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Waste drill cuttings (WDCs), produced during gas and oil drilling consisting of 80% rock
cuttings and 20% drilling muds, are an increasingly potent source of environmental
pollution. We studied the efficiency of bioaugmentation and phytoremediation to
remediate WDCs in an experiment where WDCs were incubated in a greenhouse for
120 days with and without black locust (Robinia pseudoacacia) plant and with or
without bacterial and fungal consortium inoculant. The pollutant removal rates were
highest in inoculated and planted treatment, followed by inoculated treatment and
planted treatment. The small decrease in contaminant level in the control treatment
suggested that indigenous microorganisms in WDCs had little pollutant degradation
capability. In the inoculated and planted treatments, after 120 days, the germination
rate of red clover seeds was on the same level as in the natural soil, showing a
marked decrease in the ecotoxicity of WDC. Both the bacterial and fungal richness
and bacterial diversity increased in all the treatments over time, whereas fungal diversity
increased only in the not-inoculated treatments. The activity of laccase enzyme played
a key role in the bioremediation process. The enzyme activities were mostly governed
by inoculated consortium and soil bacterial community, and black locust affected the
bioremediation mainly through its effect on N content that further affected bacterial and
fungal communities.

Keywords: waste drill cutting, bioaugmentation plus phytoremediation, enzyme activity, microbial communities,
partial least squares path modeling

HIGHLIGHTS

- Waste drill cuttings (WDCs) are a potent source of environmental pollution.
- Bioremediation of WDCs with a combination of bioaugmentation and phytoremediation is an

attractive strategy.
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- Lignin degradation enzyme activities were the primary
factors correlated to the contaminant removal in
WDC bioremediation.

- Enzyme activities were mostly governed by inoculated
consortium and soil bacterial community.

- Black locust affected the bioremediation through N content
that affected bacterial and fungal communities.

INTRODUCTION

Waste drill cutting (WDC) produced during gas and oil drilling
consists of 80% rock cuttings and 20% drilling muds. Drilling
muds are applied to lubricate and cool the drill bit, maintain
hydrostatic equilibrium, and move drill cuttings to the surface
during gas and oil drilling (Okoro, 2011; Fattah and Lashin,
2016). To achieve desirable rheological properties and density,
drilling mud is amended with additives, for example, with a
liquid (water or diesel, mineral or synthetic oil), a weighting
agent (barium or calcium sulfate), amargosite, sulfonated phenol
formaldehyde (SPF) resin, and sulfonated lignite (SL) (Fink,
2012). However, using oils, SPF resin and SL create potential
environmental hazards, for example, since these additives are
ecotoxic and increase the chemical oxygen demand (COD).
Approximately 2.5 million tons of WDCs are produced annually
in China (Sun et al., 2016), making WDC an increasingly potent
source of environmental pollution.

Among the remediation methods, bioremediation is
considered an efficient, low-cost technology to treat polluted
soils and sediments (Mutairi et al., 2008; Cerqueira et al., 2014).
Bioremediation methods may be divided into five types—
phytoremediation, biostimulation, bioaugmentation, natural
attenuation, and bioventing—out of which the first three are
most commonly used. Bioaugmentation involves inoculating
exogenous contaminant-degrading microbes. In biostimulation,
nutrients are added to stimulate the indigenous community
and to avoid metabolic limitations. Phytoremediation involves
the utilization of plants to extract, accumulate, degrade,
filter, stabilize, and volatilize contaminants. Biostimulation,
bioaugmentation, and phytoremediation approaches can be
used in combination. The inoculated bacteria compete with the
bacteria already present, and a successful establishment of the
inoculum is required for long-term efficiency (Gkorezis et al.,
2016). Vegetated soils are capable of supporting high microbial
numbers and diversity, thus combining bioaugmentation with
plants that provide nutrients for bacterial growth may affect
the establishment of the inoculum (Gkorezis et al., 2016).
Understanding how bioremediation affects the populations
of pollutant-degrading microbes, the diversity and activity of
the microbial community and the adaptability of exogenous
microbes into the contaminated environment are essential in
ensuring effective bioremediation (Kaplan and Kitts, 2004;
Kauppi et al., 2011; Liu et al., 2012; Taccari et al., 2012).
Bioaugmentation and biostimulation have been used to
remediate WDC and waste drilling fluids (Rojas-Avelizapa
et al., 2007; Chen et al., 2015; Avdalovic et al., 2016; Zha
et al., 2017). To our knowledge, combined phytoremediation

and bioaugmentation in WDC bioremediation has not been
studied to date, and the relative contribution of changes in
microbial communities to WDC bioremediation efficiency has
not received attention. The objectives of this research were
(1) to evaluate the efficiency of combined bioaugmentation
and phytoremediation in organic pollutant degradation using
a fungal and bacterial consortium as microbial inoculant and
Robinia pseudoacacia (black locust), (2) to determine changes
in microbial communities during the WDC bioremediation,
and (3) to estimate the relative contributions of treatments and
microbial communities on WDC bioremediation efficiency.

