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Abstract
In The hitchhiker’s guide to responsible machine learning, Biecek, Kozak, and 
Zawada (here BKZ) provide an illustrated and engaging step-by-step guide on how 
to perform a machine learning (ML) analysis such that the algorithms, the software, 
and the entire process is interpretable and transparent for both the data scientist and 
the end user. This review summarises BKZ’s book and elaborates on three elements 
key to ML analyses: inductive inference, causality, and interpretability.
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DGP	� Data generating process
EDA	� Exploratory data analysis
PD	� Partial dependence
ALE	� Accumulated local effects
1R	� One rule algorithm
PCR	� Polymerase chain reaction
K-NN	� k-Nearest neighbors algorithm

1  Introduction

Complex, varied, and big data sets are being amassed rapidly in different fields 
thanks to digitisation. In the field of health sciences, for example, such data sets 
have been emerging due to the COVID-19 pandemic [77]. Making sense of such 
types of data requires powerful and sophisticated computational, mathematical, and 
statistical tools. Machine learning (ML) is a favourite approach to deal with those 
data sets as it consists of computer algorithms tuned to automatically find patterns in 
data [33]. One of the major criticisms of ML, though, is that the algorithms’ inter-
nal workings are not tailored to human understanding. Biecek et al. [11] provide a 
concise, accessible, and engaging tutorial on how to carry out ML analyses that use 
powerful algorithms in a way that allows both the data scientist and the end user to 
interpret the workings of the ML analytical process (see also Murdoch et al. [63]). 
Following canonical book reviews, we summarise and briefly comment on BKZ’s 
book. BKZ’s book is rich in concepts relating to statistical learning, statistical mod-
elling, and computational statistics, that could be further commented on. However, 
we chose to elaborate on three concepts that the reader should keep in mind while 
reading BKZ’s book because they are key to ML and any other form of data analy-
sis: inductive inference, causality, and interpretability.

2 � A Commented Summary of the Book

BKZ’s book presents the way three fictional data scientists—Bit, Beta, and 
DALEX—undertake an ML analysis of a COVID-19 data set. While Bit is eager to 
have quick results, Beta is more cautious and diligent in undertaking further checks 
and inspecting more predictive models. DALEX is a robot (akin to a friendly ver-
sion of a Dalek!) that demands explanations of the models built and prompts Bit and 
Beta to provide these at key steps during the model building. The conceptual foun-
dations underlying these data scientists’ analytical pipeline are grounded in propos-
als found in Breiman [14] and James et al. [46]. Those conceptual foundations are 
further developed in more detail in a book by one of the authors Biecek et al. [10].

Bit and Beta are tasked to come up with a predictive model able to determine 
the risk of death in case of an infection and suggest the age order in which people 
need to be vaccinated. That is, the data scientists have to sort patients by their indi-
vidual risks. Bit and Beta thus commence reading up on the topic of COVID-19 to 
familiarise themselves with the terminology and related aspects. Also, as no data are 
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given to them, they start to find a comparable and representative data set with which 
to build the predictive model. This step is crucial in that the data set Bit and Beta use 
will be the data generating process (DGP) substantiating any statistical model such 
that any subsequent explanation and prediction is directly dependent on the DGP.

With the data at hand, Bit and Beta create a training data set and a test data set 
(in BKZ’s book, these are the COVID_spring and COVID_summer data sets, 
respectively). The former is used to build the model and the latter is used to vali-
date the model. BKZ’s book briefly comments on a key aspect; a true validation is 
done on a separate new data set. Note that ‘true validation’ is different from cross-
validation (sometimes called rotation estimation or out-of-sample testing). Different 
from a true validation approach, in cross-validation the original data set is split in 
such a way that a large chunk of the data (say, 80%) is used to train the model, and 
the remaining data is used to test the model [82]. Cross-validation, or any form of 
model assessment, is at the core of model building in that it enables examination of 
the stability of the model’s estimations [92]. Anecdotally, cross-validation predates 
bootstrapping [25], an influential technique used in statistical modelling [34], and 
these two techniques can be used in conjunction in ML analyses [84].

