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Abstract

COVID-19 is a major, urgent, and ongoing threat to global health. Globally more than
24 million have been infected and the disease has claimed more than a million lives as of
November 2020. Predicting which patients will need respiratory support is important to
guiding individual patient treatment and also to ensuring sufficient resources are available.
The ability of six common Early Warning Scores (EWS) to identify respiratory deteriora-
tion defined as the need for advanced respiratory support (high-flow nasal oxygen, con-
tinuous positive airways pressure, non-invasive ventilation, intubation) within a prediction
window of 24 h is evaluated. It is shown that these scores perform sub-optimally at this
specific task. Therefore, an alternative EWS based on the Gradient Boosting Trees (GBT)
algorithm is developed that is able to predict deterioration within the next 24 h with high
AUROC 94% and an accuracy, sensitivity, and specificity of 70%, 96%, 70%, respectively.
The GBT model outperformed the best EWS (LDTEWS:NEWS), increasing the AUROC
by 14%. Our GBT model makes the prediction based on the current and baseline measures
of routinely available vital signs and blood tests.

1 INTRODUCTION

COVID-19 is a major, urgent, and ongoing threat to global
health. The disease has infected millions across the globe caus-
ing a surge in demand on healthcare services. This has created
a significant strain on hospital resources globally, especially on
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intensive care units (ICUs) and respiratory support equipment
such as invasive and non-invasive ventilators (NIVs). In such
conditions, a tool to predict deterioration of patients is valuable
to best allocate hospital resources and to ensure that patients are
placed in the correct environment to meet their needs, for exam-
ple, transferred to ICU before substantial deterioration. Given
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the limited resources there is a significant need to prioritise the
right patients so the resource is available for those who need it.

Deterioration prediction tools have traditionally existed in the
form of Early Warning Score (EWS) systems or Physiological
Track and Trigger Systems, which track physiological variables
and alert for assistance when the variables surpass a predefined
threshold [1]. EWS systems use an aggregate weighted scor-
ing of vital signs and other variables [2]. Early EWS were not
intended to predict adverse events, but rather to alert for dete-
rioration that may precede adverse events. Currently, different
scores have been developed, adjusted and validated to predict
the adverse events themselves as a proxy for deterioration [1].

Current EWS systems are based on routinely measured phys-
iological variables and different laboratory markers [2–6]. Com-
mon examples include the NEWS [6], CEWS [2], MCEWS
[3], AEWS [7], LDTEWS [8], and LDTEWS:NEWS [4]
(which combines both NEWS and LDTEWS), among others.
The scores evaluate physiological parameters (NEWS, CEWS,
MCEWS and AEWS), laboratory parameters (LDTEWS) and
a combination of physiological and laboratory parameters
(LDTEWS:NEWS) (Table 1) [2–4, 6–8]. The scores have been
validated for different outcomes, including ICU admission,
mortality, and cardiac arrest, usually within 24 h from the time of
measurement (Table 1). It is unclear how EWS systems would
perform in COVID-19 patients, since these scores have been
developed and validated to discriminate deterioration in a pre-
pandemic general inpatient cohort. By contrast, deterioration
in the COVID-19 inpatient cohort more commonly manifests
through hypoxic respiratory failure [9]. Therefore, the EWS
tools built may be less effective at predicting deterioration in
COVID-19 patients. For example, NEWS considers a binary
variable for oxygen support (room air vs. oxygen support) while
the rest of the variables are either continuous or categorical [6].

NEWS is, thus, not equipped to capture the variability in oxygen
support levels which are a strong proxy for COVID-19 severity.
Despite the limitations, these tools are in routine use in many
hospital managing patients with COVID-19.

Some of the existing EWS systems have been validated on
COVID-19 patients [10–14]. Meylan et al. and Carr et al. have
adjusted NEWS2 to adapt it for COVID-19 patients [15, 16].
Carr and colleagues validated the ability of the NEWS2 score
to identify severe COVID-19 infections (defined as ICU admis-
sion or in-hospital mortality). The study reported an initial per-
formance of 0.628 area under the receiving operator charac-
teristic curve (AUROC) and a performance of 0.753 AUROC
after including five additional predictive features: age, c-reactive
protein (CRP), neutrophil count, estimated glomerular filtra-
tion rate (GFR), and albumin [15]. The Royal College of Physi-
cians has endorsed the use of (NEWS2) to predict deterio-
ration of COVID-19 patients [17]. While NEWS2 have been
evaluated, many scores are still not evaluated appropriately,
including NEWS, CEWS, MCEWS, AEWS, LDTEWS, and
LDTEWS:NEWS. It is critical to evaluate the performance of
different available EWS on a COVID-19 inpatient population,
to inform clinical practice during the global pandemic. Improp-
erly validated EWS systems and predictive models are of limited
clinical benefit in pandemic settings and their risk of harm can
potentially outweigh the promised benefit [18–20].