MATERIALS AND METHODS

Soil Collection and Pretreatment
Water-based WDCs, produced in drilling gas wells, were
collected from a WDC centralized treatment point in Deyang,
China (E, 31◦16′; N, 104◦11′). Natural soil (NS) was collected
from an agricultural field in Chengdu, China (E, 31◦6′; N,
102◦59′). The WDCs were loose and of dark gray color. Before
the experiment, NS and WDC were dried and passed through a
2-mm sieve. The physicochemical properties of NS and WDC are
in Supplementary Table S1.

Experimental Setup
The fungal consortium consisted of Pseudallescheria ellipsoidea
WNF-15 (accession number MG976626), Stachybotrys chartarum
WNF-20 (MG976627), and Scopulariopsis brevicaulis WNF-22
(MG976628). The three strains, with the ability to degrade
drilling mud additives such as sulfonated lignite and sulfonated
phenolic resin, were isolated and identified in a previous study
(unpublished). The strains were cultivated separately in PDA
liquid medium at 25◦C (Sambrock and Russel, 2001) for 5 days,
then inoculated onto a distilled solid medium (80% wheat bran,
20% rice bran, pH 7.0) at the ratio of 3% (v/w), and incubated
at 25◦C in the dark for 5–7 days. After a large amount of spores
formed, equal quantities of the strains were mixed as the fungal
inoculum with 3.6× 107 CFU g−1.

The bacterial consortium consisted of Sinobaca sp. SCAU3
(accession number KP241934), Belliella pelovolcani JH3
(KX230135), Halomonas sp. JH4 (KX230136), and Bacillus
halodurans JU5 (KX230139). The four strains are capable of
degrading diesel and decreasing COD in waste drilling mud
(Leng, 2013). The strains were cultivated in LB broth at 28◦C
(Sambrock and Russel, 2001) for 36 h. Cells were collected by
centrifugation and resuspended in sterile water to gain an optical
density of 1.0 at 600 nm, mixed in equal volumes, and used as the
bacterial inoculum with 4.8× 107 CFU ml−1.

Experiments were carried out in 4-L plastic [polyvinyl chloride
(PVC)] pots (top diameter 40.6 cm, bottom diameter 14.4 cm,
height 44.5 cm) with 4.5 kg WDC per pot. The experimental
treatments were (1) WDC: WDC without inoculum or plant;
(2) WDC + M: WDC inoculated with bacterial consortium in
suspension (0.5% v/w) and solid fungal consortium (0.5% w/w);
(3) WDC + P: WDC planted with one 1-year-old black locust
(R. pseudoacacia) sapling per pot; and (4) WDC+M+ P: WDC
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inoculated with the bacterial consortium in suspension (0.5%
v/w) and solid fungal consortium (0.5% w/w) and planted with
black locust. Each treatment was carried out in triplicate.

The pots were incubated in a greenhouse under simulated
natural illumination conditions, the temperature was 21◦C at
day and 15◦C at night, with a 16-h photoperiod. Soil moisture
of each treatment was kept at 60% maximum water holding
capacity by adding distilled water. The experiment was started in
December 1, 2017.

Soil samples were collected at 0, 15, 30, 60, 90, and 120 days.
Two hundred grams of the fresh sample was air-dried and
sieved (0.25 mm) for determining physicochemical properties,
50 g was stored at 4◦C for enzyme assays within 1 week,
and 10 g was stored at −70◦C for the subsequent microbial
community analyses.

Total Nitrogen Analysis
Total nitrogen (TN) was analyzed by the semi-micro Kjeldahl
method (Bremner, 1996), where 1 g of soil sample was digested
with 1.1 g of K2SO4:CuSO4:Se (100:10:1 mass ratio) and 5 ml
of H2SO4. The digestion solution was distilled in a semi-micro
Kjeldahl apparatus and titrated with 0.005 M H2SO4.

Enzyme Activity Assays
Soil (4.0 g soil wet weight) was mixed with 40 ml of double-
distilled water. The solution was incubated for 60 min in a rotary
shaker at 120 rpm and centrifuged at 11,000 × g for 10 min at
4◦C. The supernatant was collected for the enzyme assays.

