
rstb.royalsocietypublishing.org
Research
Cite this article: Wild G, Koykka C. 2014

Inclusive-fitness logic of cooperative breeding

with benefits of natal philopatry. Phil.

Trans. R. Soc. B 369: 20130361.

http://dx.doi.org/10.1098/rstb.2013.0361

One contribution of 14 to a Theme Issue

‘Inclusive fitness: 50 years on’.

Subject Areas:
behaviour, evolution, theoretical biology

Keywords:
alloparental care, delayed dispersal, helpers-

at-the-nest, kin selection, social evolution,

theory

Author for correspondence:
Geoff Wild

e-mail: gwild@uwo.ca
& 2014 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the original
author and source are credited.
Electronic supplementary material is available

at http://dx.doi.org/10.1098/rstb.2013.0361 or

via http://rstb.royalsocietypublishing.org.
Inclusive-fitness logic of cooperative
breeding with benefits of natal philopatry

Geoff Wild and Cody Koykka

Department of Applied Mathematics, The University of Western Ontario, London, Ontario, Canada N6A 5B7

In cooperatively breeding species, individuals help to raise offspring that are not

their own. We use two inclusive-fitness models to study the advantage of this

kind of helpful behaviour in social groups with high reproductive skew. Our

first model does not allow for competition among relatives to occur but

our second model does. Specifically, our second model assumes a competitive

hierarchy among nest-mates, with non-breeding helpers ranked higher than

their newborn siblings. For each model, we obtain an expression for the

change in inclusive fitness experienced by a helpful individual in a selfish popu-

lation. The prediction suggested by each expression is confirmed with computer

simulation. When model predictions are compared to one another, we find that

helping emerges under a broader range of conditions in the second model.

Although competition among kin occurs in our second model, we conclude

that the life-history features associated with this competition also act to promote

the evolutionary transition from solitary to cooperative breeding.
1. Introduction
Helpful behaviour takes many forms in vertebrates [1] but some of the most inter-

esting instances come from species that breed cooperatively. In cooperatively

breeding species, individuals help to raise offspring produced by others in their

group. These species offer researchers a valuable opportunity to study helping

in an arena where its substantial personal costs can be linked easily to the

improved reproductive success of a neighbour [2,3].

Hamilton’s rule [4] is typically used to explain the adaptive significance of

cooperative breeding. Inclusive fitness, in this case, is split into two parts: direct

fitness, which reflects the production of descendant kin, and indirect-fitness,

which reflects the production of non-descendant kin [5,6]. Hamilton’s

rule, then, predicts that cooperative breeding will be favoured when the net

direct-fitness cost of helping is outweighed by the net indirect-fitness benefit.

Work on cooperative breeding is not typically concerned with evaluating

the correctness of Hamilton’s rule. Instead, the focus is placed on understand-

ing the relative importance of the rule’s direct and indirect components [7].

Some authors have argued that ecological constraints (e.g. low probability of

successful, independent breeding) mean that helping changes the direct fitness

of the helper by only a small amount. These authors point to the net indirect-

fitness benefit of helping as its principal evolutionary driver [8–10]. Other

authors have taken a different stance and argued that inheritance of a breeding

territory (especially inheritance of a high-quality breeding territory) can translate

into large, direct-fitness gains for those who provide help at their natal site. Under

this alternative view, it is the direct ‘benefits-of-philopatry’ that act as the main

incentives to help [7]. In this paper, we emphasize the benefits-of-philopatry per-

spective and model the emergence of cooperative breeding when breeding

territories can be passed from parent to offspring.

We are not the first to model cooperative breeding with benefits-of-philopa-

try. Pen & Weissing [11] used an inclusive-fitness model to demonstrate how the

direct-fitness benefits of territory inheritance depend on life-history details in

species. Their model, however, did not address the possibility that an individual

may eventually compete with the offspring it helps to rear. Such competition
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Table 1. Summary of mathematical notation used in the main text.

symbol explanation

p the viability of an offspring born to a breeder without

help

q the viability of an offspring born to a breeder with help

s the probability with which a breeder survives from one

season to the next

s the probability with which a helper survives from one

season to the next

t the probability with which a floater survives from one

season to the next

v the reproductive value of a ‘normal’ individual at birth

(i.e. a normal surviving offspring)

vf the reproductive value of a ‘normal’ floater (model II

only)

vi the reproductive value of a ‘normal’ individual who

inherited a territory (model II only)

