using Reddi
and Huggins” method (Reddi and Huggins, 1972, SpinReact S.A., Girona, Spain), and the obtained
values were normalized with respect to total cell protein content, measured using Bradford’s method
with bovine serum album (BSA) as standard.

2.11. Mineralization Assay

A total of 2 x 10* cells/mL were seeded in 12 well plates and maintained for 24 h in a 5% CO,
incubator at 37 °C, with 1.5 mL/well of culture medium (DMEM with 10% FBS, 1 mM L-glutamine
1 mM and antibiotics), supplemented with 10 mM L-ascorbic acid and 50 pg/mL p-glycerophosphate
in order to promote cell differentiation. Then, 50 ug/mL of nanoMBGs with or without ipriflavone
were added into the wells and cells were maintained for 11 days in a 5% CO; incubator at 37 °C,
refreshing the culture medium every 4 days. Afterward, the culture medium was removed, and the cell
cultures were treated with glutaraldehyde (10%) as a fixer for 1 h. Then, cells were stained with 40 mM
Alizarin Red at pH 4.2 for 45 min in order to analyze the matrix mineralization. Finally, the stained
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extracellular deposits were dissolved with cetylpyridinium chloride (10% at pH 7), and the absorbance
of the supernatants was measured at 620 nm.

2.12. Interleukin 6 (IL-6) Detection

The concentration of IL-6 secreted to the culture medium by 2 x 10* cells/mL, after treatment
with 50 pug/mL of nanoMBGs with or without ipriflavone, was measured using an ELISA IL-6 kit
(Gen-Probe, Diaclone). This method is based on a sandwich ELISA where plates are pre-coated with a
capture antibody highly specific for IL-6 and, after the incubation with the samples, a biotinylated
secondary antibody is added, and the correct unions are revealed with streptavidin-avidin conjugated
with horseradish peroxidase in a colorimetric reaction which is quantified in an ELISA Plate Reader at
450 nm, with a sensitivity of 10 pg/mL and an inter-assay variation coefficient <10%. Recombinant
cytokine was adopted as standard.

2.13. Statistics

The results obtained appear as means of three replicate experiments plus their standard deviations,
analyzed with the 22nd version of Statistical Package for the Social Sciences (SPSS). Statistical
comparisons were carried out with the analysis of variance (ANOVA), and Scheffé and Games-Howell
test was employed for post hoc analysis of differences between study groups, considering p < 0.005 as
statistically significant.

3. Results and Discussion

3.1. Characterization of Mesoporous Nanospheres

Prior to any biological assay, the main physic-chemical features of the nanoparticles must be
determined. For this purpose, electron microscopy (SEM and TEM) experiments, textural properties
determination and FTIR analysis before and after drug-loading was carried out. Figure 1a shows an
SEM image of nanoMBGs, pointing out that this material is made of non-aggregated spheres ranging
in size between 150 and 250 nanometers. The spheres show porosity accessible to the external surface.
TEM image (Figure 1b) provides more detailed information about the porous structure of nanoMBG
spheres. The TEM image evidence that our spheres are composed of an inner cavity of about 100 nm
in diameter, surrounded by a shell that exhibits a radial porosity. These two types of porosity are
clearly reflected in the nitrogen adsorption/desorption isotherm shown in Figure 1c. The adsorption
isotherm corresponds to a highly porous material with high surface area (see Table 1) and with a wide
hysteresis loop type H2, characteristic of ink bottle-like pore as a clear reflection of the wide central
cavity connected to the narrow necks of the radial pores of the shell. Finally, FTIR spectra evidence the
presence of ipriflavone after the loading process (Figure 1d) with the characteristic absorption band of
this compound (see Figure S1 in Supplementary Materials). Thermogravimetric analysis indicated
18% in weight of ipriflavone-load (see Figure S2 in Supplementary Materials), and the decrease of the
textural parameters also evidence that the drug is filling or even occluding the pores of the spheres
(Table 1).