Laccase (Lac) activity was determined by monitoring the
oxidation of 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic
acid) (ABTS) at 25◦C (Wolfenden and Wilson, 1982) in a 2-ml
reaction mixture containing 0.1 ml soil extract, B&R buffer (0.1
M acetic acid, 0.1 M boric acid, 0.1 M phosphoric acid, pH 5.0),
and 1 mM ABTS. The absorbance of the solution was determined
with a spectrophotometer (model 752, CANY, China), and
Lac activity was calculated from the increase in absorbance
at 420 nm (ε420 = 36,000 M−1cm−1). Manganese peroxidase
(MnP) activity was determined by monitoring the formation of
Mn3+-malonate complex in 50 mM sodium malonate buffer
(pH 4.5) with 0.5 mM MnSO4 at 270 nm (ε = 11,590 M−1 cm−1)
(Wariishi et al., 1992). The reaction was initiated by adding
H2O2 to the final concentration of 0.1 mM. Lignin peroxidase
(LiP) activity was determined by monitoring the oxidation
of veratryl alcohol to veratraldehyde at 310 nm (ε = 9,300
M−1 cm−1) in a 1-ml reaction mixture containing 2 mM veratryl
alcohol, 50 mM tartaric acid (pH 3), and 0.4 mM H2O2 (Tanaka
et al., 2009). Enzyme absorption spectra were determined at
room temperature in a cuvette with a 1-cm light path using
spectrophotometer (model 752, CANY, China). One unit of
enzymatic activity (U) was defined as the amount of enzyme that
transformed 1 µmol of substrate per minute.

Pollutant Content and Ecotoxicity
Analysis
Total petroleum hydrocarbon (TPH) and total organic carbon
(TOC) content removal rates and decreases in COD were

employed as indicators of bioremediation. The residual TPH
was measured using a gravimetric method (Mishra et al., 2001).
COD was measured using the rapid digestion spectrophotometry
method in a 5B-3C (V8) dry thermostat reactor (Ministry
of Ecology and Environment the People’s Republic of China,
2008). TOC was measured using the Walkley–Black method
(Sparks et al., 1996).

Germination tests were done using the method of Saterbak
et al. (2009). Red clover (Trifolium pratense) seeds were sterilized
in 0.5% sodium hypochlorite solution for 20 min, then rinsed
with sterile distilled water three times, and dried with sterilized
filter paper. Fifty seeds were placed onto a 20-g wet weight sample
of WDC in a plastic plate. Germination percentage was calculated
after incubation at 25◦C in the dark for 5 days. COD analysis and
germination test included natural soil samples for comparison.

DNA Extraction and Sequencing
Samples for microbial community analysis were collected at days
0, 60, and 120. At day 0, planted samples were mixed with the
respective WDC and WDC + M samples. DNA was extracted
from 0.5 g using Fast DNA SPIN Kit (MP Biomedicals, Illkirch,
France) following the manufacturer’s instructions. V3–V4 region
of the bacterial 16S rRNA gene was amplified using the primers
338F and 806R (Lane, 1991; McBain et al., 2003), and the
fungal 18S rRNA gene fragment was amplified using the primers
817F and 1196R (Borneman and Hartin, 2000) as described by
Chen et al. (2016). The resulting amplicons were sequenced
using Illumina MiSeq reagent kits V3 (600 cycles, MS-102-3003)
(PE300 for bacteria, PE250 for fungi) and platform at Personal
Biotechnology Co., Ltd., China. Sequences were analyzed using
MOTHUR (version 1.34.0) (Schloss et al., 2009). Sequence
reads were assigned to each sample according to sample-specific
barcodes. Sequences were regarded as low quality and removed if
they did not meet the following criteria: exact match to barcode
and primers, sequences longer than 200 nucleotides without
ambiguous base pairs, and high average quality score (Q ≥ 20).

After quality filtering, the 16S rRNA and 18S rRNA gene
amplicons were clustered into operational taxonomic units
(OTUs) at 97% nucleotide similarity. Taxonomic characterization
of the representative sequences of the OTUs was done
using the SILVA database (SILVA Release 123). The Simpson
and Shannon diversity indexes were calculated using the
Mothur program (version 1.34.0) (Schloss et al., 2009). The
heatmap was produced using HemI (Heatmap Illustrator,
v. 1.0). The sequences have been submitted to the NCBI
Sequence Read Archive under accession numbers PRJNA601856
and PRJNA609003.

Statistical Analysis
Differences in chemical characteristics and enzyme activities
between treatments over time were tested using three-way
mixed ANOVA with plant and inoculation as the between-
subjects factors and time as the within-subject factor, followed
by computing simple interactions, simple main effects, and
multiple pairwise comparisons in R v.3.6.3 with package rstatix
(Kassambara, 2020b; R Core Team, 2020). Differences in COD
and seed germination rate between the natural soil and the
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treatments over time were tested using two-way mixed ANOVA
with group as the between-subjects factor and time as the
within-subject factor, followed by computing simple main effects
in R package rstatix. The results were visualized using R
package ggpubr (Kassambara, 2020a). Spearman correlations
between the dominant taxa and TOC removal rate were
tested using one-way ANOVA and Fisher’s least significant
difference (P < 0.05) in IBM SPSS Statistics for Windows
20.0 (IBM Corp., Armonk, NY, United States). Differences
in microbial community composition based on Bray–Curtis
dissimilarities were tested using permutational multivariate
analysis of variance (PERMANOVA) and visualized using
non-metric multidimensional scaling (NMDS) in PRIMER v7
(Anderson et al., 2008; Clarke and Gorley, 2015). Taxa that
characterized the differences between treatments were identified
using the linear discriminant analysis (LDA) effect size (LEfSe)
method (Segata et al., 2011). The relationships between TN,

bacterial and fungal communities, enzyme activities, and organic
fraction removal were analyzed using partial least squares path
modeling (PLS-PM) according to Tenenhaus et al. (2005) and
Ai et al. (2018). The estimates of path coefficients and the
coefficients of determination (R2) in the path model were
validated using the package plspm (1,000 bootstraps) in R v.3.3.3
(R Core Team, 2017).