In response to the aforementioned clinical and research need
to validate EWS in COVID-19 patients, our work has three main
contributions: (i) we evaluate the performance of existing EWS
systems (Table 1) that may be currently used in practice to pre-
dict clinical deterioration in COVID-19 patients, (ii) we develop
and validate machine learning models to predict deterioration in
advance for COVID-19 patients, and (iii) we compare between
machine learning methods and traditional EWS systems.

TABLE 1 Various Early Warning Scores evaluated in our study

Early Warning Score Summary Input data Predicted outcome

National early warning score
(NEWS) [6]

The national EWS in the UK and
one of the most widely used
EWS

HR, RR, supplemental O2, SpO2,
SBP, temperature, level of
consciousness (AVPU)

Early cardiac arrest, unanticipated
ICU admission, and in-hospital
mortality

Centile-based early warning score
(CEWS) [2]

A centile-based early warning
score using continuously
acquired bedside vital-sign data

HR, RR, SpO2, SBP, temperature,
level of consciousness (AVPU)

Cardiac arrest, unanticipated ICU
admission, and in-hospital
mortality

Manual centile-based early warning
scores (MCEWS) [3]

A centile-based early warning
score using manually-recorded
data

HR, RR, supplemental O2, SpO2,
SBP, temperature, level of
consciousness (AVPU)

Cardiac arrest, unanticipated ICU
admission, and in-hospital
mortality

Age-based early warning score
(AEWS) [7]

Age specific early warning score
based on the NEWS score

HR, RR, supplemental O2, SpO2,
SBP, temperature, level of
consciousness (AVPU)

Cardiac arrest, unanticipated ICU
admission, and in-hospital
mortality

Laboratory decision tree early
warning score (LDTEWS) [8]

An early warning score (EWS)
based on routinely collected
laboratory tests

HGB, Alb, Na+, K+, Cr, Ur,
WBC

In-hospital mortality

LDTEWS:NEWS [4] An EWS developed by combining
(NEWS and LDTEWS) to
discriminate unanticipated ICU
admission

NEWS and LDTEWS input data In-hospital mortality and
unplanned ICU admission
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TABLE 2 The different feature types and feature sets in our study

PreVent feature types

Feature ype Features included

Vital signs (F1) Heart rate, oxygen saturation, respiratory rate, systolic blood pressure, temperature, AVPU

Venous blood tests (F4) Albumin, ALK. phosphatase, ALT, APTT, basophils, bilirubin creatinine, CRP, eosinophils,
haemocrit, haemoglobin, INR lymphocytes, MeanCellVol., monocytes, neutrophils
platelets, potassium, prothrombintime, sodium, urea, white cells, eGFR

Blood gas (F5) BE Act, BloodGas BE Std, Bicarb, Ca+ +, Cl- estimated osmolality, FCOHb, glucose, Hb,
Hct, K+, MetHb Na+, O2 Sat, cLAC, ctO2c, p5Oc, pCO2 POC, pH, pO2

Variations in vital signs (Var F1) Mean, max–min, and delta (current value - mean) of vital signs

Delta baseline vital sings (Delta F1) Current value - historic baseline value from a previous discharge for vital signs. The historic
baseline value is extracted from a previous admission. Where a previous admission is
missing we imputed with the population mean.

Delta baseline all features (Delta F8) Current value - historic baseline value from a previous discharge for vital signs, blood tests,
and blood gases. The historic baseline value is extracted from a previous admission. Where
a previous admission is missing we imputed with the population mean.

PreVent feature sets

Feature set Features

Vital signs (F1) HR, RR, SBP, SPO2, TEMP, AVPU, O2 support

EWS bloods (F2) Albumin, creatinine, haemoglobin, potassium, sodium, urea, white cell count

Vital signs and EWS bloods (F3) F1 ∪ F2

Venous blood tests (F4) ALT, albumin, Alk.Phosphatase, basophils, biliru-bin, CRPCreatinine, eosinophils,
haematocrit, haemoglobin, lymphocytes, MeanCellVol monocytes, neutrophils, platelets,
potassium, sodium, urea, WhteCell count

Blood gas (F5) BE ACT, BE STD, BICARB, CA++, CL-, CLAC, CREAT, CTO2C, estimated osmolality,
FCOHB, FHHB, glucose, HB, HCT, K+ METHB, NA+, O2SAT, P5OC, PCO2 POC,
PH, PO2, temperature POCT

Venous blood tests and blood gas (F6) F4 ∪ F5

Vital signs and variations (F7) F1 ∪ Var F1

All Features (F8) F1 ∪ F4 ∪ F5

All Features and vital variations (F9) F8 ∪ Var F1

Vital signs and vital variations and vital baseline delta (F10) F1 ∪ Var F1 ∪ Delta F1

All features and vital variations and baseline delta (F11) F8 ∪ Var F1 ∪ Delta F8