3.2. Effects of NanoMBGs and NanoMBG-1Ps on Size, Complexity, Apoptosis and Cell Cycle of
MC3T3-E1 Pre-Osteoblasts

Once the main physic-chemical characteristics of nanoMBGs were determined, we proceeded
to assess the potentially deleterious effects that these nanoparticles could exert on pre-osteoblast
in terms of cell size, complexity, apoptosis or harmful variations in the cell cycle. No changes in
pre-osteoblast size and complexity (FSC and SSC, respectively) were observed after the intracellular
incorporation of nanoMBGs or nanoMBG-IPs (see Figure S3 in Supplementary Materials). In this
context, we have observed in previous studies with MC3T3-E1 pre-osteoblasts that the incorporation of
another type of nanoparticles, such as graphene oxide nanosheets, produced alterations as the increase
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in cell size (FSC) without changes in cell complexity (S5C) [32]. However, previous studies with RAW
264.7 macrophages and nanoMBGs evidenced a significant increase of macrophage complexity (SSC)
after the treatment with these nanospheres due to their uptake by macrophages [29]. It is well known
that these cell parameters, FSC and SSC, depend on different factors such as the cell surface and
some organelles (lysosomes, mitochondria, nucleus or pinocytic vesicles) as well as on the presence of
granulated material within the cell [33].

200 nm
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Figure 1. Characterization of mesoporous nanospheres. (a) scanning electron micrograph of hollow
mesoporous nanospheres in the system 5i0,—CaO (nanoMBG) spheres. (b) Transmission electron image
of nanoMBG spheres. (c) Nitrogen adsorption/desorption isotherm of nanoMBG spheres. (d) FTIR
spectra of nanoMBG and IP-loaded nanospheres (nanoMBG-IP) spheres (* indicates the absorption
bands corresponding to ipriflavone).

Table 1. Textural properties for nanoMBG and nanoMBG-IP spheres measured by N, adsorption.

Sample Surface Area Pore Volume Pore Size
P (m2.g-1) (em3-g~1) (nm)
nanoMBG 543.6 0.435 —-2.5nm
nanoMBG-IP 144 0.057 NA

The effects of nanoMBG and nanoMBG-IP nanospheres on cell cycle phases (Gy/G1, S and G/M)
of MC3T3-E1 pre-osteoblast and the percentage of cells in apoptosis (SubG; fraction) were analyzed.
Figure 2 shows that the treatment with 50 pug/mL of nanospheres without ipriflavone for 24 h did
not induce alterations on Gy/G1, S and G,/M phases. In the same way, nanoMBG-IPs did not induce
changes in Go/G; and G,/M phases. Nevertheless, a significant increment (p < 0.005) of the synthesis
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phase (S) was observed after the incubation of the MC3T3-E1 pre-osteoblasts with 50 pg/mL of
nanoMBG-IPs, thus evidencing the protective impact of the ipriflavone into these cells. Moreover,
nanoMBG and nanoMBG-IPs did not induce apoptosis on MC3T3-E1 pre-osteoblasts, detected as
SubGl fraction, in comparison with control cultures.

SubgG, G,/G;
5 - 80 -
’
4 - 60 - %
3 .
= ® 40 -
2 | .
G T T 0 T T
Control NanoMBG NanoMBG-IP Control NanoMBG NanoMBG-IP
S G,/M
10 - * ok ok 25 .
8 4 . 20 - T
6 - 15 - P
® %Z ®
4 1 10
2 - 5
0 T J 0 T T 1
Control NanoMBG NanoMBG-IP Control NanoMBG NanoMBG-IP

Figure 2. Effects of nanoMBGs and nanoMBG-IPs on cell cycle phases of MC3T3-E1 pre-osteoblasts
and apoptosis percentage (Sub G; fraction) after 24 h of treatment with 50 ug/mL of nanospheres.
Control conditions without nanospheres were performed at the same time. Statistical significance:
*** p < 0.005.