RESULTS

Pollutant Removal, Germination Rate,
and Nitrogen Content
The TPH content, TOC content, and the COD decreased
with time in all treatments (Figure 1, Supplementary Figures
S1, S2, and Supplementary Table S2). At day 120, TPH
content was lower in the inoculated treatments WDC + M

FIGURE 1 | Total petroleum hydrocarbon (TPH) contents of soil extracts from waste drill cuttings (WDCs). WDCs were incubated in a greenhouse for 120 days with
and without black locust (Robinia pseudoacacia) plant and with or without bacterial and fungal consortium inoculant. Statistically significant differences are indicated
with asterisks: *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. The boxes show mean, lower and upper hinges indicate the first and third quartiles, and the
whiskers indicate the ranges 1.5 times the interquartile range.
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and WDC + M + P than in the not-inoculated treatments
WDC and WDC + P (P < 0.05) (Figure 1), suggesting that
inoculation with fungal and bacterial consortium enhanced
the removal of TPH. Similarly, at day 120, TOC contents
and COD were lower in the inoculated treatments than in
the not-inoculated treatments (P < 0.05) (Supplementary
Figures S1, S2). In addition, at day 120, TOC content was
slightly lower in the planted and inoculated treatment than
in its not planted counterpart (P < 0.05) (Supplementary
Figure S1), and COD was slightly lower in the planted
treatments than in their not planted counterparts (P < 0.05)
(Supplementary Figure S2). In WDC + M + P, COD was
on the same level as in the natural soil (Supplementary
Figure S3). Both the TOC and COD decreases suggested
that combining black locust with fungal and bacterial
consortium inoculation enhanced the degradation of
pollutant matter in WDC.

The germination rate of red clover seeds increased from
the initial 0% in all treatments (Figure 2 and Supplementary
Table S2), and the total nitrogen (TN) content increased with
time in the planted treatments (Figure 3). At day 120, the
germination rates in the inoculated treatments were on the
same level as in the natural soil and in the not-inoculated
treatments approximately half of that in natural soil (P ≤ 0.05)
(Supplementary Figure S4), suggesting that the ecotoxicity of
WDC had markedly decreased due to the inoculation. At day 120,
TN content was highest in the inoculated and planted treatment
(P ≤ 0.05) (Figure 3).

Enzyme Activity
Lac activity increased from the initial 0 in all treatments
(Figure 4). At day 120, the Lac activity was highest in the
inoculated treatments and lowest in WDC (P ≤ 0.05). MnP
activity remained nearly unchanged in the not-inoculated

FIGURE 2 | The germination rate of red clover seeds in waste drill cuttings (WDCs). WDCs were incubated in a greenhouse for 120 days with and without black
locust (Robinia pseudoacacia) plant and with or without bacterial and fungal consortium inoculant. Statistically significant differences are indicated with asterisks:
*P < 0.05; **P < 0.01; ****P < 0.0001. The boxes show mean, lower and upper hinges indicate the first and third quartiles, and the whiskers indicate the ranges 1.5
times the interquartile range.
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FIGURE 3 | Total nitrogen (TN) content in waste drill cuttings (WDCs). WDCs were incubated in a greenhouse for 120 days with and without black locust (Robinia
pseudoacacia) plant and with or without bacterial and fungal consortium inoculant. Statistically significant differences are indicated with asterisks: **P < 0.01;
***P < 0.001; ****P < 0.0001. The boxes show mean, lower and upper hinges indicate the first and third quartiles, and the whiskers indicate the ranges 1.5 times the
interquartile range.

treatments during the experiment (Supplementary Figure S5).
In the inoculated treatments, MnP activity increased
from day 15 to day 60, followed by a sharp decrease.
Generally, MnP activity was highest in the WDC + M + P
treatment. Changes in LiP activity showed no clear pattern
(Supplementary Figure S6).

Microbial Community
The 16S rRNA gene amplicon sequencing resulted in 1,663,757
reads that were classified into 3,062 OTUs. Chao1 richness
was lower in the beginning than after 60 and 120 days
(P ≤ 0.05) (Supplementary Table S3). Shannon diversity
and Pielou’s evenness were lowest in the beginning, and
in all treatments highest and approximately on the same
level at day 120 (P ≤ 0.05) (Supplementary Table S3). At
the phylum level, the relative abundances of OTUs assigned
into Proteobacteria, Actinobacteria, Chloroflexi, Bacteroidetes,

and Gemmatimonadetes were high in all treatments, and
communities at day 120 were distinct from those at days 0 and 60
(Figure 5A and Supplementary Figure S7). Based on the most
abundant taxa, the communities clustered mostly based on time
and less based on treatments (Figure 6A).