2 MATERIALS AND METHODS

2.1 Data source

Deidentified data from patients were obtained from the
Infections in Oxfordshire Research Database (IORD) which
has Research Ethics Committee, Health Research Authority
and Confidentiality Advisory Group approvals (19/SC/0403,
ECC5-017(A)/2009). The dataset includes administrative data,
vital sign measurements, laboratory test results and data on the
level of oxygen support. We specifically extracted the data of
patients who received a positive COVID-19 diagnosis between
13 March and 30 July, 2020. 2662 patients tested positive for
COVID-19 and 612 of those patients were admitted within a
window 48 h prior to positive test to 30 days after. Only the
admitted patients were included in the dataset and 101 patients
who had a ‘Do Not Resuscitate’ status prior to their COVID
test were excluded as their therapy may not have been esca-

lated beyond ward-based care despite respiratory deterioration.
Patients who were immediately escalated to advanced respira-
tory care upon admission (i.e. within 1 h) were also excluded.
The final dataset included 472 patients. Our model features were
derived from four sets of commonly collected clinical variables:
physiological variables, demographic information, oxygen sup-
port level, and laboratory test results (Table 2). The most recent
previous blood tests within 5 days of the vital signs observations
were considered.

2.1.1 Feature sets for EWS systems

The EWS systems (Table 1) assessed each patient for deteri-
oration every time vital signs were measured (NEWS, CEWS,
MCEWS, AEWS) or when lab test results were obtained
(LDTEWS and LDTEWS:NEWS). Oxygen support was used
as a binary predictor for all of the EWS systems, except for
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LDTEWS and CEWS (in which it was not considered as a pre-
dictor in the original publication) [2, 8].

2.1.2 Outcome definition

We defined the outcome of deterioration as either an escalation
in the level of oxygen support requirements to either a level 2 or
level 3 delivery device, or an unplanned ICU admission within
a window of 24 h. To do this, we created four levels of oxygen
support based on the respiratory support device used (level 0:
room air, level 1: low-flow oxygen support devices (flow less
than 10 L/min, e.g. nasal cannulae), level 2: oxygen support
devices with a flow over 10 L/min (e.g. reservoir bag), and level
3: high-flow ventilation or invasive ventilation). A detailed list
of the oxygen support devices used to make the classification
is available in Table S5 in Supporting Information. We have
defined progression to level 2 or 3 devices as an escalation to
high-level oxygen support; therefore, a patient who progressed
from L0 or L1 to L2/L3/unanticipated ICU admission would
be considered to have deteriorated, while a transition from L0
to L1 would not be considered a deterioration. L2 indicates a
deterioration in the condition of the patient and an increase in
the need for respiratory support, while L3 is an advanced level
of support that is dependent on respiratory support equipment
that is in limited supply (i.e. ventilators or NIV equipment). Out-
side the scope of this paper, predicting L0 to L1 deterioration
can be clinically valuable as it would differentiate patients who
can be discharged (patients on room air who do not require oxy-
gen support) from those who need hospital admission (requir-
ing L1 or above support), and a trigger for starting dexametha-
sone therapy [21, 22]. However, we hypothesised that identify-
ing the patients who need (L3) or are expected to need (L2) the
advanced level of support would be more valuable because it
provides the clinical teams the opportunity to optimise the man-
agement of resources that are in short supply during an event
like a pandemic.

2.2 Machine learning models

We investigated the performance of (i) a basic machine learning
classifier: logistic regression (LR) and (ii) two ensemble learn-
ing methods: Random Forest (RF) and Gradient Boosting Trees
(GBT). Details of each method, parameter settings, and their
strengths and weaknesses are shown in Table S7 in Support-
ing Information.

2.2.1 Feature sets for machine learning models

To evaluate the EWS performance and compare it with that of
the machine learning models, multiple feature sets were con-
sidered (Table 2). To ensure fairness, we first established a
baseline comparison on the same feature sets as employed by
each EWS. For example, the vital signs feature set is used by
NEWS, CEWS, MCEWS, AEWS, and hence their performance

was compared with a machine learning model using the same
input features. Similarly, for the EWS bloods feature set (used
by LDTEWS) and the vital signs and EWS bloods feature set
(LDTEWS:NEWS), the same inputs were considered for the
comparative machine learning models. In addition, we trained
and evaluated the machine learning models on various other fea-
ture sets. Six sets of clinical parameters were investigated: (1) 24
routinely collected laboratory blood tests, (2) 21 routinely mea-
sured/estimated point-of-care blood gas readings, (3) changes
in vital signs results in a window of 24 h before the given obser-
vation, (4) measurements of seven routinely measured physio-
logical parameters, (5) variance of the current vital signs from a
baseline of a previous admission, and (6) variance of the cur-
rent vital signs, blood tests, and blood gases from a baseline
of a previous admission. The components of each feature set
are detailed in Table 2. Pre-existing oxygen support before the
point of prediction was indicated by a binary variable (1 for L1
support and 0 for L0 support) (Table S5 in Supporting Informa-
tion). Consequently, we considered the following feature sets for
machine learning analysis: (vital signs—F1) vital signs ; (EWS
bloods—F2) EWS bloods feature set; (EWS blood and vital
signs—F3) a combination of F1 and F2 feature sets; (blood
tests—F4) clinical parameters in (1); (blood gas—F5) clinical
markers in (2); (blood tests and gas—F6) a combination of F4
and F5 feature sets; (vital signs and delta—F7) a combined fea-
ture set of F1 feature set and (3); (all features—F8) a combi-
nation of F1, F4, and F5; (all features and delta—F9) a com-
bined feature set of F3, F4, F6; (vital signs and delta baseline
and delta—F10) a combination of F1, (3), and (5); and (all fea-
tures and delta baseline and delta—F11) a combination of F3,
F4, F6, and (6).

