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ABSTRACT In this study, we present a draft genome sequence of Serratia proteamacu-
lans MFPA44A14-05. This strain was isolated from a spoiled organic modified-
atmosphere-packed beef carpaccio. The draft genome sequence will contribute to the
understanding of the role of the S. proteamaculans species in meat and seafood
spoilage.

Members of the Serratia genus have a highly ubiquitous nature. Like most Entero-
bacteriaceae, they are commonly found in the digestive tracts of animals but also

thrive very competitively in water and soil environments (1). Some species, like Serratia
proteamaculans, are also well known for contaminating and spoiling protein-rich food,
like raw meat and seafood (2–4), using a strong capacity to resist CO2-enriched
modified atmosphere (MA) (5) and to metabolize protein and amino acids for growth
(6). Despite this key role in food waste, very little is known about the genomic
background of S. proteamaculans, and the genomes of only two strains, those of the
plant growth-promoting strain S4 (7) and the poplar tree root endophyte strain 568 (8),
are currently available.

S. proteamaculans strain MFPA44A14-05 was isolated in 2009 from a highly spoiled
slice of organic modified atmosphere-packed beef carpaccio (9). After 14 days of
storage at 8°C, the strain was dominant and had reached a population level of 6.7 log10

CFU g-1, turning the carpaccio slices into a brown/greenish color and diffusing a strong
putrid smell. We thus undertook the genome sequence of this strain in order to use it
as a model to understand the role of S. proteamaculans in meat and seafood spoilage.

The whole-genome sequencing of S. proteamaculans MFPA44A14-05 (CIP 110939)
was carried out by Eurofins MWG Operon laboratories (Ebersberg, Germany) using
Illumina MiSeq 2 � 150-bp paired-end libraries. The 2.94 million reads were assembled
de novo using the Velvet software (10) after choosing the best k-mer value of 73. The
draft assembly resulted in 80 contigs from 1,783 to 252,892 bp (N50, 128,235 bp). The
contigs were aligned against the S. proteamaculans strain 568 complete genome using
progressiveMauve (11) to give one high-quality scaffold (5,368.81 bp; coverage, 46�),
with an overall G�C content of 54.85%. Annotation performed with the MicroScope
platform (12) detected 5,075 coding sequences (CDSs), 29 pseudogenes, 4 rRNAs, and
76 tRNAs. The MFPA44A14-05 strain has been deposited in the CIP Culture Collection
under the reference CIP 110939.

The high proteolytic capacity of S. proteamaculans MFPA44A14-05 is confirmed by
the detection of at least 5 extracellular proteases or proteinases, including a serralysin-
like proteinase (13), a subtilisin-like protease, and an overall set of 18 peptidases.
Similarly, the number of genes involved in peptide and amino acid metabolism (n �
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594) largely exceeds the number of genes involved in carbohydrate metabolism (n �

473). This COG group is the biggest in proportion (11% of the whole genome). We also
noticed that the S. proteamaculans MFPA44A14-05 genome contains biogenic amine
production activity arising from amino acid catabolism, which involves two genes
encoding a lysine decarboxylase to produce cadaverine (cadA and ldcC genes) and all
genes of the polyamine superpathway II (speA to speF) to produce agmatine, pu-
trescine, and spermidine from arginine, ornithine, and S-adenosylmethionine.

Accession number(s). This whole-genome shotgun project has been deposited in
ENA BioProject number PRJEB20089 and assembly under the accession numbers
FWWG01000001 to FWWG01000080. The version described in this paper is the first
version.
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