We identified the taxa characterizing the bacterial
communities in different treatments using the LEfSe method.
Most of the taxa with a large effect size (LDA score > 4.0) were
associated with the initial stages (Supplementary Figure S7
and Supplementary Table S4). The relative abundance of
Promicromonospora was high in WDC and WDC + M at
day 0. The other taxa characterizing the initial stage WDC
included Pseudomonas, Stenotrophomonas, Cupriavidus,
and Rhodobacteraceae. Inoculant was seen as an increase
in the relative abundance of Bacillus and changes in the
relative abundances of other characterizing taxa, for example,
Brevundimonas in the WDC + M treatment. The relative
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FIGURE 4 | Activity of laccase (Lac) in waste drill cuttings (WDCs). WDCs were incubated in a greenhouse for 120 days with and without black locust (Robinia
pseudoacacia) plant and with or without bacterial and fungal consortium inoculant. Statistically significant differences are indicated with asterisks: *P < 0.05;
**P < 0.01; ***P < 0.001; ****P < 0.0001. The boxes show mean, lower and upper hinges indicate the first and third quartiles, and the whiskers indicate the ranges
1.5 times the interquartile range.

abundance of Alcanivorax was high in all treatments at days
60 and 120 and that of Halomonas relatively stable across all
treatments over the whole experiment.

The 18S rRNA gene amplicon resulted in 1,820,720 reads
that were classified into 458 OTUs. At day 120, Chao1 richness
was higher in the not-inoculated treatments than in the
WDC + M + P treatment, and Shannon diversity and Pielou’s
evenness were highest (P ≤ 0.05) (Supplementary Table S3),
indicating that over time, the inoculated fungal and bacterial
consortium had affected the succession of the fungal community.
At phylum level, the relative abundances of OTUs assigned to
Ascomycota were high in all treatments, the relative abundances
of Basidiomycota OTUs increased with time (Supplementary
Figure S8), and communities at day 120 were distinct from those
at days 0 and 60 (Figure 5B and Supplementary Figure S8).

Based on the most abundant taxa, the community in the initial
WDC was distinct from the rest, and communities at day 120
clustered together (Figure 6B).

Fungal taxa characteristic for different treatment–time
combinations were identified in WDC and WDC + M at each
time point and in WDC + P at day 120 (Supplementary
Figure S8 and Supplementary Table S5). Unidentified
Nectriaceae was most abundant in WDC at day 0 (Figure 6B).
The relative abundances of Acremonium and unidentified
Nectriaceae in WDC and those of Phaeoacremonium
in WDC + M were high all through the experiment
(Supplementary Table S5). Compared to WDC, inoculation
approximately doubled the relative abundance of Stachybotrys
and changed the relative abundances of other taxa, for example,
Microascus in the WDC+M treatment at day 0.
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FIGURE 5 | Differences in bacterial (A) and fungal (B) community composition over time in waste drill cuttings (WDCs). WDCs were incubated in a greenhouse for
120 days with and without black locust (Robinia pseudoacacia) plant and with or without bacterial and fungal consortium inoculant. The differences are based on
Bray–Curtis dissimilarities and tested using permutational multivariate analysis of variance (PERMANOVA). **P < 0.01.

FIGURE 6 | Dominant bacterial (A) and fungal (B) taxa in waste drill cuttings (WDCs). WDCs were incubated in a greenhouse for 120 days with and without black
locust (Robinia pseudoacacia) plant and with or without bacterial and fungal consortium inoculant. WDC, no plant and no inoculant; WDC + M, no plant and
inoculant; WDC + P, plant and no inoculant; WDC + M + P, plant and inoculant.

Spearman correlations between abundant taxa and TOC
removal rate were calculated to estimate the roles of the
taxa in the bioremediation process. Bacillus and Stachybotrys
that were in the inoculant correlated with TOC removal
rate negatively and positively, respectively (P ≤ 0.05)
(Table 1). In addition, four bacterial and two fungal taxa
correlated positively and one fungus taxon negatively with
TOC removal rate.

Partial Least Squares Path Modeling
Analysis
The relationships among treatment factors and measured
variables were studied using PLS-PM. TPH, TOC, and COD,

the decreases of which were employed as indicators of
bioremediation, were combined into organic matter content
in the model (Figure 7 and Supplementary Table S6). The
combined three enzyme activities had a significant direct effect
on the organic matter content. The enzyme activities were
directly affected by bacterial community, microbial inoculant,
fungal community, and black locust. TN had an indirect effect
on enzyme activities through its direct effects on the bacterial
and fungal communities. The microbial inoculant had negative
direct effects on the bacterial and fungal communities. The black
locust had a negative direct effect on the bacterial community
but a positive direct effect on the fungal community. Both
the microbial inoculant and black locust had a positive direct
effect on the TN.
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TABLE 1 | Spearman correlation of total organic carbon removal rate and
dominant taxa in remediating waste drill cuttings (WDCs).