3.3. Effects of NanoMBGs and NanoMBG-1Ps on Viability, Intracellular Reactive Oxygen Species (ROS) and
Calcium Content of MC3T3-E1 Pre-Osteoblasts

Although no adverse effects on cell cycle were observed and IP evidenced a protective impact,
the incorporation of nanoparticles could trigger an increment of the intracellular content of reactive
oxygen species (ROS), oxidative stress, a decrease of cell viability and toxicity mechanisms [34]. On the
other hand, bioactive mesoporous materials exhibit a high capability for releasing Ca?* and other ions
such as soluble silicate that can stimulate the proliferation and differentiation of osteoblasts [35-37],
inducing bone regeneration due to the release of these two ions [38]. Considering all these facts,
in the present work, we have evaluated the cell viability, intracellular content of ROS and cytosolic
calcium of MC3T3-E1 pre-osteoblasts after treatment with nanoMBGs and nanoMBG-IPs. Control
conditions without nanospheres were performed at the same time. Figure 3 shows the obtained results.
The fluorescence profiles of control cells, cells with Fluo4 and cells with Fluo4 plus A23187 ionophore
are also shown in the lower-left figure. The fluorescence increase observed after the addition of A23187
ionophore to the cells demonstrates the sensitivity of the assay. No viability changes but significant
decreases of both intracellular ROS and calcium content were observed after incubation with 50 ug/mL
of nanoMBGs and nanoMBG-IPs. These results evidence the absence of oxidative stress or toxicity
caused by these nanospheres in MC3T3-E1 pre-osteoblasts after their uptake.
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Figure 3. Effects of 50 pg/mL of nanoMBG and nanoMBG-IP nanospheres on viability, intracellular
content of reactive oxygen species (ROS) and cytosolic calcium of MC3T3-E1 pre-osteoblasts, after 24 h
of incubation. Control conditions without nanospheres were performed at the same time. Fluorescence
profiles of control cells, cells with Fluo4 and cells with Fluo4 plus A23187 ionophore are shown in the
lower-left figure. Statistical significance: *** p < 0.005.

3.4. Effects of NanoMBGs and NanoMBG-IPs on Differentiation of MC3T3-E1 Pre-Osteoblasts

The set of results obtained and described in Sections 3.2 and 3.3 evidence the excellent behavior
in terms of cell viability and the absence of cytotoxicity of nanoMBGs and nanoMBG-IP. However,
the application as osteoregenerative material requires the capability to stimulate the differentiation of
the pre-osteoblasts toward the osteoblastic phenotype. The differentiation process of the MC3T3-E1
pre-osteoblasts includes three successive phases: (a) initial stage with active cell proliferation, but
without expression of differentiation markers such as alkaline phosphatase (ALP) or mineral depositions;
(b) intermediate stage with the maturation of the matrix and a high expression of ALP; and (c) final
stage with matrix mineralization characterized by the presence of mineral depositions due to ALP
activity [39,40]. On the other hand, ipriflavone is a synthetic drug that prevents osteoporosis by
inhibiting bone resorption and maintaining bone thickness [24]. Thus, the use of nanoMBG-IPs for
intracellular delivery of this drug could be a nanotherapeutic strategy to promote bone regeneration.
In this context, we evaluate the impact of nanoMBG-IPs on MC3T3-E1 pre-osteoblast differentiation as
a prototype of in vitro osteogenesis through the measurement of ALP activity and the quantification of
matrix mineralization as key markers of MC3T3-E1 cell differentiation after 11 days of treatment with
different doses of these nanospheres. Controls without nanospheres and with nanoMBGs, but without
ipriflavone were performed at the same time.

Figure 4 shows that the cell incorporation of nanoMBG without ipriflavone induced a decrease of
ALP activity compared to control cells after 11 days of incubation with 10 and 50 pg/mL. However,
significant increases of ALP activity were observed after treatment with 5, 10 and 50 pg/mL of these
nanospheres loaded with ipriflavone (nanoMBG-IPs), thus indicating the efficient intracellular release
of IP and its positive in vitro effect on osteogenesis. The effect of the highest dose (50 ng/mL) of
nanoMBG-IPs was lower than the obtained with 5 and 10 pg/mL of nanoMBG-IPs, evidencing the
convenience of using lower doses than 50 pg/mL.
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Figure 4. Effects of several doses of nanoMBGs and nanoMBG-IPs on MC3T3-E1 pre-osteoblast
differentiation after 11 days, evaluated through the measurement of alkaline phosphatase (ALP) activity.
Control conditions without nanospheres were performed at the same time. Statistical significance:
**p < 0.005, * p < 0.05.

