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Abstract

Transcription factors encoded by the Forkhead (Fox) gene family have diverse, sometimes

conserved, regulatory roles in eumetazoan development, immunity, and physiology.

Although this gene family includes members that predate the origin of the animal kingdom,

the majority of metazoan Fox genes evolved after the divergence of animals and choanofla-

gellates. Here, we characterize the composition, structure, and expression of Fox genes in

the marine demosponge Amphimedon queenslandica to better understand the origin and

evolution of this family. The Fox gene repertoire in A. queenslandica appears to be similar to

the ancestral metazoan Fox gene family. All 17 A. queenslandica Fox genes are differentially

expressed during development and in adult cell types. Remarkably, eight of these, all of

which appear to be metazoan-specific, are induced within just 1 h of larval settlement and

commencement of metamorphosis. Gene co-expression analyses suggest that these eight

Fox genes regulate developmental and physiological processes similar to their roles in other

animals. These findings are consistent with Fox genes playing deeply ancestral roles in animal

development and physiology, including in response to changes in the external environment.
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1 | INTRODUCTION

The Forkhead box (Fox) family of transcription factors appears to have

evolved early in eukaryote evolution before the divergence of the two

major unikont lineages, the amoebozoans and the opisthokonts (fungi,

unicellular holozoans and animals) (Sebé-Pedr�os et al., 2011). All Fox

genes encode a Forkhead domain, which is a sequence-specific domain

of approximately 100 amino acids that forms a winged helix-turn-helix

DNA-binding structure (Carlsson & Mahlapuu, 2002; Lam et al., 2013;

Weigel & Jäckle, 1990). As members of the winged helix superfamily of

transcriptional regulators that are common in both bacteria and eukary-

otes (Kaestner et al., 2000), Fox genes likely evolved from an ancestral

gene that encoded a winged helix-containing domain.

The number of Fox genes in the genomes of eumetazoans (cnidar-

ians, insects, vertebrates, and other bilaterians) ranges from just under

20 to over 40. The eumetazoan Fox genes have been classified into

25–26 subfamilies that form two clades (Kaestner et al., 2000; Kauf-

mann & Knöchel, 1996; Larroux et al., 2008; Pascual-CarrerasThis article is part of the special issue “Marine Genomics”
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et al., 2021; Schomburg et al., 2022; Shimeld, Boyle, et al., 2010a; Shi-

meld, Degnan, & Luke, 2010b). The more ancestral clade (Clade II) is

comprised of both (1) subfamilies shared with non-metazoans (FoxJ1,

FoxJ2/3, FoxM, FoxN1/4) and (2) metazoan-specific subfamilies

(FoxN2/3, FoxO, FoxP, FoxK). In contrast, Clade I is comprised solely of

metazoan genes, some that appear to be ancestral (FoxD, FoxG, FoxL1,

and FoxL2) and others (FoxA, FoxB, FoxC, FoxE, FoxQ1, FoxQ2, and FoxF)

that appear to have evolved in eumetazoans after their divergence from

sponges some 700 million years ago (Erwin, 2020; Larroux et al., 2008;

Sebé-Pedr�os et al., 2011; Shimeld, Degnan, & Luke, 2010b).

As is the case with other metazoan transcription factor families,

the specific functions of Fox genes have been elucidated largely from

studies in Drosophila and vertebrate models (reviewed in Carlsson &

Mahlapuu, 2002; Golson & Kaestner, 2016). Nonetheless, spatial and

temporal expression in a range of eumetazoans are consistent with Fox

genes regulating a wide range of developmental – including embryonic

development, specification, and maintenance of cell state, cell prolifera-

tion, and differentiation – and metabolic processes (Carlsson &

Mahlapuu, 2002; Fritzenwanker et al., 2014; Golson & Kaestner, 2016;

Hannenhalli & Kaestner, 2009; Leclère et al., 2019; Magie et al., 2005;

Pascual-Carreras et al., 2021; Seudre et al., 2022; Tu et al., 2006). In

some cases, specific Fox gene subfamilies appear to have a widely con-

served function, such as FoxO that appears to regulate life spans from

yeast to mammals (Finlay et al., 2019; Greer et al., 2007; Jiang

et al., 2019). In mammals, a range of developmental defects, metabolic

and immune disorders, and diseases, such as cancer, are associated with

mutations in Fox genes (Bach et al., 2018; Coffer & Burgering, 2004;

Golson & Kaestner, 2016; Gong et al., 2020; Moparthi & Koch, 2020).

Here, we first assess the Fox gene complement in a new assembly

of the genome of the haplosclerid demosponge Amphimedon queenslan-

dica (Fernandez-Valverde et al., 2015; Srivastava et al., 2010;

Xiang, 2021) and in other poriferan genomes (Francis et al., 2017; Kenny

et al., 2020; Leininger et al., 2014) to determine the ancestral comple-

ment of Fox genes in sponges and in animals more generally. With the

aim of better understanding the origin of Fox gene function in the animal

kingdom, we then analyze expression profiles of Fox genes through the

A. queenslandica pelagobenthic life cycle. In this conserved biphasic life

cycle, embryogenesis leads to the formation of a ciliated swimming

planktonic larva that, when competent, settles onto the benthos after

contacting an inductive environmental signal (Degnan & Degnan, 2010).