2.2.2 Calculation of the FiO2 values

Fraction of inspired oxygen (FiO2) values (%) were calculated
based on the mask type used. Depending on the mask type,
oxygen flow (O2 flow, L/min) and patient’s respiratory rate
(RR, breaths/min) were included in the calculation. Simple face
masks, nebuliser masks, tracheostomy masks and Oxy-Masks
were considered as Hudson masks.

Nasal cannulae: FiO2 = (0.038 × O2 flow + 0.208) × 100[23]

Hudson mask: FiO2 = −0.99 × RR + 3.11 × O2 flow

+ 51.05[24]

Non-rebreather mask: FiO2 = 80[25]

Face mask with reservoir: FiO2 = 80[25]

Venturi mask: FiO2 = 21, 24, 28, 35, 40, 60

(depending on model)

Room air: FiO2 = 21

CPAP and other non-invasive systems: FiO2 = 100 (1)
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TABLE 3 This table highlights the performance of the Early Warning Scores. Section A of the table describes the performance of the original thresholds for
the Early Warning Scores. NEWS has two recommended thresholds (5 and 7) and LDTEWS:NEWS also has two recommended thresholds (0.27 and 0.36). We
measured the performance of 5 and 0.27 for NEWS and LDTEWS:NEWS respectively as those are the most commonly used thresholds. Section B outlines the
performance of the accuracy-optimised thresholds

The performance of the original thresholds (Section A)

Score Threshold Acc Sen Sps Prs AUROC

NEWS 5 0.75 (0.75–0.75) 0.66 (0.65–0.68) 0.75 (0.75–0.75) 0.02 (0.02–0.02) 0.79 (0.78–0.79)

CEWS 4 0.91 (0.91–0.91) 0.23 (0.21–0.24) 0.91 (0.91–0.91) 0.02 (0.02–0.02) 0.63 (0.61–0.64)

MCEWS 4 0.78 (0.78–0.78) 0.61 (0.59–0.62) 0.78 (0.78–0.78) 0.02 (0.02–0.02) 0.78 (0.77–0.79)

LDTEWS 0.33 0.73 (0.73–0.73) 0.41 (0.40–0.43) 0.74 (0.73–0.74) 0.01 (0.01–0.01) 0.62 (0.61–0.63)

LDTEWS:NEWS 0.27 0.84 (0.84–0.84) 0.52 (0.50–0.53) 0.84 (0.84–0.85) 0.03 (0.03–0.03) 0.80 (0.79–0.80)

The performance of the accuracy-optimised thresholds (Section B)

Score Threshold Acc Sen Sps Prs AUROC

NEWS 4 0.62 (0.60–0.64) 0.77 (0.75–0.79) 0.62 (0.60–0.64) 0.02 (0.02–0.02) 0.79 (0.78–0.79)

CEWS 2 0.64 (0.62–0.65) 0.55 (0.52–0.57) 0.64 (0.62–0.65) 0.01 (0.01–0.01) 0.63 (0.61–0.64)

MCEWS 3 0.61 (0.59–0.63) 0.76 (0.74–0.79) 0.61 (0.59–0.62) 0.02 (0.02–0.02) 0.78 (0.77–0.79)

AEWS 4 0.60 (0.59–0.62) 0.66 (0.64–0.68) 0.60 (0.59–0.62) 0.01 (0.01–0.01) 0.68 (0.67–0.69)

LDTEWS 0.18 (0.17–0.18) 0.52 (0.52–0.53) 0.75 (0.74–0.76) 0.52 (0.52–0.53) 0.01 (0.01–0.01) 0.62 (0.61–0.63)

LDTEWS:NEWS 0.21 (0.20–0.21) 0.67 (0.66–0.68) 0.77 (0.76–0.79) 0.67 (0.66–0.68) 0.02 (0.02–0.02) 0.80 (0.79–0.80)

2.2.3 Data preprocessing

We treated observation sets as independent rather than as
grouped by patient admission. We excluded implausible phys-
iological values. Non-numerical readings were replaced with
clinically appropriate values. Where a lab value was reported as
being below the threshold of detection of the laboratory assay,
the value was replaced with a numerical zero value. Where
values were reported as being above the threshold of detection,
clinically appropriate values were selected to maintain the sig-
nificance of the high result. When the provision or absence of
supplemental oxygen was missing, we assumed that supplemen-
tal oxygen was not provided and set the supplemental oxygen
value to 0. Similarly, we have made the same assumption for
AVPU and replaced missing AVPU values by ‘alert’. For missing
values, we have used multiple imputation techniques (mean,
median, Bayesian ridge regression, and stochastic regression)
to compensate for missing values across the dataset. The best
performing imputation method across different experiments
was median, hence we have chosen it as the default method
in our analysis as a design choice (Figure S1 in Supporting
Information).