Increases of matrix mineralization were detected after the incubation with 50 pg/mL of nanoMBGs
and nanoMBG-IPs for 11 days, but these effects were not statistically significant (Figure S4,
Supplementary Materials), probably as a result of the lower precision and sensitivity of this test.

The ALP activity results demonstrate the efficient intracellular release of the drug from the
nanoMBG-IPs and suggest their potential application as intracellular drug delivery systems in a
nanotherapeutic strategy to promote bone regeneration.

Regarding the effects of other nanoparticles on MC3T3-E1 cell differentiation, in previous studies
with this cell type and graphene oxide (GO) nanosheets, we observed that the treatment with 40 pg/mL
of 400 nm PEG-GO for 3 days did not affect the differentiation process 12 days after the intracellular
uptake of the nanomaterial [32].

3.5. Effects of NanoMBGs and NanoMBG-IPs on Interleukin 6 (IL-6) Production by
MC3T3-E1 Pre-Osteoblasts

Despite having demonstrated the absence of cytotoxicity of these nanospheres and having
observed their capability to promote pre-osteoblast differentiation, the inflammatory response that
any kind of nanoparticles could elicit should be evaluated. In this sense, the detection in vitro of
inflammatory cytokines provides valuable information about these potential clinical complications.
IL-6 is produced by many cells, including osteoblasts, monocytes, macrophages and bone marrow
mononuclear cells [41]. In bone, this cytokine induces osteoclast differentiation [42,43]. On the
other hand, recent studies in a murine model have shown the IL-6 is related to the processes of
revascularization and bone formation after ischemic osteonecrosis [44]. In the present work, we have
quantified the levels of IL-6 secreted by cultured MC3T3-E1 pre-osteoblasts after incubation with
nanoMBGs and nanoMBG-IPs. Figure 5 suggests that no significant changes of IL-6 secretion were
detected after treatment with these nanospheres.

With respect to IL-6, it is important to note that this cytokine and tumor necrosis factor-alpha
(TNF-«) play a key role in the inflammatory response, infection and stress [45]. In the present work,
no significant changes of in vitro IL-6 secretion by pre-osteoblasts were detected after nanoMBG and
nanoMBG-IP treatment, thus indicating that the local nanomaterial administration in vivo would not
trigger the production of this pro-inflammatory cytokine and would not activate the innate immune
system. These results agree with the switch of the M1 pro-inflammatory macrophage phenotype to the
M2 reparative phenotype previously observed [29].
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Figure 5. Effects of nanoMBGs and nanoMBG-IPs on interleukin 6 (IL-6) production by cultured
MC3T3-E1 pre-osteoblasts after treatment with 50 ug/mL of nanospheres for 24 h. Control conditions
without nanospheres were performed at the same time.

The results obtained so far evidence not only the excellent biocompatibility of nanoMBG-IP
but also their capability to promote pre-osteoblasts differentiation towards osteoblast phenotype,
thus confirming the osteogenic potential of nanoMBG-IP. In this sense, the intracellular release of the
drug seems to play an important role in this process. The following experiments were carried out to
shed some light on the mechanism that rules the incorporation of these nanoparticles within cells.

3.6. Uptake of NanoMBGs by MC3T3-E1 Pre-Osteoblasts

In order to evaluate the nanoparticles uptake by pre-osteoblast cells, nanoMBG nanospheres
were labeled with FITC. As a first approach, MC3T3-E1 pre-osteoblasts were cultured for 15, 30 and
60 min with 10, 30 and 50 pg/mL of FITC-nanoMBG. The cells were then detached, and the amount of
cell-associated fluorescence was detected by flow cytometry as a measure of the intracellular uptake of
these nanospheres. As can be observed in Figure 6A, the fluorescence intensity of osteoprogenitor
cells after each treatment reveals a fast and dose-dependent FITC-nanoMBG uptake after 15 min.
On the other hand, a decrease in fluorescence related to the intracellular content of these nanospheres
was observed after 60 min of treatment with all the doses used (Figure 6A). This fact indicates that,
after FITC-nanoMBG uptake, the exocytosis of this nanomaterial also occurs, according to the process
described for other nanoparticles in mammalian cells [46].