Bit and Beta move onto exploring (via exploratory data analysis [EDA] tech-
niques [85]) and cleansing the data. When these steps are cleared, they are ready 
to consider statistical algorithms suitable to the data and the research problem at 
hand. This is the stage where the predictive power of some (binomial) classification 
algorithms is assessed via DALEX. At this point the reader realises that DALEX is 
a robot that embodies the DALEX R package, a package designed for assessing and 
explaining predictive models [9]. Bit, Beta, and DALEX first try a regression tree 
that uses the variables ‘age’ and ‘cardiovascular diseases’ (that these variables were 
used by the regression tree is not surprising as these variables were also highlighted 
during the EDA phase of the data analysis). The data scientists then try an algo-
rithm that is an improvement on regression trees: random forests. The results are 
better and after some optimisation of the hyperparameters (i.e. tuning) the diagnos-
tic ability of the binary classifier improves even more. BKZ explain how to optimise 
hyperparameters and evaluate the importance of the data set’s variables. The exami-
nation of the variables is furthered via partial dependence (PD) and accumulated 
local effects (ALE). We will not expand on hyperparameter optimisation, variable 
importance, PD, and ALE as BKZ already do this in their book. Regarding clas-
sification algorithms, it is important to note that although classification trees and 
random forests provide good visuals of decision trees, there are other algorithms that 
can assist in classification tasks. There are, for example, the one rule (1R) [42] and 
the Boruta [52] algorithms. A logistic regression algorithm could also be considered 
as it has been shown this method is more interpretable than, yet similarly accurate 
to, more complex ML algorithms [19, 54, 57, 64]. Note that it is indeed possible 
to combine classification algorithms in order to inform a final model. For example, 
Cardona et  al. [16] used the Boruta and 1R algorithms for selecting variables to 
be used in a logistic regression model. In the case of numeric dependent variables, 
techniques such as distributional regression trees and forests [74] and transformation 
forests [44] could be used (these are implemented in the disttree and trtf R 
packages, respectively).
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Bit, Beta, and DALEX inspect their models further through Shapley values (a 
concept from cooperative game theory), break-down plots, and ceteris paribus plots 
(a.k.a. what-if plots). Once again, these concepts are clearly explained in BKZ’s 
book but other sources such as Biecek and Burzykowski Molnar [10] and [60] are 
recommended. Once the three data scientists are satisfied with the results of the 
further assessment of the models and the results of some individual risk analyses, 
they are thus finally ready to deploy the model. The three data scientists create an 
application that allows any individual to estimate the probability of severe condition 
and death after being diagnosed with COVID-19 depending on age, gender (male 
or female), presence/absence of cardiovascular disease, presence/absence of cancer, 
presence/absence of kidney disease, presence/absence of diabetes, and presence/
absence of other diseases (the app lives at https://​crs19.​pl/). In the app’s page, it is 
made explicit that the model is built using a sample of 50,000+ cases in Poland who 
gave a positive PCR (polymerase chain reaction) test for COVID-19. Other impor-
tant information about the data set, variables, and models is provided therein.

In a nutshell, BKZ’s book argues that responsible ML consists of preparing the 
data, understanding it, proposing an ensemble of models to parse the data (based 
on the research question), carefully auditing the models, and finally deploying the 
models. Thus, BKZ’s book sets an example of what good practices and principles 
in explainable ML should look like [6]. As mentioned earlier, BKZ’s book is rich in 
concepts that cut across, mostly, the fields of statistical and computer sciences. We 
chose three concepts central to data science in general (including ML) and we con-
sider them in turn.

3 � Inductive Inference

Inductive inference [2, 3, 22] can be understood as an ML procedure [7, 12, 70, 78] 
or algorithm [29, 37] that assumes a specific type of relationship between hypoth-
eses about the data and propositions that go beyond the data (and these include pre-
dictions about future data, general conclusions about all possible data, and the DGP) 
[20].