2.2.4 Alerting thresholds

The evaluated EWS systems (Table 3) are provided with default
alerting thresholds to convert the computed score to ‘alert’
or ‘no alert’. NEWS gives an individual score of 2 when a
patient is on supplementary oxygen, and an individual score
of 0 when the patient is on room air. NEWS aggregates the

individual scores to an overall score which is assessed against
an alerting threshold (default 5). We used the default individ-
ual scores for EWS. However, given that we are predicting an
outcome different from the default predicted outcome of the
EWS (escalation in oxygen demand vs. in-hospital mortality, car-
diac arrest or unplanned ICU admission), we chose to evalu-
ate the performance of the EWS not only based on the origi-
nal overall thresholds (e.g. 5 for NEWS) but also on optimised
thresholds.

We optimised the machine learning and EWS thresholds to
report the performance metrics on the test set by identifying
the thresholds that maximise the accuracy on the train dataset,
and used these thresholds on the test set.

2.3 Performance assessment

For all experiments, the classification was performed by train-
ing on a balanced dataset and then testing on an imbal-
anced (representative) dataset. We ran the classification over
multiple iterations and cross-fold validations. In each fold, 20%
of the data was considered as the test set. Within the remaining
80% of the data, since non-events outnumbered events, non-
events were sub-sampled randomly to balance the size of the
two classes. This was run over 40 iterations of 5-fold stratified
cross-validation. We chose k-fold stratified due to the imbal-
anced nature of the classes.

For machine learning, GBT, RF, and LR were considered
as basic machine learning techniques (Table S7 in Supporting
Information). For EWS, the test set was used to calculate EWS
scores in each fold.
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We evaluated the performance of our EWS and machine
learning methods using the AUROC to predict an outcome of
deterioration defined as either escalation in the level of oxygen
demand (to level 2 or 3) (Table S5 in Supporting Information)
or an unplanned ICU admission. The performance in terms of
accuracy, sensitivity, specificity, precision, and AUROC were cal-
culated for the validation sets (for parameter setting) and test
sets (for final comparison) and averaged over iterations; mean
and standard deviation were reported.

Accuracy =
TP + TN

TP + TN + FP + FN

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

Precision =
TP

TP + FP

F1-score = 2
Precision × Sensitivity
Precision + Sensitivity

(2)

TP, TN, FP, and FN stand for true positive, true negative,
false positive, and false negative, respectively. Considering a
probability estimate as the output of each classifier for the vali-
dation set and setting various thresholds to categorise this out-
put as event/non-event could result in different TP, FP, FN,
and TN rates. Alternatively, a receiver operating characteris-
tic (ROC) curve showing the sensitivity as a function of 1—
specificity for different thresholds; each point in the curve indi-
cates a specific value for sensitivity, specificity, and accuracy.
AUROC-ROC is the area under the ROC curve.

The parameters of the models (e.g. number of ensembles
for RF or GBT) were optimised through the internal cross-
validation on the training data. This was done by a grid search
over a range of values and selecting parameters that generated
the best AUROC-ROC. The model with the highest perfor-
mance was reported in the paper.

2.4 Patient and public involvement

The IORD panel, which includes patient and public represen-
tatives provided feedback on the study design and approved its
final form.

3 RESULTS

3.1 Patient cohort and features
characteristics

Our study is retrospective, using data extracted from electronic
health records (EHR). The dataset contains routinely collected
observations from concluded hospital admissions from four
hospitals within the Oxford University Hospitals (OUH) NHS

Foundation Trust. OUH consists of 4 teaching hospitals in
Oxfordshire, UK, serving a population of 600,000 and provid-
ing tertiary referral services to the surrounding region. Data
were obtained between March and July 2020.

Our dataset included 15,686 sets of observations from 472
admissions in 472 unique patients. The dataset included 137 res-
piratory deterioration events (observing each patient until dis-
charge or their first deterioration). The average age was 68 ± 16
(mean ± std) and 47% (221/472 patients) of the dataset were
females. The mean and interquartile ranges (IQR) of the blood,
blood gas, and vital sign parameters are in the supplementary
materials (Tables S2–S4 in Supporting Information).

3.2 Performance evaluation

3.2.1 Outcome definition

We defined respiratory deterioration as the need for advanced
respiratory support (high-flow nasal oxygen [HFN0], continu-
ous positive airways pressure [CPAP], NIV(intubation) or ICU
admission within a prediction window of 24 h. It should be
noted, however, that hypoxic respiratory failure is not the only
process through which COVID-19 patients deteriorate as some
patients deteriorate through a process of shock due to venous
thromboembolism or super-added sepsis. Such events may also
lead to ICU admission or increased oxygen requirements and so
still be captured by our model.