R0 the basic reproduction number, defined as the expected

number of new breeders produced by a given breeder

in a population of low density
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among territorial cooperative breeders is likely to be severe

[12]. In fact, theoretical work by Leggett et al. [13] has shown

that the selective advantage of cooperative breeding is dimin-

ished when the possibility of territory inheritance leads to

competition among kin. In Leggett et al.’s model, related indi-

viduals competed against one another for territory ownership

on an equal basis. Here, we extend their theoretical results to

the case in which there is a rigid hierarchy among related

competitors. We simply ask, under what conditions will

cooperative breeding emerge?

To answer our question we build two inclusive-fitness

models that both pay careful attention to population dynamics.

In this way, our approach differs from many other mathemat-

ical models of cooperative breeding (e.g. [10,14,15]), because

it ensures that model predictions are consistent with ecologi-

cally reasonable scenarios like bounded population growth

(this point was originally made by Pen & Weissing [11]). The

attention we pay to population dynamics also clarifies how

the fitness changes that immediately follow a helpful social

interaction might be accommodated, later, by additional

changes in the fitness of an actor’s relatives—especially fitness

reductions that result from increased local competition.

Although our results can be framed using detailed

population genetics, we provide a decidedly non-technical

presentation that highlights the importance of Hamilton’s con-

tribution to evolutionary biology. With our first model, we

recover the predictions of Pen & Weissing [11], but our predic-

tions change with the second model. Our second model allows

for local competition among siblings. Remarkably, we find that

a broader range of ecological conditions support cooperative

breeding in the second model, even though competition

between relatives enters into consideration.
2. Population dynamics
We begin our modelling effort by considering the dynamics

of a population that does not breed cooperatively. The popu-

lation in question is assumed to be made up of diploid,

simultaneous hermaphrodites. We have chosen to model

individuals as hermaphrodites for mathematical convenience.

At the beginning of a given season, we find some number of

non-breeding floaters, and breeders without attendant helpers.

Each breeder produces exactly one offspring per season

through female function. To produce an offspring through

female function, a given breeder mates with another individual

who makes the male contribution to the offspring. The mate in

question is chosen uniformly at random from the population of

breeders. Thus, each breeder will also produce, on average, one

offspring per season through male function.

An offspring is born on the territory belonging to its

‘mother’ (i.e. the parent who made the maternal contribution).

We assume that each offspring survives with probability p (all

notation is summarized in table 1).

Following reproduction, breeders may die. We use s to

denote the probability with which breeders survive to the

next season. When a breeder survives, it retains its breeding

territory and its surviving offspring (the one it produced

through female function) disperses, becoming a floater in

the process. When a breeder dies, the events that follow

will depend on the model scenario that interests us at the

moment. In the first scenario (model I), we assume that a sur-

viving offspring disperses when its parent dies and that the
parent’s territory disappears. In this first scenario, natal dis-

persal behaviour is independent of parental survival, and

so there is no scope for an offspring to take over its natal ter-

ritory. In the second scenario (model II), we assume that the

territory of a parent that dies is inherited by its surviving off-

spring from that season; if no surviving offspring is present,

then the territory disappears.

Each floater survives from one season to the next, inde-

pendently, with probability t. Floaters that survive then

become breeders with some probability that decreases with

increasing total density of breeders. Specifically, we assume

that the probability with which a surviving floater establishes

itself as a breeder in a given season decreases with increasing

density of breeders (see electronic supplementary material,

sections S1 and S2). Of course, one minus the probability of

establishment gives the probability with which a surviving

floater fails to establish itself as a breeder in a given season.

The description above implies that a territory found in

one season is found again the following season with prob-

ability s in model I and with probability s þ (12s)p in

model II. Once established, then, a territory remains intact for

an average of 1/(1 2 s) seasons in model I and an average of

1/[1 2 (s þ (1 2 s)p)] seasons in model II. In model I, a

territory produces new floaters at a rate of p per season. By con-

trast, a territory in model II produces new floaters at a rate of

sp per season. In both model scenarios, each floater needs

only survive one season (probability t) in order to become

established as a breeder when population densities are low.