For confocal microscopy studies, the dose of 50 ug/mL of FITC-nanoMBGs and 24 h time
were chosen to observe if the intracellular uptake of this nanomaterial by MC3T3-E1 pre-osteoblasts
could damage the cytoskeleton structure in these conditions of high dose and longer treatment time.
Control cultures without this nanomaterial were performed at the same time. Figure 6B shows
the abundance of nanospheres in the cytoplasm of the pre-osteoblasts and the integrity of their
morphology. The results evidence that the incorporation of FITC-nanoMBGs did not induce changes
in the pre-osteoblast cytoskeleton.

3.7. Endocytic Mechanisms for FITC-NanoMBG Entry into MC3T3-E1 Pre-Osteoblasts

Five specific endocytosis inhibitors were added into the culture wells before the nanomaterial
addition in order to identify the endocytic mechanisms by which these FITC-nanoMBG nanospheres
are incorporated within the MC3T3-E1 cells. This indirect method consists of pretreating the cells with
different inhibitors that specifically block a certain mechanism of endocytosis. In this way, when the
inhibitor used reduces the entry of the nanospheres, we can know that this mechanism that has been
blocked constitutes an entry route. On the contrary, if the inhibitor does not decrease the entry of the
nanospheres, we will know that the mechanism that is blocking the inhibitor is not involved in the
entry of the nanospheres. Figure 7 shows a scheme of the assay, a table with the mechanism affected by
each inhibitor (its specific action and the corresponding reference) and a graph with the effects of these
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agents on the FITC-nanoMBG uptake. Previous studies allowed us to choose the dose of the different
inhibitors [47-51]. The results showed two incorporation mechanisms for FITC-nanoMBG entry into

MC3T3-E1 pre-osteoblasts.
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Figure 6. Intracellular uptake of nanoMBG nanospheres labeled with FITC by MC3T3-E1 pre-osteoblasts.
(A) flow cytometric analysis of fluorescence intensity of cells with intracellular FITC-nanoMBG
nanospheres after incubation with 10 (e), 30 (O) and 50 pug/mL (¥) for different times (15, 30 and 60 min).
Statistical significance: *** p < 0.005. (B) Confocal microscopy images of MC3T3-E1 pre-osteoblasts after

24 h of incubation with 50 pg/mL of nanoMBG nanospheres labeled with fluorescein isothiocyanate

(FITC). Nuclei were stained with DAPI (blue), F-actin filaments were stained with rhodamine-phalloidin

(red), and FITC-nanoMBGs are observed in green.

Cytochalasins B and D, which block actin polymerization and inhibit macropinocytosis, reduce the
FITC-nanoMBG incorporation by pre-osteoblasts, although only the effect of Cytochalasin B was
significant (p < 0.05, Figure 3). Chlorpromazine is an inhibitor of clathrin-dependent mechanisms,
and this agent produced a very pronounced diminution (p < 0.005) of FITC-nanoMBG incorporation
by MC3T3-E1 cells, thus indicating that the clathrin-dependent endocytic mechanism is the main route
implicated in the entry of these nanospheres into pre-osteoblasts. Previous studies with nanosheets of
graphene oxide and Saos-2 osteoblasts evidenced that these nanosheets can enter in mature osteoblasts
through pathways dependent on microtubules [51]. It is important to note that the mechanisms of
entry of nanomaterials into cells depend on the cell type and the characteristics of the nanoparticles.
In the present study, the treatment with either wortmannin or genistein did not trigger significant
changes on FITC-nanoMBG incorporation by pre-osteoblasts. Wortmannin blocks the activity of
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phosphoinositide 3-kinase (PI3K) and phosphoinositide 4-kinase (PI14K) [47], with key roles in cell
development and growth as adhesion, apoptosis, cytoskeletal organization, motility, proliferation,
thus preventing phagocytosis mechanisms [52]. Genistein blocks Src tyrosine kinases and the dynamics
of caveolae [50], and no differences were observed in the uptake of these nanospheres when it was
present in the cell culture. Since wortmannin and genistein did not reduce FITC-nanoMBG uptake by
pre-osteoblasts, we can conclude that neither phagocytosis nor caveolae-mediated incorporation is
routes implicated in the in vitro uptake of these nanospheres by MC3T3-E1 cells.