In the case of A. queenslandica, this signal can be a cue associated with

coralline algae (Nakanishi et al., 2014; Say & Degnan, 2020). The initia-

tion of metamorphosis into a feeding juvenile happens in concert with

larval settlement. In A. queenslandica, the sessile, feeding juvenile forms

3–4 days after settlement, and grows and matures over a period of

months into a reproductive adult (Degnan et al., 2015).

2 | MATERIALS AND METHODS

2.1 | Phylogenetic analysis of Fox genes

The origin and evolution of Fox genes was explored by phylogenetic

analysis using Fox genes identified in publicly available genomes. First,

we identified Forkhead domain-containing genes in the updated

genome assembly of A. queenslandica with gene models version

Aqu3.1 (Xiang, 2021). Second, we identified Fox genes in the genomes

of three unicellular holozoans and 10 metazoans, including five other

sponge genomes (Table S1), using an iterative process that included:

(1) downloading the 46 human Fox protein-coding sequences from

UniProt (https://www.uniprot.org/uniprot/?query=Forkhead&sort=

score) to use as the local Fox database; (2) undertaking a bidirectional

Blast to compare the human Fox protein database with one candidate

query genome using the software TBtools with default settings

(e-value: 1e�5, number of hits: 500) (Chen et al., 2020) and then saving

all potential Fox sequences; and (3) screening predicted Fox proteins

using NCBI-Batch-CD to identify the positions of conserved Forkhead

domains and removing those sequences without a complete Forkhead

domain. Although some of the Forkhead domain sequences retrieved

from Monosiga brevicollis, Salpingoeca rosetta, Nematostella vectensis,

and Branchiostoma floridae have been reported previously (Nakagawa

et al., 2013), for consistency we used the above outlined search strat-

egy to identify Fox coding sequences in all of the target species.

Amino acid sequences corresponding to the Forkhead

domain were aligned using MAFFT with default settings (Katoh &

Standley, 2013), and the alignment was manually improved using Ali-

View (Larsson, 2014). Based on this alignment (Supplementary Infor-

mation), the best-fit evolutionary model was identified using IQ-TREE2

with the ModelFinder function (Minh et al., 2020). A maximum likeli-

hood phylogenetic tree was generated in IQ-TREE2, with ultrafast

bootstrap, based on 1000 bootstrap replicates (-B 1000, --bnni, -T

AUTO). The final tree was presented with mid-point rooting and anno-

tated for visualization using the online tool iTOL (https://itol.embl.de/).

2.2 | Analysis of Fox gene expression in
A. queenslandica

To gain an overview of Fox gene expression in A. queenslandica, we

analyzed two existing transcriptome datasets. The first dataset is com-

prised of 82 CEL-Seq2 transcriptomes encompassing 17 biologically

replicated developmental stages spanning the life cycle of the sponge

(Anavy et al., 2014; Gaiti et al., 2015; Levin et al., 2016) (data available

from NCBI under accession number PRJNA258388). The second data-

set is comprised of 31 CEL-Seq2 transcriptomes generated from three

A. queenslandica adult cell types (Sogabe et al., 2019) (data available

from NCBI under accession number PRJNA412708). For each of the

analyses, collapsed raw expression counts were transformed into vari-

ance stabilizing-transformed (VST) counts using the Bioconductor R

package DESeq2 (Love et al., 2014), and expression heatmaps were

generated using the R package pheatmap v1.0.12 (Kolde, 2012).

2.3 | Characterization of genes that are co-
expressed with Fox genes during metamorphosis

Co-expression networks based on Fox gene expression during

A. queenslandica development were constructed by conducting a
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weighted correlation network analysis (WGCNA version 1.61)

(Langfelder & Horvath, 2008) on the VST-transformed developmental

dataset using R (version 3.4.3). The “dynamic topological overlap

matrix” method was used to identify modules with a minimum size of

30 genes, and a merging distance threshold of .1 was used to ensure

that all co-expression modules were retained. Modules containing one

or more Fox genes were further analyzed using Cytoscape (version

3.6.0) to identify genes with a direct network connection to a Fox

gene. Co-expression networks were visualized using Cytoscape

(Shannon et al., 2003) and Gephi (version 0.9.2) (Mathieu et al., 2009).

Putative functions of genes co-expressed with one or more Fox

genes were explored by Gene Ontology (GO) annotation and enrich-

ment analysis. The enrichment analysis was performed using the Bio-

conductor R package clusterProfiler based on a custom annotation for

all A. queenslandica genome genes (script: https://github.com/

hfyuanuq/thesis.scripts.git) and an FDR-adjusted P-value cut-off of

.05 (Yu et al., 2012). The online tool REVIGO was used to summarize

and remove redundant GO terms (http://revigo.irb.hr/Results.aspx?

jobid=449024484) with the SimRel measure method and redundancy

> .7 (Supek et al., 2011). Based on the script generated by REVIGO,

the final treemaps were plotted in R.

3 | RESULTS

3.1 | Fox gene evolution

Phylogenetic analysis of Forkhead domain sequences from 13 holozo-

ans (Table S1) – one filasterean, two choanoflagellates, six poriferans,

one ctenophore, one cnidarian, one annelid, and one chordate – is

consistent with previous classifications of this family into two clades

and 25–26 subfamilies (Figure 1) (Kaestner et al., 2000; Kaufmann &

Knöchel, 1996; Larroux et al., 2008; Pascual-Carreras et al., 2021;

Schomburg et al., 2022; Shimeld, Boyle, et al., 2010a; Shimeld, Deg-

nan, & Luke, 2010b). Clade I Fox genes are nested within Clade

II. Based on this phylogenetic analysis, we also find that all non-

metazoans have only Clade II genes, while all metazoans have genes

from both clades. Clade II Fox genes are also distinguished from Clade

I genes by the presence of one or more introns in the Forkhead

domain (Figure 2).