It follows that, at low population densities, each breeding

territory produces R0 new breeding territories, where

R0 ¼

pt
1� s

(model I),

spt
1� (sþ (1� s)p)

¼ pt
1� s

s

1� p
(model II):

8>><
>>: (2:1)
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region A : R0 > 1 for model II only
region B : R0 > 1 for model I and II
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s

B A B

t large

Figure 1. The region of parameter space supporting R0 . 1 varies with
the values taken by the probability parameters p, s, and t. In region A
R0 . 1 holds for model II only, whereas R0 . 1 holds for both
models I and II in region B. We find that decreasing t decreases the area
of both regions A and B, and increasing t has the opposite effect. In fact,
as t approaches zero the area of both regions vanishes, and as t approaches
1 the total area of both regions tends to 1/2 (i.e. the area in the unit square
above the dashed line, p þ s ¼ 1). Of course, for 0 , t , 1 both regions
A and B lie above the dashed line. Thus, for 0 , t , 1 we conclude that
R0 . 1 implies p þ s . 1(see the electronic supplementary material,
sections S1 and S2).
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The quantity R0 is often referred to as ‘the basic reproduction

number’ in population biology. Although it has been denoted

R0, the basic reproduction number should not be confused

with measures of relatedness.

It is possible to show that population extinction is

avoided whenever R0 . 1, and that breeders and floaters

achieve stable, positive equilibrium densities, respectively

(see the electronic supplementary material, sections S1 and

S2). It is also possible to show that R0 . 1 in model I implies

that the analogous condition holds for model II; the converse,

however, is not true (figure 1).
3. Advantage of delayed dispersal with helping
Cooperative breeding systems are quite varied. In some cases,

cooperative breeders exhibit high reproductive skew with

non-breeding helpers directing their help to a small number

of dominant breeders, while in other cases reproduction is

more evenly distributed [16]. It is the former case (‘helpers-

at-the-nest’) that we model here. Specifically, we develop

conditions for the selective advantage of an individual who

delays natal dispersal for one season to help its mother rear

the offspring she will next produce through female function.

We assume that the presence of a helper changes the prob-

ability of newborn survival from p to q. Helpers can improve

offspring survival q . p, however our results do not require

q . p. In some cooperatively breeding species, breeders

reduce their level of investment in parental care in response

to help [17,18], and so q � p is also biologically reasonable.

Helpers in our model survive from one season to the next

with probability s. While helper survival may be greater than

that of floaters because of parental nepotism and familiarity

with local conditions [19], we make no specific assumptions

about the relative sizes of s and t. We do, however, assume

that a helper inherits the territory of its mother in the event
of her death. For model II, we assume that territory inheri-

tance by a helper implies dispersal by a surviving newborn.

In other words, experienced helpers inherit territories ahead

of their inexperienced siblings in model II. In both models,

surviving helpers that do not inherit a territory after one

season disperse, becoming floaters in the process.

Below, we fix attention on an individual who behaves in a

‘deviant’ helpful manner, rather than in a ‘normal’ non-helpful

manner. We then determine how the focal individual’s inclus-

ive fitness in a population at equilibrium changes as the result

of its deviant behaviour. As the reader will see, our calculations

assume that all relatives (including descendants) of the focal

individual behave in a normal way. Technically speaking, we

are assuming that the tendency to delay dispersal and help is

owing to the presence of a rare allele at a single, autosomal

locus and that the phenotypic effect of this rare allele is small

(weak selection). In fact, the predictions we derive are equi-

valent to those made by detailed population-genetic models

that make these same basic assumptions (see the electronic

supplementary material, sections S3 and S4).
(a) Model I
We consider an individual (the focal individual) who has

decided to remain on its natal site to help its mother (recall

that, had its mother not survived, then dispersal would have

been automatic). We ask, how does the inclusive fitness of

this individual change as a result of its decision? Before we

start measuring change in inclusive fitness, though, we need

to ensure changes will be commensurable by settling on a

‘common currency’. It turns out that any correct choice of

common currency must reflect an individual’s genetic contri-

bution to the population in the very distant future, in other

words an individual’s reproductive value [20–22]. It is

enough for now to point out that we can, without the loss of

generality, set the reproductive value of a normal individual

at birth (denoted v) equal to 1.

We now focus on changes to the indirect component of an

actor’s inclusive fitness. Because the focal individual has

decided to remain on its natal site, its mother is able to produce

an offspring through female function with probability q, rather

than probability p. As a breeder chooses a new mate each

season the focal individual and the offspring in question are

half-siblings, related to one another by a factor of one-quarter.