*e*

ceee Control 91+4 %
12 Endocytosis ¢ Ce I |- o1s4%
inhibitor 22 FITC-NanoMBGs Wortmannin | |-+ 88+4%
\ / Cytochalasin B | |+ 78+3%
Cytochalasin D | |+ 82+4%
» 32 Analysis of FITC-
NanoMBGs uptake Genistein | |+ 89+a%
Chlorpromazine D 19+1%
BN £ 0 20 40 60 80 100
pre-osteoblasts .
MBG-FITC Incorporation (%)
WORTMANNIN Phagocytosis Irreversible inhibition of phosphatidylinositol 3-kinase Bandmann, V. et al.
(PI3K) 2012
CYTOCHALASIN B Macropinocytosis Inhibition of actin polymerization preventing Sato, K. et al.
microfilaments action 2009
CYTOCHALASIN D Macropinocytosis Inhibition of actin polymerization preventing Méger, |. et al.
microfilaments action and other endocytosis pathways 2012
GENISTEIN Clathrin-independent endocytosis Inhibition of Src tyrosine kinases and caveolae dynamics  Schulz, W.L. et al.
2012
CHLORPROMAZINE  Clathrin-dependent endocytosis Inhibition of clathrin-coat assembly and alteration of Méger, |. et al.
membrane fluidity 2012

Figure 7. Inhibitory effects of several endocytosis inhibitors on FITC-nanoMBG uptake by MC3T3-E1
pre-osteoblasts. Cells were incubated with each inhibitor for 2 h, the medium was then removed,
and the cultures were treated with 50 pg/mL FITC-nanoMBGs for 2 h. Statistical significance: * p < 0.05,
*** 1 < 0.005.

4. Conclusions

The novelty of this work is the knowledge of the effects of ipriflavone-loaded mesoporous
nanospheres on the differentiation of bone-forming cells. In previous studies, the effects of these
nanoparticles on already differentiated osteoblasts in coculture with osteoclasts were analyzed [25],
but until now, their effects on osteoprogenitor cells were unknown. Another of the novel objectives of
the present work was to understand the mechanisms by which these nanoparticles are incorporated
into osteoprogenitor cells. The obtained results demonstrate active incorporation of nanoMBG-IPs
by MC3T3-E1 pre-osteoblasts that stimulates their differentiation into mature osteoblast phenotype
with increased alkaline phosphatase activity, thus indicating the efficient intracellular release of the
drug and its positive in vitro effect on osteogenesis. The main mechanism by which FITC-Nano-MBGs
enter pre-osteoblasts is the clathrin-dependent route, although these nanospheres can also enter
through micropinocytosis. The present work reveals the absence of cytotoxicity of nanoMBG-IPs
and their great potential as a nanotherapeutic strategy for the intracellular delivery of ipriflavone
to promote osteogenesis in the periodontal defects. On the other hand, having demonstrated the
intracellular incorporation of these nanospheres and their effective intracellular release of ipriflavone,
this study represents the starting point for the use of these nanospheres as carriers of very diverse
drugs (antibiotics, anti-inflammatory, antiresorptive and osteogenic drugs) not only for periodontal
defects but also for infections and inflammatory processes such as those that occur in periodontitis.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/12/2573/s1,
Figure S1: FTIR spectrum of ipriflavone; Figure S2: Thermogravimetric analysis before (nanoMBG) and after
loading with ipriflavone (nanoMBG-IP); Figure S3: Effects of nanoMBGs and nanoMBG-IPs (50 ug/mL) on
cell size and complexity of MC3T3-E1 pre-osteoblasts after 24 h of treatment with 50 pug/mL of nanospheres.
Control conditions without nanospheres were performed at the same time; Figure S4: Effects of nanoMBGs and
nanoMBG-IPs on matrix mineralization by MC3T3-E1 pre-osteoblasts after 11 days of treatment with 50 pg/mL of
nanospheres by Alizarin Red staining. Control conditions without nanospheres were performed at the same time.
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