Taxa Spearman’s

Bacillus −0.94**

Brevundimonas 0.82*

Devosia 0.87**

Pseudochrobactrum 0.74*

Simiduia 0.86**

Phaeoacremonium 0.80*

Scedosporium 0.92**

Stachybotrys 0.92**

Cordycipitaceae-unidentified −0.73*

*P < 0.05; **P < 0.01. Only statistically significant correlations are shown.

DISCUSSION

We studied the efficiency of bioaugmentation and
phytoremediation to remediate WDCs in an experiment where
WDCs were treated with a fungal and bacterial consortium as
microbial inoculant and R. pseudoacacia (black locust), either
individually or in a combination. TPH and TOC contents in the

WDC and COD of WDC extract were measured as indicators of
the bioremediation process.

The synergistic combinations of bioaugmentation and
phytoremediation may promote contaminant removal
(Escalante-Espinosa et al., 2005; Huang et al., 2005; Lin
et al., 2008; Dashti et al., 2009; Gurska et al., 2009). In our
study, the TPH and TOC contents and COD decreased slightly
over time in the control treatment, suggesting that indigenous
microorganisms in WDCs had little pollutant degradation
capability, yet some of the decreases may have been due to
sorption of oil and chemicals to the PVC pots employed in the
experiment. The TPH content and COD decreased most in the
inoculated treatments, and TOC removal rate was lowest in
the control, suggesting that inoculation with the bacterial and
fungal consortium and the black locust growth had enhanced
the degradation of pollutants in WDC. Inoculant increased
the contaminant removal more than the black locust, yet the
inoculant and black locust combination was the most efficient
remediation treatment possibly due to the root exudates in
rhizosphere, which are known to stimulate contaminant-
degrading microorganisms and to enhance biodegradation
ability (Grayston et al., 1997; Walker et al., 2003; Kechavarzi
et al., 2007; Neumann, 2007). The plant root system is not

FIGURE 7 | Partial least squares path model of remediating waste drill cuttings. A box represents an observed variable or a latent variable (i.e., a construct). The
loadings for enzyme activities and organic removal rates that create the latent variables are shown in the dashed rectangles. Path coefficients are computed after
1,000 bootstraps and embodied in the width of the arrow, with blue and red indicating positive and negative effects, respectively. Dashed arrow shows a coefficient
that did not differ significantly from 0 (P > 0.05). TN, total nitrogen content; Lac, laccase; MnP, manganese peroxidase; LiP, lignin peroxidase; TOC, total organic
carbon content; COD, chemical oxygen demand; TPH, total petroleum hydrocarbon content.
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expected to spread in the soil as quickly as the microbial
inoculum, which may explain why phytoremediation alone
would need a longer treatment time than bioaugmentation,
especially when the plant growth is affected by pollutants
(Zhang et al., 2020).

In heavily hydrocarbon-contaminated environments, for
example, in petroleum-contaminated soil, the C/N ratio
imbalance due to high carbon and low nitrogen contents
can affect microbial activity and bioremediation efficiency.
Hence, the amount of N supplied is of vital importance for
bioremediation (Rojas-Avelizapa et al., 2007; Alavi et al., 2014;
Taiwo et al., 2015). In agreement, the N content and TOC
removal rate correlated positively in our study, indicating that
the lower C/N ratio had increased the efficiency of remediation.
Direct fertilization could rapidly increase the amount of N in
soil, and in heavily contaminated environments, the need for
swift pollutant removal is paramount; biostimulation has been
used successfully, for example, in remediating Exxon Valdez
oil spill (Lindstrom et al., 1991; Venosa et al., 2010). However,
it may bring about additional environmental problems for
eutrophication of water bodies. In contrast, taking advantage of
biological nitrogen fixation (BNF) is efficient and inexpensive
and a sustainable way to increase the amount of N in soil. In our
study, the black locust, a legume tree that forms symbiotically
nitrogen-fixing nodules with rhizobia bacteria (Gilman and
Watson, 1994; Bolat et al., 2015), increased soil N content
in the black locust alone and black locust in combination
with the inoculant treatments. The abundance of free-living
nitrogen-fixing microorganisms was lower in black locust alone
than in black locust in combination with the inoculant. In
bioremediation, N content increase can be due to the activity
of free-living nitrogen-fixing bacteria (Al-Mailem et al., 2019).
In our study, possibly the inoculation had stimulated BNF
by free-living microorganisms. The relative abundances of
Halomonas and Bacillus that were in the inoculum, and those
of Pseudomonas and Lysobacter, all of which include free-living
nitrogen fixers (Seldin et al., 1983; Llamas et al., 2006; Yan
et al., 2008), were higher with than without inoculum or plant,
suggesting that these taxa may have influenced N content during
the remediation process.