It follows that the focal individual’s actions have immediately

changed the indirect component of its inclusive fitness by an

amount equal to (1/4)(q 2 p) . v ¼ (1/4)(q 2 p) . 0. If q . p,

then this term counts as an indirect-fitness benefit.

Turning our attention now to changes in direct fitness, we

note that when both the focal individual and its mother survive

(probability ss) the focal individual becomes a disperser.

In this case, the focal individual (who is related to himself/

herself by a factor of one) receives a normal direct-fitness

pay-off v ¼ 1. The direct-fitness pay-off, however, is exactly

what the focal individual would have received had it behaved

in a normal manner to begin with. Thus, with probability ss,

the direct-fitness component of the focal individual’s inclusive

fitness experiences zero change.

If the focal individual survives and its mother does not

(probability s(1 2 s)), then it will immediately inherit a territory.

As a result, the focal individual expects to produce p/(1 2 s)

offspring through male function and p/(1 2 s) offspring

through female function over its lifetime, for a direct-fitness
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Figure 2. The region of ‘normal’ parameter space, s and p, that supports cooperative breeding for various values of ‘deviant’ parameters s and q. Area above the
blue line corresponds to a selective advantage for helping; i.e. the expression in (3.1) is positive. For comparison, we have superimposed the blue line on
the relevant information from figure 1. Recall that, in order for R0 . 1 in model I, s and p must fall above the solid black line (t ¼ 0.5 shown). In addition,
R0 . 1 implies that the pair (s, p) occurs above the dashed line. Overall, we see that increasing s or q (or both) increases the size of the region of parameter
space that supports cooperative breeding.
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pay-off equal to (1/2) . v . 2p/(1 2 s)¼ p/(1 2 s). It follows

that, with probability s(1 2 s), the focal individual’s

behaviour changes its direct fitness by an amount equal to

( p/(1 2 s) 2 v) ¼ ( p/(1 2 s) 2 1) . 0.

In the case where the focal individual does not survive

(probability 1 2 s), it of course cannot produce any off-

spring of its own. Consequently, with probability 1 2 s, the

focal individual’s direct fitness changes by an amount equal

to (0 2 v) ¼ 21 as a result of its deviant behaviour.

Summing all changes to direct and indirect fitness (we can

do this because we have used a common currency), we arrive

at an expression for the overall inclusive-fitness effect of the

focal individual’s decision

1

4
(q� p)|fflfflfflfflffl{zfflfflfflfflffl}

indirect benefit

þ s(1� s)
p

1� s
� 1

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
direct benefit (inheritance)

� (1� s)|fflfflffl{zfflfflffl}
direct cost (mortality)

¼ 1

4
(q� p)þ s(pþ s)� 1: (3:1)

An expression equivalent to (3.1) has previously been

derived by Pen & Weissing [11] (their condition 25). When

the expression in (3.1) is positive (respectively, negative),
helping is favoured (respectively, disfavoured) by selection.

Intuitively, for fixed values of the life-history parameters s

and p, we see that increasing deviant survival parameters q
or s serves to increase the advantage of helping (figure 2).

(b) Model II
In model II, the life history of a normal individual is more

complicated than it was in model I. Consequently, we must

elaborate on our description of reproductive value for

model II.

In model II, a normal individual becomes a breeder either

because it inherits a territory or because it establishes a new

territory after being a floater for some period of time. Let vf

denote the reproductive value of a normal floater, and let vi

denote the reproductive value of a normal individual

who inherits a territory. If v again denotes the repro-

ductive value of a normal individual at birth, we must have

v ¼ svf þ (1 2 s)vi. An established breeder in model II expects

to produce (1/2) . 2p/(1 2 s) offspring over the course of its

life, and so vi ¼ v . (1/2).2p/(1 2 s). It follows that the previous

equation can be rewritten as v ¼ svfþ (1 2 s)v( p/(1 2 s)),

and if we again set v ¼ 1, we find vf¼ (1 2 p)/s.
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Figure 3. The region of ‘normal’ parameter space consistent with a cost interpretation of the first indirect-fitness term of the expression in (3.2) from model II.
(a) The contours whose height corresponds to the largest q that could be consistent with a cost interpretation of the aforementioned term. The contour of height
one has been highlighted in red, as it is the largest possible value q may take. For comparison, we have superimposed the red curve on the relevant information
from figure 1. Recall that, in order for R0 . 1 in model II, s and p must fall above the solid black curve (t ¼ 0.2 in (b), and t ¼ 0.66 in (c)). In addition,
R0 . 1 implies that the pair (s, p) occurs above the dashed line. Overall, we see that the first indirect-fitness term of the expression in (3.2) is not necessarily a
cost in the small region above the black curve and below the red curve.
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As before, we fix attention on an individual who has