3.2.2 Performance of the EWS systems

Table 3 outlines the performance of the EWS systems. NEWS,
MCEWS, CEWS, AEWS, LDTEWS:NEWS, and LDTEWS
achieved an AUROC of 79%, 78%, 63%, 68%, 80%, 62%,
respectively. The best performing scores were NEWS and
LDTEWS:NEWS (Figure 1). The efficiency curve of the vari-
ous EWS systems is outlined in Figure 1.

We evaluated the performance of the recommended (orig-
inal) thresholds for the different EWS. The default thresh-
olds are 5, 4, 4, 0.27, 0.33 for NEWS, CEWS, MCEWS,
LDTEWS:NEWS, and LDTEWS, respectively. AEWS does not
have a recommended threshold, therefore we have excluded
it from the evaluation of the recommended thresholds. The
NEWS score had the most balanced sensitivity and specificity
(66% and 75%, respectively). NEWS and LDTEWS achieved
the lowest accuracy (75% and 73%) with a sensitivity and speci-
ficity of 41% and 74% for LDTEWS. CEWS achieved the
highest accuracy (91%) but with a sensitivity of 23% and speci-
ficity of 91% (Table 3).

We optimised the thresholds for each score to max-
imise accuracy as outlined in the Methods Section. Opti-
mised EWS thresholds yielded more balanced performance.
LDTEWS:NEWS was the overall best performing score with
an accuracy, sensitivity, and specificity of 67%, 77% and 67%,
respectively. NEWS, MCEWS, CEWS, and AEWS achieved
high accuracy (62%, 61%, 64%, 60%, respectively). The worst
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FIGURE 1 This figure includes the efficiency and Receiver Operating Characteristic (ROC) curves for the machine learning models and the Early Warning
Scores (EWS). (a) The efficiency curves for the EWS in our study. The low performance of the EWS on the Efficiency Curve metric may be explained by a high
false positive. (b) The ROC curves for the various EWS in our study (the best performance is for NEWS with AUROC of 72%). (C) The performance of the GBT
model measured by the efficiency curve metric. (d) The ROC and AUROC for the GBT model on F9 feature set (AUROC of 94%)

performing score was LDTEWS with an accuracy of 52% and
AUROC of 62%. The accuracy-optimised thresholds for all
scores differed from the recommended values (Table 3).

The performance of the EWS in COVID-19 patients was sig-
nificantly lower than that previously reported in non-COVID
patients. The Royal College of Physicians [6] reported a perfor-
mance of (AUROC = 89%) for NEWS compared to (AUROC
= 79%) in our dataset. Watkinson and colleagues [3] reported a
performance of (AUROC = 86.8% and AUROC = 80.8%) for
MCEWS and CEWS, respectively. This compares to AUROC
values of 78% and 63% for MCEWS and CEWS in our dataset.
Shamout and colleagues [7] reported that AEWS achieved an
AUROC of 83.8%, while AEWS achieved a performance of
68% on COVID patients in our dataset. Redfern and colleagues
reported an AUROC of 90.1–91.6% for LDTEWS:NEWS.
In COVID patients, the AUROC for LDTEWS:NEWS was
80%. The worst performing score in our study was LDTEWS
(AUROC of 62%). The score was developed by Jarvis and col-
leagues [8] with a reported AUROC that ranges between 75%
and 80% in discriminating in-hospital mortality among the gen-

eral in-hospital patient cohort. This indicates that while the pre-
dictors used in LDTEWS (HGB, Alb, Na, k, Cr, Ur, WBC) are
useful to discriminate in-hospital mortality in non-COVID, they
are less useful in predicting respiratory deterioration in COVID
patients (Table 1).

3.2.3 Performance of the machine learning
models

We evaluated the performance of three machine learning mod-
els (GBT, RF, and LR) on the training data using an internal
5-fold cross-validation. We evaluated the performance of the
machine learning models on multiple feature sets as outlined
in the feature sets subsection of the Methods and Table 2
(F1–F11). The GBT model outperformed the other models
on the different features sets in our training dataset. Therefore,
we made a design choice to use only the GBT model when
evaluating the performance on the different feature sets in
the test data. The highest AUROC was achieved using the
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F1 (AUROC of 83%), F7 (AUROC of 93%), F8 (AUROC of
86%), F9 (AUROC of 94%), and F11 (AUROC of 93%) feature
sets. The lowest AUROC was observed in the F2 (AUROC
of 72%), F4 (AUROC of 77%), F5 (AUROC of 69%), and
F6 (AUROC of 78%) feature sets. The F7 dataset is a simple
feature set that is based on 6 commonly collected vital signs and
their variability. F7 could represent the scenario of an overrun
healthcare facility in which access to lab tests may not be easily
accessible and readily available.