The lignin-degrading enzymes, including Lac, MnP, and
LiP, play an important role in the bioremediation of pesticides,
polycyclic aromatic hydrocarbons, and other xenobiotics
(Karigar and Rao, 2011). Lac is abundant in soil and functions
outside of the cells to facilitate bacterial and fungal degradation
of pesticides, Polycyclic aromatic hydrocarbons (PAHs), and
lignin (Yanto et al., 2017; Dandare et al., 2019; Muhammad et al.,
2019). In our study, Lac activity correlated positively with the
TOC removal rate and was highest in the inoculated treatments,
suggesting that the activity was either brought on or stimulated
by the inoculated bacterial and fungal consortium.

Both the bacterial and fungal richness and bacterial diversity
and evenness indices increased in all the treatments over
time, whereas the fungal diversity and evenness increased
only in the not-inoculated treatments. As the contaminant
removal was highest in the inoculated treatments, the less
even fungal communities in the inoculated treatments might

have been due to increased growth of contaminant-degrading
fungi or contaminant-sensitive fungi. The dominant taxa that
characterized the differences between bioremediation treatments
and control included bacterial genera Pseudochrobactrum,
Brevundimonas, and Bacillus and fungal genera Scedosporium,
Stachybotrys, Microascus, and Acremonium. Pseudochrobactrum
can degrade phenols (Mao et al., 2015), halogenated aromatics
(Liu et al., 2016), and lignin (Shannon et al., 2017), and
Brevundimonas has the ability to degrade phenols (Zhang
et al., 2018). The dominant fungal genera have the ability
to degrade lignin, cellulose, and PAHs (Santos et al., 2006;
López-González et al., 2015). In our study, Brevundimonas,
Phaeoacremonium, Scedosporium, and Stachybotrys, members
of the inoculated consortium, correlated positively with TOC
removal rate, suggesting that these four genera played major
roles in WDC remediation. Out of the other detected inoculant
consortium members, Bacillus peaked at day 0 and correlated
negatively with TOC removal, suggesting that the adaptive
ability of the inoculated Bacillus strain was poor in WDC.
However, since relative abundances are not informative of
absolute abundances (McLaren et al., 2019), determining
the contribution of the inoculated strains would require
quantitative analyses, for example, qPCR. Due to the differences
in degradation efficiency between strains, determining the
absolute contribution of the strains seems unattainable in an
in vivo experiment.

The results above suggested that the inoculated consortium
and the planting of black locust increased N content, enzyme
activities, and macromolecular organic pollutant (SPF and
SL) removal rate and affected microbial community. In a
contaminated environment, the major factors in biological
degradation of organic pollutants are the intracellular and
extracellular enzymes produced by microbes (Tünde and
Tien, 2000; Karigar and Rao, 2011). Phytoremediation,
biostimulation, and bioaugmentation commonly increased
the efficiency of bioremediation by increasing the activities
of degradation enzymes (Mauricio-Gutiérrez et al., 2014;
Chandanshive et al., 2018; Song et al., 2019). In agreement,
in our study, the PLS-PM analysis showed that among the
complex interrelationships between the factors, enzyme
activities, especially that of Lac, played a key role in the
bioremediation process. The enzyme activities were mostly
governed by inoculated consortium and bacterial community,
and black locust affected the bioremediation mainly through
its effect on N content that further affected bacterial and
fungal communities.

CONCLUSION

Compared with natural attenuation in the control treatment,
bioaugmentation and phytoremediation individually and
especially in combination enhanced contaminant removal from
WDCs. The microbial inoculant affected the soil fungal and
bacterial communities directly and planting of black locust
indirectly via soil N content, yet most of their effect on the
bioremediation process was indirect through enzyme activities.
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Supplementary Figure 1 | Total organic carbon (TOC) contents of soil extracts
from waste drill cuttings (WDCs). WDCs were incubated in a greenhouse for
120 days with and without black locust (Robinia pseudoacacia) plant and with or
without bacterial and fungal consortium inoculant. Statistically significant
differences are indicated with asterisks: ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001;
∗∗∗∗P < 0.0001. The boxes show mean, lower and upper hinges indicate the first
and third quartiles, and the whiskers indicate the ranges 1.5 times the
interquartile range.

Supplementary Figure 2 | Chemical oxygen demand (COD) of soil extracts from
waste drill cuttings (WDCs). WDCs were incubated in a greenhouse for 120 days
with and without black locust (Robinia pseudoacacia) plant and with or without
bacterial and fungal consortium inoculant. Statistically significant differences are
indicated with asterisks: ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001; ∗∗∗∗P < 0.0001.
The boxes show mean, lower and upper hinges indicate the first and third
quartiles, and the whiskers indicate the ranges 1.5 times the interquartile range.