decided to remain on its natal site to help its mother and

we ask how has this decision changed the focal individual’s

inclusive fitness?

The focal individual’s deviant behaviour once again

changes its indirect fitness. However, more care is required

in model II in order to determine the amount and the sign

of the change, because a helper’s actions in this model can

affect newborns in more than one way. If the focal individual

survives and the breeder dies (probability s(1 2 s)), then the

helper will displace a surviving newborn, sending it off to

become a floater instead of allowing it to inherit the territory.

In this case, the surviving newborn has a reproductive value

vf instead of vi. It follows that, with probability s(1 2 s), the

indirect-fitness change amounts to (1/4)(qvf 2 pvi).

Let us take a moment to consider the term (1/4)(qvf 2 pvi)

in more detail. As the previous discussion suggests, this term

represents the effect of local competition among kin. In order

for it to be counted as a cost, though, it must be negative; in

other words, q cannot be too large (q , pvi/vf ). Figure 3a
shows how the largest value of q consistent with a cost

interpretation changes as a function of s and p. Of course, we

always have q , 1, and so any combination of s and p above

the red line in figure 3a implies kin competition is costly.

We cannot forget that survival parameters s and p are con-

strained by R0 . 1. If we superimpose figure 3a on figure 1, we

see that the cost interpretation of (1/4)(qvf 2 pvi) can only fail in

a narrow region of parameter space: that region above the solid

black line but below the red line in figure 3b,c. We contend,

therefore, that (1/4)(qvf 2 pvi) is most likely an indirect-fitness

cost. In fact, for sufficiently small t (i.e. for cases where floaters

occupy harsh, marginal habitat) we are virtually guaranteed

that (1/4)(qvf 2 pvi) counts it as a cost (figure 3b).

Returning now to our development of the indirect-fitness

effects, if either the focal individual dies (probability 1 2 s),

or if the focal individual and the parent both survive (prob-

ability ss), the newborn will not be affected by the focal

individual’s decision beyond the initial change in survival. In

this former case, the newborn inherits a territory or becomes

a floater just as any other normal newborn would. In the

latter case, the newborn’s success is equal to that of any

normal floater. Therefore, with probability (1 2 s) the
indirect-fitness change amounts to (1/4)(q 2 p) . v ¼ (1/

4)(q 2 p), and with probability ss the indirect-fitness change

amounts to (1/4)(q 2 p) . vf.

The focal individual’s actions only change its direct fit-

ness in two ways. First, the focal individual dies with

probability (1 2 s), changing its direct fitness by an amount

equal to 2vf. If the focal individual survives and inherits

its natal territory (probability s(1 2s)), its direct fitness

increases by an amount equal to vi 2 vf. If the individual sur-

vives but does not inherit a territory, it disperses and its

direct fitness is unchanged.

Summing all the changes to direct and indirect fitness,

we find the inclusive-fitness effect of the focal individual’s

decision is

� s(1� s)
1

4
(pvi � qvf)

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{indirect cost (kin competition)

þ (1� s)
1

4
(q� p)þ ss

1

4
(q� p)vf

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{indirect benefit

þ s(1� s)(vi � vf)|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
direct benefit (inheritance)

� (1� s)vf|fflfflfflfflffl{zfflfflfflfflffl}
direct cost (mortality)

¼ 1

s

1

4
q(s(1� p)þ s(1� s))� 1

4
psþ (pþ ss� 1)

� �
:

(3:2)