In most cases, our phylogenetic analysis supports the classifica-

tion of genes into particular Fox subfamilies and allows for the

assignment of sponge genes into these subfamilies. However, we note

that some previously identified Fox subfamilies are not well supported

in our analysis. This is similar to previous studies that have generated

phylogenetic trees with varying topologies (e.g., Kaestner et al., 2000;

Kaufmann & Knöchel, 1996; Larroux et al., 2008; Pascual-Carreras

et al., 2021; Schomburg et al., 2022; Shimeld, Boyle, et al., 2010a). For

instance, our phylogeny supports FoxN1/4 and FoxN2/3 diverging

from an ancestral holozoan FoxN gene, in contrast to previous ana-

lyses that support FoxN1/4 being an ancestral premetazoan gene and

FoxN2/3 evolving after metazoans diverged from choanoflagellates

(Larroux et al., 2008; Shimeld, Degnan, & Luke, 2010b). Likewise,

although Fox1 and Fox3 have previously been assigned as sponge-

specific genes, we find that they are nested amongst other metazoan

Fox genes in our study.

Our analysis identified 17 Forkhead domain-containing genes in

the A. queenslandica version Aqu3.1 gene models, 16 of which have

previously been reported (Larroux et al., 2008). We identified here for

the first time a FoxM gene in A. queenslandica, AmqFoxM. Orthologs of

AmqFoxM are present in four out of the five other sponges surveyed

(Figure 1a,b), and the FoxM subfamily appears to have originated

before the divergence of animals and choanoflagellates (Sebé-Pedr�os

et al., 2011). The A. queenslandica Fox genes can be broadly classified

based on their clade and time of origin: (1) Clade II genes that have a

premetazoan origin (AmqFoxJ1, AmqFoxJ2/3, AmqFoxN1/4 and Amq-

FoxM); (2) Clade II genes that originated after animals and choanofla-

gellates diverged (AmqFoxK, AmqFoxN2/3, AmqFoxO, and AmqFoxP,

although we note in our tree that metazoan Fox genes are sister to a

clade of non-metazoan holozoan Fox genes that may indeed be FoxK

orthologs; Figure 1a); (3) Clade I genes that also originated after ani-

mals and choanoflagellates diverged (AmqFoxD, AmqFoxG, AmqFoxL1,

and AmqFoxL2); and (4) Clade I genes that appear to have evolved

sometime after sponges diverged from other animals (AmqFox1,

AmqFox2, and AmqFox3).

In addition to the three potential sponge-specific genes, Amq-

Fox1, AmqFox2, and AmqFox3, A. queenslandica has two sets of Fox

paralogs, FoxO (AmqFoxOa and AmqFoxOb) and FoxN1/4 (AmqFoxN1/

4a and AmqFoxN1/4b). Analysis of the genome of another haplo-

sclerid demosponge, Xestospongia bergquistia (unpublished, data avail-

able upon request), revealed that this closely related sponge has the

same conserved Fox subfamilies as A. queenslandica (Figure 1a,b). It

also has orthologs of AmqFox1, AmqFox2, and AmqFox3, indicating

that all these genes were present in the last common ancestor of

F IGURE 1 Analysis of holozoan and sponge Fox genes. (a) A midpoint-rooted maximum-likelihood (ML) phylogenetic tree of 222 Forkhead
domains from 13 holozoan taxa (Table S1) – one filasterean, two choanoflagellates, six poriferans, one ctenophore, one cnidarian, one annelid,
and one chordate – revealing relationships of clade I and clade II Fox genes. C.owc: Capsaspora owczarzaki; M.bre: Monosiga brevicollis; S.ros:

Salpingoeca rosetta; Amq: Amphimedon queenslandica; X.ber: Xestospongia bergquistia; E.mue: Ephydatia muelleri; T.wil: Tethya wilhelma; S.cil: Sycon
ciliatum; O.car: Oscarella carmela; M.lei: Mnemiopsis leidyi; N.vec: Nematostella vectensis; C.tel: Capitella teleta; B.flo: Branchiostoma floridae. Gene
naming follows previous publications, except for X. bergquistia, which follows A. queenslandica naming, and numbers on branches indicate
bootstrap values. (b) Fox genes present in sponge genomes. Indication of relationships between the six sponge species is to the left. Black dots
indicate that a member of a given Fox subfamily is present. Multiple clustered dots indicate the number of paralogs detected in the genome. Gray
dots indicate members with weak affinity to a particular subfamily. Plus signs along the bottom row indicate subfamilies present in bilaterians,
cnidarians, and/or ctenophores.
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these two demosponges. In contrast, we detected only one copy of

FoxO and FoxN1/4 in X. bergquistia, suggesting that these two genes

duplicated after the Amphimedon and Xestospongia genera diverged

from each other.