Inductive inference aims to provide the best predictions and identify the best 
model for inferential purposes (variable selection, hypothesis testing, etc.) that allow 
the generation of scientific knowledge and interpretation. A key premise, though, 
is that simple models are preferable [18, 94]. Inductive inference requires assump-
tions for the application of statistical tests; however, from an ML perspective, an 
algorithm, by definition, is a set of finite steps that become an inductive inferential 
process in itself [79, 80, 91]. That is, any assumption check built into statistical test-
ing is stripped by inferential processes carried out by algorithms [36, 69].

The language used to describe patterns in the data, sample size  [53], computa-
tional complexity of problems  [67] in approximating concepts  [30, 72], and poor 
pattern identification methods further adds a layer of complexity to inductive infer-
ence. The way those domains are described can induce biases in inductive inferential 
reasoning [47] (an example of this can be found in several probabilistic problems) 
[5, 15, 48, 50, 71, 83].

https://crs19.pl/
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In the specific case of interpretation of results obtained via ML, it has been argued 
that ML researchers tend to incur the illusion of probabilistic proof by contradiction, 
which consists of the erroneous belief that a null hypothesis becomes improbable 
because a significant result has been obtained [27, 28]. This illusion is, however, dif-
ficult to eradicate in the use of inductive inference. Given that BKZ’s book embraces an 
ML approach, it does not stress the importance of the verification of hypotheses, atten-
tion to the limits of extrapolating results  [40, 45, 81], and securing corrective meas-
ures [26, 59]. We strongly believe that these are aspects in inductive inference to which 
future work in ML should give serious consideration.

4 � Causality

In statistics and ML literature, causality or causal inference (i.e., deciding whether a 
variable X causes Y or vice versa) is one of the most debated topics in the academic 
community. The possibility of making causal inferences represents an ideal mechanism 
for any scientist trying to uncover natural laws, and traditional approaches to uncover-
ing these laws favour controlled experiments [38, 41, 62]. Besides controlled experi-
ments, more recent data-driven perspectives suggest other techniques for causal infer-
ence purposes in experimental and non-experimental contexts [13, 75]. BKZ’s book’s 
position regarding this topic is evident: predictive models are mentioned without 
implying any connection to causality or causal inference. Such a pedagogical position, 
we believe, not only mirrors the infancy that describes the current stage of the literature 
on ML and causality, but also exploits the data of COVID-19 to illustrate how differ-
ent ML models can be used in R and how they provide several approaches to the same 
problem: modelling individual mortality risk after COVID-19 infection.

In our view, even though the topic of causality was not covered in BKZ’s book, 
the reader is encouraged to understand that this topic cannot be ignored. Regardless 
of existent contrasting views on the possible ways to make causal inferences out of 
ML models, there will always be relevant spaces for discussing these classic con-
cerns in statistical reasoning. For example, Bontempi and Flauder [13] proposed a 
supervised ML approach to infer the existence of a directed causal link between two 
variables in multivariate settings with n > 2 variables. By the same token, the idea 
of discriminating cause from effect with observational non-experimental data is well 
introduced by Mooij et al. [62]. Since then, another branch of the literature presents 
interesting insights about the way researchers can learn causality from data [38, 65, 
93]. In line with the working paper of Schölkopf [75], we also believe that the hard 
open problems of ML and AI are intrinsically related to causality and that this is 
another central topic requiring more attention from ML researchers.

5 � Interpretability (explainable ML and AI)

Pedagogical efforts like the one provided by BKZ are undoubtedly helpful in an era 
where several institutions leverage ‘black-box’ ML models for high-stakes decisions 
(e.g. healthcare and criminal justice) [73]. The utility of these efforts is evident when 
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it comes to illustrating how ML models work in general and how they reach their 
predictions in particular. In our view, the use of COVID-19 data makes BKZ’s book 
a clear and updated reference and highlights their unique intended goal: finding a 
balance between technicalities and possible pedagogical illustrations through funny 
adventures of comic characters. In just 54 pages, the book does not pretend to dive 
deep into the inner workings of the methods. Nonetheless, it provides a good sample 
of appropriate references and serves as an intuitive starting point for beginners. A 
more expert audience might find helpful other sources that invest more pages for 
similar purposes without the pedagogical resource of comics [49].