Supplementary Figure 3 | Chemical oxygen demand (COD) of soil extracts from
waste drill cuttings (WDCs) versus that in natural soil. WDCs were incubated in a
greenhouse for 120 days with and without black locust (Robinia pseudoacacia)
plant and with or without bacterial and fungal consortium inoculant. WDC, no
plant and no inoculant; WDC + M, no plant and inoculant; WDC + P, plant and no
inoculant; WDC + P + M, plant and inoculant. Statistically significant differences
are indicated with asterisks: ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001;
∗∗∗∗P < 0.0001. The boxes show mean, lower and upper hinges indicate the first
and third quartiles, and the whiskers indicate the ranges 1.5 times the
interquartile range.

Supplementary Figure 4 | The germination rate of red clover seeds in waste
drill cuttings (WDCs) versus that in natural soil. WDCs were incubated in a
greenhouse for 120 days with and without black locust (Robinia pseudoacacia)
plant and with or without bacterial and fungal consortium inoculant. WDC, no
plant and no inoculant; WDC + M, no plant and inoculant; WDC + P, plant and no

inoculant; WDC + P + M, plant and inoculant. Statistically significant differences
are indicated with asterisks: ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001;
∗∗∗∗P < 0.0001. The boxes show mean, lower and upper hinges indicate the first
and third quartiles, and the whiskers indicate the ranges 1.5 times the
interquartile range.

Supplementary Figure 5 | Activity of manganese peroxidase (MnP) in waste
drill cuttings (WDCs). WDCs were incubated in a greenhouse for 120 days with
and without black locust (Robinia pseudoacacia) plant and with or without
bacterial and fungal consortium inoculant. Statistically significant differences are
indicated with asterisks: ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001; ∗∗∗∗P < 0.0001.
The boxes show mean, lower and upper hinges indicate the first and third
quartiles, and the whiskers indicate the ranges 1.5 times the interquartile range.

Supplementary Figure 6 | Activity of lignin peroxidase (LiP) in waste drill
cuttings (WDCs). WDCs were incubated in a greenhouse for 120 days with and
without black locust (Robinia pseudoacacia) plant and with or without bacterial
and fungal consortium inoculant. Statistically significant differences are indicated
with asterisks: ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001; ∗∗∗∗P < 0.0001. The boxes
show mean, lower and upper hinges indicate the first and third quartiles, and the
whiskers indicate the ranges 1.5 times the interquartile range.

Supplementary Figure 7 | Composition of bacterial community in waste drill
cuttings (WDCs). WDCs were incubated in a greenhouse for 120 days with and
without black locust (Robinia pseudoacacia) plant and with or without bacterial
and fungal consortium inoculant. The relative abundances at phylum level on the
left. Taxa characterizing the differences between treatments on the right, identified
using the linear discriminant analysis (LDA) effect size (LEfSe) method. WDC, no
plant and no inoculant; WDC + M, no plant and inoculant; WDC + P, plant and no
inoculant; WDC + M + P, plant and inoculant.

Supplementary Figure 8 | Composition of fungal community in waste drill
cuttings (WDCs). WDCs were incubated in a greenhouse for 120 days with and
without black locust (Robinia pseudoacacia) plant and with or without bacterial
and fungal consortium inoculant. The relative abundances at phylum level on the
left. Taxa characterizing the differences between treatments on the right, identified
using the linear discriminant analysis (LDA) effect size (LEfSe) method. WDC, no
plant and no inoculant; WDC + M, no plant and inoculant; WDC + P, plant and no
inoculant; WDC + M + P, plant and inoculant.

Supplementary Table 1 | Physicochemical properties of natural soil (NS) and
waste drill cuttings prior the experiment [waste drill cutting (WDC)].

Supplementary Table 2 | Statistical significances of the differences between
inoculation and plant treatments over time and their interactions in three-way
mixed ANOVA. ∗ indicates P < 0.05.

Supplementary Table 3 | Richness and diversity of the bacterial and fungal
communities in remediating waste drill cuttings (WDCs). WDCs were incubated in
a greenhouse for 120 days with and without black locust (Robinia pseudoacacia)
plant and with or without bacterial and fungal consortium inoculant.

Supplementary Table 4 | Relative abundances of dominant bacterial taxa in
waste drill cuttings (WDCs). WDCs were incubated in a greenhouse for 120 days
with and without black locust (Robinia pseudoacacia) plant and with or without
bacterial and fungal consortium inoculant.

Supplementary Table 5 | Relative abundance of dominant fungal taxa in waste
drill cuttings (WDCs). WDCs were incubated in a greenhouse for 120 days with
and without black locust (Robinia pseudoacacia) plant and with or without
bacterial and fungal consortium inoculant.

Supplementary Table 6 | The direct and indirect relationships between
variables in the partial least squares path model (PLS-PM) of remediating waste
drill cuttings. The path coefficients are calculated by PLS-PM after
1,000 bootstraps.
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