We also analyzed the Fox gene complement of two more distantly

related demosponges, Ephydatia muelleri and Tethya wilhelma, and of

the even further distantly related Sycon ciliatum (calcareous sponge)

and Oscarella carmela (homoscleromorph) (Francis et al., 2017; Kenny

et al., 2020; Leininger et al., 2014). This revealed that metazoan Fox

subfamilies are highly conserved across the phylum Porifera, with a

few lineage-specific losses and expansions (Figure 1b). Fox genes

reported previously as unique to A. queenslandica – AmqFox1, Amq-

Fox2, and AmqFox3 (Larroux et al., 2008) – appear to have different

evolutionary histories, with AmqFox1 having an ortholog in

X. bergquistia, but clustering with a closely related ctenophore

sequence in our tree (Figure 1a). AmqFox2 has orthologs only in

demosponges, although this demosponge clade is sister to a clade

comprised of other animal Fox genes, including an O. carmela gene (O.

car m.310376) (Figure 1a). AmqFox3 has orthologs in X. bergquistia,

E. muelleri, and O. carmela (Figure 1b), but this Fox3 clade also includes

two bilaterian Fox genes (Figure 1a). We also note that two O. carmela

genes (O.car m.13854 and O.car m.310376) and one S. ciliatum gene

(S.cil scpid60954) do not group with any A. queenslandica subfamily

clade with strong support (Figure 1a). Although we have assigned

these Fox genes to sponge-specific subfamilies (Figure 1b), more

detailed phylogenetic analyses are needed to determine if these genu-

inely are sponge-specific Fox genes or members of larger metazoan

subfamilies.

Analysis of the exon–intron structure and encoded domain archi-

tecture of the revised A. queenslandica (Aqu3.1 version) Fox genes

confirms the original Aqu1 gene models (Larroux et al., 2008;

Srivastava et al., 2010). As previously noted, all A. queenslandica Clade

I Fox genes (AmqFoxD, AmqFoxG, AmqFoxL1, AmqFoxL2, AmqFox1,

AmqFox2, and AmqFox3) lack introns in the coding sequence, as

observed in other metazoan Clade I genes (Figure 2). In contrast,

A. queenslandica Clade II Fox genes all have multiple introns in the

coding sequence (Figure 2), including between positions 48 and 49 of

the Forkhead domain in most genes. AmqFoxOb, which appears to be

a unique A. queenslandica gene, has a unique domain architecture that

includes Structural Maintenance of Chromosome (SMC) and

PLN02153 (which includes a Kelch2 motif) domains. These domains

may be involved in mediating interactions with other proteins, includ-

ing chromatin (Laflamme et al., 2014). The duplicated FoxO gene in

E. muelleri (Figure 1a,b; Table S1) does not possess these domains and

thus most likely evolved independently.

3.2 | Developmental expression of Fox genes

Using CEL-Seq2 transcriptomes from 82 individual A. queenslandica

embryos, larvae, postlarvae, juveniles, and adult biopsies comprising

16 developmental stages and adults (Gaiti et al., 2015; Levin

et al., 2016; Wong et al., 2020), we assessed the expression profiles

of the 17 Fox genes (Figure 3; Table S2). Although CEL-Seq2 tran-

scriptomes from embryonic and larval stages have been previously

studied in detail (Levin et al., 2016), postlarval and juvenile transcrip-

tomes have not.

There is relatively little Fox gene expression during embryogene-

sis, with AmqFoxN1/4a, AmqFoxN1/4b, and AmqFox2 expressed only

in the earliest stages of embryogenesis and AmqFoxJ1, AmqFoxJ2/3,
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and AmqFoxM expressed from the cloud through to the ring stage,

when the embryo is establishing an anterior–posterior axis and first

forming internal and external layers (Figure 3a). In contrast, a diverse

suite of Fox genes is upregulated when larvae settle on a coralline alga

and start metamorphosis. The majority of these Fox genes appear to

be metazoan-specific (Figure 3a). One group of three genes – Amq-

FoxG, AmqFoxP, and AmqFoxOa – is highly activated within just 1 h of

settling and initiating metamorphosis (1 h postsettlement [hps]).
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developing competence to settle and initiate metamorphosis. Competent larvae are induced to settle onto the benthos by signals associated with
particular species of coralline algae. Settlement is followed by rapid morphogenetic changes over the first 24 h that include cell differentiation,
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collapsed VST from 10 choanocyte, 15 archaeocyte, and six pinacocyte transcriptomes (Table S2; Sogabe et al., 2019).
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A second group of four genes – AmqFoxOb, AmqFoxN2/3, AmqFoxD,

and AmqFoxK – has highest relative expression at 6–7 hps. Distinct

from all others, AmqFoxL2 has high expression from settlement

through to the adult stage.

AmqFoxN1/4b, AmqFoxJ1, AmqFox1, AmqFox2, AmqFox3, and Amq-

FoxL1 have their highest relative expression in the adult stage. Compar-

ison of relative expression levels of the Fox genes in three adult cell

types – (1) epithelial pinacocytes that line external surface and internal

canals, (2) choanocytes that are internal epithelial feeding cells, and

(3) pluripotent archaeocytes that reside in the middle of the sponge

(Sogabe et al., 2019) – reveals that all, except AmqFoxD, are most highly

expressed in epithelial pinacocytes and/or choanocytes (Figure 3b;

Table S2). Both of these cell types interact with sea water either on the

outside of the sponge (pinacocytes) or when the seawater is pumped

through the internal aquiferous system (pinacocytes and choanocytes).