We compared the performance of the EWS systems and
machine learning models to predict COVID-19 patient deteri-
oration in three main feature sets: F1–F3 (Table 2). In each of
the three feature sets, the machine learning model outperformed
the EWS systems. For the F1 feature set, we can compare the
performance of NEWS (AUROC = 79%), MCEWS (AUROC
= 78%), CEWS (AUROC = 63%), and AEWS (AUROC =

68%) with the performance of GBT (AUROC = 83%). For the
F2 feature set, we can compare the performance of LDTEWS
(AUROC = 62%) with the performance of GBT (AUROC =

72%). For the F3 set, we can compare the performance of
LDTEWS:NEWS (AUROC = 80%) with the performance of
GBT (AUROC = 85%) (Figure 1). The efficiency curve of
machine learning EWS systems is outlined in Figure 1.

The overall best performing algorithm for machine learning
models was the GBT model on the F9 feature set (AUROC
= 94%). Given the imbalanced nature of our dataset, we have
decided to tune the probability-class conversion threshold for
the GBT model to create the best performing machine learn-
ing model. We decided to optimise the threshold to maximise
accuracy. We identified the threshold that maximises the accu-
racy of the GBT model on the training set and measured the
performance on the test set. The identified threshold was 0.19.
The optimised GBT model achieved an accuracy, sensitivity, and
specificity of 70%, 96%, and 70%, respectively. The most and
least important features are outlined in Table 4. Out of the 10
most important features (FiO2, min–max SBP, CRP, max–min
HR, PO2, mean cell volume, arterial blood calcium, max–min
RR, CtO2C, temp), four belonged to the F7 (vital signs and vari-
ability) feature set, three belonged to the F5 feature set (arterial
blood tests), and two belonged to the F4 feature set (venous
blood tests). The most important feature was FiO2. Delta is a
measure of variability of a specific variable, it is calculated as
(current value—the mean in the last 24 h). The most impor-
tant vital signs were heart rate, respiratory rate, temperature, and
blood oxygen saturation (SpO2).

We conducted three additional experiments. The first was to
limit the predictors of the GBT model to the top features that
ranked the highest on the feature importance scale consider-
ing the training set. We found that the optimal number of fea-
tures was 18–20 and subsequently chose to report the perfor-
mance on the 20 most important features. This forward selec-
tion experiment did not impact performance (Table 4). We did
not attempt a backward selection approach in this study, which
is considered preferable in classical statistics. The second exper-
iment was to include a more granular measurement of oxygen
support. We included the Fraction of Inspired Oxygen (FiO2)

for this aim. Including the FiO2 did not improve the perfor-
mance (Table 4). The third experiment was to include age as
a predictor. Including age as a predictor did not significantly
impact the performance (Table 4). The lack of performance
gains in spite of the high feature importance may be due to mul-
ticolinearity, where a subset of existing variables highly corre-
late with this feature. This is explicit in the construction of the
FiO2 variable, which is calculated from source variables already
present in the vital signs feature set (respiratory rate, SpO2,
Masktype) as outlined in the Methods section.

Our results show that summary measures of variability of
vital signs and laboratory markers play an important role in pre-
dicting deterioration. Adding the variability (range, mean of pre-
vious 24-h window) and delta (current value - mean) features to
the vital signs feature set added 10% points to the AUROC (vital
signs 83% vs. vital signs and variations 93%). Similar results
were observed in the all features feature set, where adding the
variability and delta predictors added 8% points to AUROC (all
features 86% vs. all features and variations 94%). Adding the
delta baseline variables to both the all feature and vital signs fea-
ture spaces has improved the performance (vital signs and vari-
ations and baseline 93%; all features and variations and baseline
93%). These observations echo common clinical practice where
physicians often analyse trends of parameters rather than their
absolute values when evaluating a patient and highlight the ben-
efits of dynamic monitoring. Moreover, the importance of sum-
marising the variability and changes of vital signs when using
them as inputs for machine learning models has already been
demonstrated by Shamout and colleagues [26] in their work to
develop a deep learning-based early warning system.

The lower performance of the model when using variables
from blood gas analysis could partly be explained by incon-
sistency in the labelling of these samples. The origin of the
blood, whether venous or arterial, was frequently missing or
mislabelled perhaps reflecting time pressures on clinical staff,
or skewed where interest is towards markers minimally influ-
enced by sample provenance (e.g. lactate). This required the
use of imputation techniques during the preprocessing of the
dataset, which may have had an effect on performance. More-
over, some data points in blood gas readings duplicated infor-
mation encoded within other feature sets, such as haemoglobin
and creatinine.