BKZ make the distinction between two types of ML interpretable methods: 
global model-based and instance-based. Examples of both types of methods are pre-
sented. One thing to note is that the primary focus of the book is on explainable 
methods for supervised ML and tabular data. Given recent advances in algorithms 
that work on more unstructured data such as text, images, and time series of vary-
ing length, explainable ML methods have also permeated into those domains. For 
example, Assaf and Schumann [4] proposed a deep neural network to explain time 
series predictions. Liu et al. [55] developed a framework for generating explanations 
for natural language processing tasks; specifically, text classification. Furthermore, 
in recent years explainable AI methods outside the supervised learning domain have 
been developed, for example, for unsupervised clustering [23, 32] and reinforcement 
learning [68] (see also Bhatti [8]).

One aspect that is closely related to explainable ML and that is not covered in 
BKZ’s book (and is also left aside in many other explainable ML materials) is a 
model’s uncertainty quantification. By design, many ML models always produce 
a prediction regardless of their quality and without providing guarantees of their 
uncertainty; for example, p-values for classification and confidence intervals for 
regression. In medical applications and other domains it is of critical importance 
to know if a model’s prediction can be trusted; alas, such information is not usually 
available. Many models like neural networks, decision trees, K-NN, and so on can 
produce prediction scores or probabilities; however, those are relative to the given 
data point and class (in the case of classification) but do not necessarily represent 
the overall probability distribution. When analysing predictions, it is important to 
consider both their explanations and their trustworthiness. The later can be assessed 
with conformal prediction, which is a framework proposed by Vovk et  al. [90] to 
estimate the predictions’ uncertainty. One of the advantages of this framework is 
that it is model agnostic. A recent method for uncertainty estimation was also pro-
posed by Sensoy et al. [76]; however, it is specific to deep learning models.

There are several implementations of many explainable ML methods in the 
form of R packages. An extensive list of 27 packages was compiled and analysed 
by Maksymiuk et al. [58], with DALEX [9], lime [66], and iml [61] being some 
of the most popular (based on GitHub stars). Some R packages for general ML are 
implemented in EnsembleML, cvms (cross-validation for model selection), and 
MachineShop (see also the CRAN site on ML at https://​cran.r-​proje​ct.​org/​web/​
views/​Machi​neLea​rning.​html). Finally, there is another ML-related technique that 
the reader of BKZ’s book should be aware of that is known as ‘targeted learning’. 
This approach relies on ML algorithms to assess uncertainty and provide reliable 

https://cran.r-project.org/web/views/MachineLearning.html
https://cran.r-project.org/web/views/MachineLearning.html
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estimations of the true target parameters of the probability distribution of the data 
[86–89] (an online free book can be found at https://​tlver​se.​org/​tlver​se-​handb​ook/ 
and the key R packages are SuperLearner and tmle). In our view, BKZ’s 
book invites the reader to conceive ML analyses and models that are interpretable 
so that their utility is optimised.

6 � Final Thoughts

ML is a technique that automates data analysis by resorting to the power of sta-
tistical tools [21, 31] and has become a favoured framework to cope with big 
data by producing predictive models [24] across several fields [1, 43, 51, 56]. 
However, those models are known for lacking interpretability and explainability 
[17] and this, in turn, reduces their accountability because issues relating to risk 
assessment and safe adoption are overlooked [39]. BKZ’s book aims to alleviate 
that problem by providing a concise and engaging tutorial on how to carry out 
careful and responsible ML analyses. We thus recommend their book as comple-
mentary reading for those undertaking ML-related courses. Different from cur-
rent introductory textbooks on ML (e.g. Ghatak [35]), BKZ’s book shows that an 
ML-based analysis is not about fiddling with black-box algorithms and praying 
for the best. Instead, the authors show that ML-based analyses require carefully 
selecting and tuning algorithms that, while giving accurate predictions, retain a 
good level of interpretability and explainability. That is, the ML analysis and ana-
lyst become responsible. We believe this message applies not only to ML model-
ling but to all forms of data analysis.
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