3.3 | Co-activation of Fox and other genes at the
initiation of metamorphosis

Four pairs of Fox genes – (1) AmqFoxP and AmqFoxG, (2) AmqFoxOa

and AmqFoxN2/3, (3) AmqFoxD and AmqFoxK, and (4) AmqFoxL2 and

AmqFoxOb – are all tightly co-expressed with each other through

metamorphosis (Figures 3 and 4). Although all eight are upregulated

within 1 h of the larva settling, the transcript levels of AmqFoxP, Amq-

FoxG, AmqFoxOa, and AmqFoxN2/3 increase much more markedly. At

this early stage of metamorphosis, the anterior–posterior axis of the

larva is being dissolved, and larval cells have begun to migrate, trans-

differentiate, and undergo apoptosis (Nakanishi et al., 2014; Sogabe

et al., 2016).

Strikingly, AmqFoxP and AmqFoxG expression levels drop rapidly

by 6–7 hps, while AmqFoxOa and AmqFoxN2/3 levels decrease more

slowly over the first 24 h of metamorphosis (Figure 4). AmqFoxD and

AmqFoxK transcript abundances markedly increase further by 6–7 hps

and maintain a high level of expression until about 24 hps, before

reducing over the next 2–3 days of metamorphosis, until the feeding

juvenile forms at 3–4 days postsettlement (dps). Even by the end of

the first day of metamorphosis, the first choanocyte chambers are

forming. These are comprised of transdifferentiated larval epithelial

and newly proliferating cells (Sogabe et al., 2016). AmqFoxL2 and Amq-

FoxO are also activated at the start of metamorphosis, but their

expression increases approximately 1 day after metamorphosis com-

mences and they maintain high levels of expression until the juvenile

is formed (Figure 4). During this period there is extensive cell prolifer-

ation and differentiation, and patterning of the juvenile/adult body

plan (Degnan et al., 2015; Nakanishi et al., 2014; Sogabe et al., 2016).

Using a WGCNA co-expression analysis with a connection weight

value over .1, we identified genes with expression profiles matching

these eight Fox genes (Figure 4; Table S3). This analysis revealed that

AmqFoxG and AmqFoxP are co-expressed with each other and that

566 and 489 other genes also are transiently activated at 1 hps and

co-expressed with these Fox genes, respectively. Of these, 478 genes

(82.8%) are part of the co-expression networks of both Fox genes

(Figure 4). GO enrichment analysis of the co-expressed genes indi-

cates that they are involved in calcium transport, GTPase signaling,

and the degradation of glycine (Figure 5; Table S4).

Similarly, we found that AmqFoxOa and AmqFoxN2/3 are co-

expressed with each other, and with 268 and 291 genes, respectively,

that are also activated by 1 hps and remain more highly expressed

over the first 24 h of metamorphosis; 151 (37.0%) of these are shared

Settlement Settlement 

AmqFoxG
AmqFoxP

AmqFoxOa
AmqFoxN2/3

AmqFoxD
AmqFoxK

AmqFoxL2

AmqFoxOb

-3   -2   -1    0    1    2    3

Cl
ea

va
ge

Br
ow

n
Cl

ou
d

Sp
ot

La
te

 sp
ot

La
te

 ri
ng

Ri
ng

Pr
ec

om
pe

te
nt

Co
m

pe
te

nt
1 

hp
s

6-
7 

hp
s

11
-1

2 
hp

s
23

-2
4 

hp
s

1-
2 

dp
s (

ch
am

be
r)

2-
3 

dp
s (

te
nt

 p
ole

)

3-
4 

dp
s (

juv
en

ile
)

Ad
ult z-score

Cl
ea

va
ge

Br
ow

n
Cl

ou
d

Sp
ot

La
te

 sp
ot

La
te

 ri
ng

Ri
ng

Pr
ec

om
pe

te
nt

Co
m

pe
te

nt
1 

hp
s

6-
7 

hp
s

11
-1

2 
hp

s
23

-2
4 

hp
s

1-
2 

dp
s (

ch
am

be
r)

2-
3 

dp
s (

te
nt

 p
ole

)

3-
4 

dp
s (

juv
en

ile
)

Ad
ult

F IGURE 4 Developmental expression
profiles of genes co-expressed with Fox
genes activated at metamorphosis. Left and
right heatmaps show scaled (z-score)
developmental expression levels of
co-expressed genes with the listed Fox genes
(Table S3). Larval settlement is marked by
triangle; see Figure 3 for details on other
developmental stages. The four pairs of

co-expressed Fox genes and their co-
expressed genes are separated by dashed
lines. The central panel shows overlapping
co-expression networks of the Fox genes
listed to the left and right. The eight AmqFox
genes are shown in red in the networks.
In the network of AmqFoxG and AmqFoxP,
the co-expressed genes that overlap
between the two Fox genes in the pair are
labeled green, while AmqFoxG- and
AmqFoxP-specific genes are pink and blue,
respectively. The other three pairs of Fox
gene networks follow the same rules using
different color schemes.

YUAN ET AL. 461



between AmqFoxOa and AmqFoxN2/3 networks (Figure 4; Table S3).

These co-expression networks are enriched in genes involved in meta-

bolic activities, including serine and glycosphingolipid metabolism

(Figure 5), and genes involved in morphogenesis, including animal

organ development and cell adhesion (Table S4).