3.3 Classification and misclassification

To assess for biases in model performance, we assessed rates of
patient misclassification during validation for the best perform-
ing machine learning technique. We observed that rates of mis-
classification were higher for white (44%) than black, Asian and
minority ethnic group patients (22%). The misclassification rate
was similar between men (47%) and women (42%) and between
patients aged over 60 (43%) and patients aged between 18 and
60 (44%). The difference in performance may be explained by
feature differences across ethnicity groups including genetic and
blood biomarkers.
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4 DISCUSSION

Here, we assess the performance of existing EWS for predict-
ing escalation to high-level oxygen support or unplanned ICU
admission; this is an area of clinical importance in COVID-19.
The EWS studied have been previously validated for predict-
ing events such as cardiac arrest, unplanned ICU admission or
death (Table 1). However, limitations of using death as an out-
come measure include that the score may be identifying an early
sign of an already irreversible process, and therefore early iden-
tification of this may offer limited opportunity for clinical inter-
vention. By contrast, our COVID-19 focused outcome mea-
sure provides a clinically useful and actionable warning which
may help clinicians and healthcare system managers to preempt
shortages and optimise resource allocation in a pandemic con-
text. The difference in performance between our model and the
EWS could be partially explained by the fact that these EWS
were developed and optimised to detect ward patients’ dete-
rioration against different outcomes. Nonetheless, these EWS
represent the current standard of care for COVID-19 patients,
and we took action to mitigate these effects by optimising each
EWS threshold for our COVID-19 inpatient cohort. The alert-
ing threshold for EWS systems should be optimised according
to the requirements of the clinical settings, taking into account
that sensitivity and specificity are usually inversely correlated
and that high false alert rate (calculated as False positive rate =
1 - specificity) leads to alert ‘fatigue’ and inefficient use of clin-
ical resources. Within the prediction window of 24 h (Table 4),
our machine learning EWS system achieves a specificity that
ranges between 70% to 82%, which means a false positive
rate of 30% to 18%. Future iterations of the system will aim
to increase specificity by including comorbidities, using trans-
fer learning, considering a larger dataset, and employing more
advanced models.

A strength of our machine learning approach is its inter-
pretability, using methods employed elsewhere in clinical prac-
tice [27] and shown able to attain patient and clinician trust. The
three selected models (GBT, RF, and LR) permit querying of
variables’ weights and presentation in an explainable way. This
ability to make sense of the algorithm decision-making process
has repeatedly been described as a critical factor in increasing
technology uptake in clinical practice [28]. Moreover, our fea-
ture sets are oriented around routinely collected clinical data
collected within existing care pathways, including calculation of
EWS scores. Our models are therefore rapidly deployable within
current clinical pathways.

A relative limitation of our study is that the number of fea-
tures approximates that of patients within the training set. There
is consequently a risk of overfitting when considering all the
clinical features available, as exemplified by the increase in per-
formance when limiting our inputs to the 20 most influential
variables. Additionally, while a prediction window >1 h before
an event is in line with existing vital monitoring systems [27],
the window between sets of vital signs and positive events may
capture overlapping transition effects. For example, an escala-
tion in FiO2 may represent an emergency response to physio-

logical deterioration which is necessarily followed by escalation
of oxygen delivery device and ICU admission (where that level
of support can be provided). Therefore, predictions made after
a rapid escalation in FiO2 may capture patients where a clinical
deterioration has already occurred, and ICU admission/higher
level respiratory support is presently being arranged. Increasing
the window upper bound to 3 h before an escalation event had
minimal effect on performance. On examination, the majority
of escalation events (109/137) contained observations within a
12–24 h prior window. Therefore, our data suggests that this
is not a significant limitation in our case. Another limitation of
our study is that we have not included pre-existing conditions
in our analysis. Pre-existing conditions have shown to play an
important role in increasing the risk of COVID-19 deteriora-
tion. Therefore, future research efforts should include a pre-
existing conditions as predictive features in COVID-19 predic-
tive models. Moreover, while we hypothesise that multicolin-
earity could explain why the addition of FiO2 did not increase
AUROC, we did not explore multicolinearity between the dif-
ferent features in our dataset. This could be a valuable piece of
analysis to explore in future research efforts.

The multivariate nature of EWS permit partial scores to be
calculated where data is missing, however the machine learn-
ing methods examined require prior handling of missing data.
These can be challenging to impute, as clinical data is often not
missing at random. Missing data may therefore be poorly repre-
sented by population average values; for example, recording of
vital signs is performed less frequently where there is no clin-
ical concern. Limitations of imputation strategies include also
the loss of important metadata. The presence of a measurement
can often encode clinical meaning, for example, the presence
of an arterial blood gas reading is often driven by clinical con-
cern of respiratory compromise; semantic knowledge which is
lost by imputation. Nonetheless, in this study we demonstrate
minimal difference in model performance across a range of
imputation strategies on model performances, demonstrating
minimal difference. By contrast, the multivariate, interpretable
nature of EWS permit a partial score to be calculate despite
missingness.

5 CONCLUSION

Here, we assessed the theoretical performance of three machine
learning approaches against some of the current EWS. We
demonstrated that the performance of EWS in COVID-19
patients is sub-optimal. We also present a machine learning
Early Warning System with AUROC of 94%. Translation to
clinical practice requires further optimisation and prospective
valuation in a representative clinical population. Such optimisa-
tions include a better understanding of the dynamic evolution
and availability of clinical data in real time in the healthcare
setting. Calibration of alarm trigger thresholds should be
guided by desired clinical performance, reflecting healthcare
system resource constraints and priorities, and a product design
accounting for an optimal human–computer interaction.
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