AmqFoxD and AmqFoxK are activated together at 6–7 hps and

remain relatively highly expressed until about 24 hps; they are co-

expressed with 434 and 383 other genes, respectively, 209 (34.4%) of

which are shared (Figure 4; Table S3). GO terms enriched in these co-

expressed genes are again consistent with metabolic activities

(e.g., serine metabolism, lipopolysaccharide biosynthesis, and xenobi-

otic transport) and developmental processes (e.g., intercellular and

protein kinase B signaling) (Figure 5; Table S4).

AmqFoxOb and AmqFoxL2 are co-expressed and activated early in

metamorphosis, but become more highly expressed during later meta-

morphosis. We found a larger number of genes co-expressed with this

pair compared to earlier in metamorphosis, with 402 and

769 co-expressed genes, respectively (Figure 4; Table S3). Of these,

381 (48.5%) genes are co-expressed with both Fox genes, with Amq-

FoxL2 having only 21 genes unique to its network (Figure 4). Although

metabolic processes are still enriched amongst this set of co-

expressed genes, GO analysis reveals a larger number of terms related

to the regulation of development, including regulation of multicellular

processes, embryo development, and cell proliferation, migration, and

signaling (Figure 5; Table S4).

4 | DISCUSSION

The A. queenslandica Fox gene family is comprised of some genes that

arose before the divergence of animal and choanoflagellate lineages

and others that arose after (Larroux et al., 2008; Shimeld, Degnan, &
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Luke, 2010b; Sebé-Pedr�os et al., 2011; this study). Using a revised

assembly of the A. queenslandica genome (Xiang, 2021), we have

identified a new gene in the FoxM subfamily. This observation, along

with the detection of FoxM in other sponge genomes, lends support

to this being an ancestral Clade II group with perhaps a premetazoan

origin (Figure 1; Sebé-Pedr�os et al., 2011). Comparison of the

A. queenslandica Fox genes to those in other animals and sponges sug-

gests that the A. queenslandica gene repertoire is identical to the

ancestral metazoan condition, with one possible exception. A member

of the FoxQ2 subfamily appears to be present in the O. carmela

genome (O.car m.311996); the ctenophore Mnemiopsis leidyi also

appears to have a FoxQ2 gene (M.lei ML216314a-PA). Thus, we infer

the last common ancestor to contemporary animals had 12, possibly

13, Fox genes, comprised of four premetazoan Clade II genes (FoxJ1,

FoxJ2/3, FoxN1/4, and FoxM), four metazoan Clade II genes (FoxK,

FoxN2/3, FoxP, and FoxO), and four or five metazoan Clade I genes

(FoxD, FoxG, FoxL1, and FoxL2, and possibly FoxQ2).

Comparison between different poriferan species suggests that

the Fox gene family is highly conserved across the phylum, with little

gene loss or gain. Fox genes previously reported to be

A. queenslandica-specific (AmqFox1, AmqFox2, and AmqFox3; Larroux

et al., 2008) now appear to have arisen earlier in poriferan evolution.

AmqFox1, AmqFox2, and AmqFox3 appear to be restricted to haplo-

sclerid demosponges, demosponges, and poriferans, respectively. In

contrast, AmqFoxOa and AmqFoxOb, and AmqFoxN1/4a and Amq-

FoxN1/4b paralogs appear to be unique to A. queenslandica, arising

after the divergence of the Xestospongia and Amphimedon lineages.

Although both AmqFoxN1/4 paralogs are similar to the ancestral

FoxN1/4, the domain architecture of AmqFoxOb is markedly different

from those of AmqFoxOa and the ancestral FoxO, providing an oppor-

tunity to investigate how lineage-specific duplication and diversifica-

tion affect sponge gene evolution and function. With the exception of

these lineage-specific Fox genes, it appears the repertoire of Fox

genes present in A. queenslandica was also present in the last common

ancestor of sponges and other animals.

4.1 | A. queenslandica Fox genes are
developmentally expressed

Given that A. queenslandica and the predicted ancestral metazoan Fox

gene complements appear to be similar, studying Fox expression in

this sponge can potentially shed light on the original roles of this tran-

scription factor family in the last common animal ancestor. For

instance, bilaterian and cnidarian FoxO genes are developmentally

expressed and involved in immunity, metabolism, and longevity

(Arden, 2008; Boehm et al., 2012; Bosch, 2014; Carlsson &

Mahlapuu, 2002; Hedrick et al., 2012; Martins et al., 2016; Tzivion

et al., 2011), but it is unclear which of these are ancestral functions.

Analysis of the expression of Fox genes during A. queenslandica

embryogenesis and metamorphosis, and in juveniles and adults –

including in three cell types – reveals different expression profiles

indicative of diverse roles in regulating sponge development and cell

identity. A diversity of developmental roles for A. queenslandica Fox

genes would be consistent with what has been observed in other ani-

mals (e.g., Golson & Kaestner, 2016; Leclère et al., 2019; Magie

et al., 2005; Seudre et al., 2022; Shimeld, Boyle, et al., 2010a; Tu

et al., 2006).

Both AmqFoxN1/4 paralogs, along with AmqFox2 and AmqFox3,

are upregulated in cleaving embryos. This stage is characterized by

unequal cleavage that produces micromeres that are specified early

and often express a unique suite of transcription factors and compo-

nents of developmental signaling pathways (Adamska et al., 2010;

Degnan et al., 2015; Larroux et al., 2006; Leys & Degnan, 2002;

Richards & Degnan, 2012). The early embryonic expression of Fox

genes suggests they contribute to early cell specification events. Inde-

pendently evolved FoxN1/4 paralogs are maternally expressed and

present in the cleaving embryo of the annelid Owenia fusiformis

(Seudre et al., 2022). FoxN1/4 is also maternally expressed in an echi-

noderm (sea urchin) (Tu et al., 2006), raising the possibility of maternal

expression being a conserved feature in bilaterians, and possibly

metazoans.

AmqFoxJ1, AmqFoxJ2/3, and AmqFoxM are upregulated at the

cloud embryonic stage and through mid-embryogenesis. This a major

morphogenetic period in the formation of the larval body plan and

includes cell differentiation, migration, and patterning; the larval

anterior–posterior axis first appears at the cloud stage (Adamska

et al., 2007; Degnan et al., 2015). FoxJ1 appears to play a role in cilia

development in a range of eumetazoans (Marlow et al., 2014; Seudre

et al., 2022; Yu et al., 2008). Although we have not determined if

AmqFoxJ1 is expressed in progenitors to the ciliated epithelial cells in

A. queenslandica larva, we did observe cilia formation at this stage of

development (Leys & Degnan, 2002). Supporting this inference of a

role in cilia development, we found that AmqFoxJ1 is upregulated in

adult choanocytes, which are ciliated (Figure 3).

4.2 | A role for metazoan-specific Fox genes at
metamorphosis

In contrast to their limited activity during embryogenesis, there is a

pronounced upregulation of multiple Fox genes at the start of

A. queenslandica metamorphosis. This sponge, as is the case for a huge

diversity of marine invertebrates, has a planktonic larva that, when

competent, settles in response to an inductive benthic cue and com-

mences metamorphosis; for A. queenslandica, that cue can be a coral-

line alga (Say & Degnan, 2020; Song et al., 2021; Ueda et al., 2016).

A. queenslandica develops into a functional feeding juvenile 3–4 days

later. Early metamorphosis involves extensive cell differentiation,

transdifferentiation and rearrangement, and apoptosis (Degnan

et al., 2015; Nakanishi et al., 2014; Sogabe et al., 2016).

Within 1 h of settling, the elongate A. queenslandica larval body

plan is flattening against the algae, with larval cells beginning to trans-

differentiate, migrate, or undergo apoptosis. Eight Fox genes – Amq-

FoxG, AmqFoxP, AmqFoxOa, AmqFoxN2/3, AmqFoxD, AmqFoxK,

AmqFoxL2, and AmqFoxOb – are upregulated at this time, suggesting
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that these genes play a critical role in metamorphosis. Interestingly, all

eight Fox genes appear to have originated along the metazoan stem,

and are the most conserved amongst the sponges surveyed in this

study. The only subfamily members to be lost (assuming complete

genome coverage) are FoxG in T. wilhelma and O. carmela, FoxN2/3 in

E. muelleri, and FoxK in S. ciliatum. The biphasic metazoan life cycle, of

which the pelagobenthic is the most widespread and conserved, also

likely evolved along this metazoan stem (Degnan & Degnan, 2010).

Half of the eight Fox genes – AmqFoxG, AmqFoxP, AmqFoxOa, and

AmqFoxN2/3 – have an immediate and marked increase in expression

after the larva settles, consistent with a regulatory role in the initiation

of metamorphosis. AmqFoxG and AmqFoxP expression markedly drops

by 6 hps (Figure 4), further supporting a role in initiating this transi-

tion. Fox proteins can act as transcriptional pioneers and appear

responsible for opening chromatin associated with enhancers and pro-

moters. This has been attributed to the winged helix structure of their

Forkhead DNA-binding domain being similar to histones H1 and H5,

enabling the displacement of histones and the opening of chromatin

(Carlsson & Mahlapuu, 2002; Clark et al., 1993; Zaret et al., 2010). For

example, FOXA1 and FoxN affect chromatin structure in humans and

Drosophila, respectively (Cirillo & Zaret, 1999; Strödicke et al., 2000).

Given the dramatic morphogenetic change at the commencement of

A. queenslandica metamorphosis, and the concomitant large-scale

rapid change in gene expression, the upregulated Fox genes at the

beginning of metamorphosis may play a role in facilitating the rapid

chromatin state changes that are likely to precede changes in both

gene expression and cell state.

4.3 | A. queenslandica Fox genes appear to regulate
metabolic and developmental processes

Although no two of the eight Fox genes are expressed identically at

metamorphosis, we do find four pairs with similar expression profiles.

AmqFoxG and AmqFoxP have the most similar expression profiles,

including during late embryogenesis and in the larva. They are the

only Fox genes with substantial expression in the competent larva,

and have the most rapid, dramatic, and transient activation at the start

of metamorphosis. This shared expression profile suggest that they

may autoregulate their own burst of expression at settlement after

being activated by an endogenous signaling pathway that has been

induced by a signal associated with the coralline alga. Although there

appears to be no evidence for specific roles for Fox genes in regulating

metamorphosis in other species (largely because it has not been stud-

ied), it is relevant that FoxG is expressed in spiralian and sea urchin lar-

vae, and FoxP is expressed in O. fusiformis competent larvae and

juveniles (Seudre et al., 2022; Tu et al., 2006).

AmqFoxG and AmqFoxP are co-expressed with a battery of

577 genes at the start of metamorphosis, suggesting they contribute

to regulation of these genes. The shared target genes appear to be

largely transiently upregulated at the start of metamorphosis

(Figure 4) and are predicted to be involved predominantly in metabo-

lism, cell signaling, and cytoskeletal organization (Figure 5). FoxP has

dual activator and repressor functions in other animals, through the

formation of homo- and heterodimers, to regulate metabolism and

development (reviewed in Golson & Kaestner, 2016).

AmqFoxOa and AmqFoxN2/3 are also activated within the first

hour of metamorphosis, but maintain a relatively high level of expres-

sion for at least the first 24 h. This suggests that these two Fox genes,

along with AmqFoxG and AmqFoxP, may be under the same regulatory

control at the commencement of metamorphosis. The 408 genes co-

expressed with AmqFoxOa and AmqFoxN2/3 are also predominantly

involved in metabolic processes and morphogenesis, consistent with

the rapid body plan reorganization occurring at this time. FoxO in par-

ticular is associated with these cellular processes and with the regula-

tion of stress and longevity and metabolism in other animals, which

can be influenced by changes in extracellular signals (Carlsson & Mah-

lapuu, 2002; Golson & Kaestner, 2016; Kwak et al., 2018; Pascual-

Carreras et al., 2021; Tan et al., 1998; Yao et al., 2001). For example,

FoxO3, FoxG, and FoxA cooperate to regulate cellular processes and

stress responses in the sea urchin Paracentrotus lividus (Ruocco

et al., 2017).

AmqFoxD and AmqFoxK, along with their 608 co-expressed genes,

are upregulated a little later in metamorphosis at 6–7, 11–12, and

23–24 hps. These gene batteries again are enriched in genes involved

in specific metabolic functions and in a raft of developmental pro-

cesses. FoxD is orally expressed in the postlarvae of cnidarians and

has been shown to play a role in larval epithelial–mesenchymal transi-

tions (Fritzenwanker et al., 2004; Leclère et al., 2019; Magie

et al., 2005). It is also upregulated in sea urchin larvae (Tu et al., 2006).

AmqFoxL2 and AmqFoxOb are upregulated about 1 day after meta-

morphosis commences and remain activated through the later stages of

metamorphosis through to adulthood. AmqFoxOb has a domain archi-

tecture that is unique to A. queenslandica, suggesting that it plays a dif-

ferent role from AmqFoxOa, which has a domain architecture similar to

other FoxO proteins. During this phase of metamorphosis, choanocyte

chambers are beginning to form, and choanocytes and archaeocytes

are proliferating (“chamber” stage; 24–48 hps). This is followed by the

formation of primary spicules, the formation of internal canals, and a

general expanding of the body away from the benthic surface (“tent”
stage; 48–72 hps), and eventually the formation of a functional aquifer-

ous canal system that allows the sponge to filter feed (juvenile stage;

72–96 hps). Even after developing a functional feeding system, the

juvenile body plan remains plastic with continued high levels of cell

transdifferentiation, proliferation, and migration (Nakanishi et al., 2014;

Sogabe et al., 2016; Sogabe et al., 2019). GO analysis suggests that

these two Fox genes and their 790 co-expressed genes play important

roles in cell differentiation and metabolism.

4.4 | A. queenslandica Fox genes are upregulated in
choanocytes and pinacocytes

All A. queenslandica Fox genes, except AmqFoxD, are upregulated in one

or both of the two primary epithelial cell types in sponges, choanocytes

and pinacocytes. This suggests they may have an ancestral role in the
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development or function of this primary metazoan cell type (Belahbib

et al., 2018; Fahey & Degnan, 2010; Leys & Riesgo, 2012). AmqFoxJ1,

AmqFoxJ2/3, both AmqFoxO and AmqFoxN paralogs, AmqFoxK, Amq-

FoxM, and AmqFox2 are upregulated in ciliated choanocytes, which

have a primary function in generating water currents through the

sponge and capturing microbial food out of these currents; they are

one of the major proliferating cell types in A. queenslandica (Sogabe

et al., 2016; Sogabe et al., 2019). AmqFoxG, AmqFoxP, AmqFox3, and

AmqFoxL1 are upregulated in pinacocytes, which form external and

internal epithelial boundaries and express a raft of immunity genes

(Sogabe et al., 2019). AmqFoxL2 is expressed in choanocytes and pina-

cocytes, similar to that observed for FoxL in the demosponge Suberites

domuncula (Adell & Müller, 2004). Bilaterian orthologs of some of these

Fox genes regulate epithelial cell behavior involved in immunity and

development (Chen et al., 1998; Clevidence et al., 1994; Coffer &

Burgering, 2004; Li et al., 2012; Myatt & Lam, 2007; Wang

et al., 2009). For example, FoxJ appears to be essential in all organs and

structures that contain ciliated epithelial cells (Brody et al., 2000; Chen

et al., 1998; Clevidence et al., 1994; Hackett et al., 1995) and FoxN1

plays a role in mammal thymic epithelial cell growth and differentiation

(Balciunaite et al., 2002; Coffer & Burgering, 2004).

5 | CONCLUSIONS

Fox genes diversified before animal cladogenesis, giving rise to an

important family of transcriptional regulators that further expanded in

eumetazoans. The differential expression of Fox genes through the

A. queenslandica life cycle is consistent with the family playing an

ancestral role in metazoan development and regulating a range of cel-

lular processes, including differentiation, proliferation, and metabo-

lism. Particularly striking is the rapid and strong activation of eight

metazoan-specific Fox genes at metamorphosis, a conserved stage of

metazoan development that is currently understudied in terms of Fox

gene expression and function.
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