When this expression is positive (respectively, negative),

delayed dispersal is favoured (respectively, disfavoured) by

selection. In model II, we again find that, for fixed values of

s and p, increasing ‘deviant’ survival parameters q and s
increases the advantage of helping (figure 4). By comparing

corresponding panels of figures 2 and 4, we also find that the

set of s and p parameter values that support the emergence

of helping is larger in model II than it is in model I.
4. Individual-based simulation
We used individual-based simulation (sensu [23]) to confirm

that our inclusive-fitness-based predictions were robust to

changes in our assumptions about weak selection, and those

about the determinism of the system as a whole. Simula-

tions were carried out using Matlab (www.mathworks.com),

and copies of the scripts used can be found in the electronic

supplementary material.

http://www.mathworks.com
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Figure 4. The region of ‘normal’ parameter space, s and p, that supports cooperative breeding for various values of ‘deviant’ parameters s and q. Area above the
blue curve corresponds to a selective advantage for helping; i.e. the expression in (3.2) is positive. For comparison, we have superimposed the blue curve on
the relevant information from figure 1. Recall that, in order for R0 . 1 in model II, s and p must fall above the solid black curve (t ¼ 0.5 shown). In addition,
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that supports cooperative breeding. We also see that the size of the region supporting cooperative breeding in this figure is larger than that supporting cooperative
breeding in model I (cf. figure 2).
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In our simulations, each individual (from a finite set of indi-

viduals) has two copies of a dispersal gene. Each gene copy is

simply a number between 0 and 1, and an individual’s disper-

sal phenotype is the average of these two numbers. As one

might expect, one of the genes carried by an individual is

chosen uniformly at random from that individual’s mother;

the other gene is chosen uniformly at random from the individ-

ual’s father. In order to ensure continued genetic variation in

our simulations, transmission of genes from parent to offspring

includes the opportunity for mutation. It is important to note

that, at any time, the simulated population may consist of a var-

iety of phenotypes—not simply wild-type individuals and a

phenotypically similar mutant. It is the possibility for broad

genotypic/phenotypic diversity that implies selection is no

longer weak, by assumption.

Our simulations follow one or the other set of life-history

events given above (model I or II), with two important changes.

First, they are stochastic. Second, because the simulations allow

a non-zero-level helping (i.e. incomplete dispersal) to arise, they

track the number of floaters, the number of breeders without

help and the number of breeders with help. Floaters still
become breeders at a probabilistic rate that decreases with the

total density of breeders, but in simulations the total density

of breeders is the sum of the densities of breeders without

help and with help.

Figure 5a,b shows simulated evolutionary trajectories

for models I and II, respectively. For both models, we typi-

cally find that when the inclusive-fitness analysis predicts

helping will be advantageous (i.e. when expression (3.1) is

positive in model I, or when expression (3.2) is positive in

model II), the average level of dispersal tends to very low

levels (i.e. the population exhibits a high degree of helping).

By contrast, when the inclusive-fitness analysis predicts that

helpers will be at a disadvantage, the average level of disper-

sal becomes rather high over time. Of course, there are cases

in which the action of selection is swamped by drift (data not

shown), but we found these cases coincided with parameter

sets that produced small simulated population sizes or

parameter sets that resulted in only a slight selective advan-

tage/disadvantage for helpers. Overall, then, we concluded

that predictions from simulations matched those made by

the inclusive-fitness analysis.
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Figure 5. Simulation of the evolution of dispersal rate for (a) model I and (b) model II. Plots show how the mean-average dispersal rate changes over time. Recall
that complete dispersal corresponds to a population in which no individual helps, and complete philopatry corresponds to a population in which every individual
helps. In (a), black (respectively, green) trajectories show that when line (3.1) is negative (respectively, positive) the population tends towards complete dispersal
(respectively, philopatry). In (b), black (respectively, green) trajectories show that when line (3.2) is negative (respectively, positive) the population tends towards
complete dispersal (respectively, philopatry). Note that populations never exhibit complete dispersal or complete philopatry, because simulations incorporate
mutation as well as a drift. Parameter values used to generate trajectories have been included with the Matlab simulation code.
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5. Discussion
(a) Evolution of delayed dispersal and helping
We have obtained two expressions for the change in inclusive

fitness that results from delayed natal dispersal and helping.

We have also used individual-based simulation to show that,

when the inclusive-fitness change is positive, a transition

from solitary breeding to cooperative breeding occurs.

Our first expression for inclusive-fitness change was

equivalent to one previously developed by Pen & Weissing

[11]. It was based on a model in which normal offspring

are unable to condition dispersal on parental survival. Of

course, an inability to modify dispersal to respond to local

breeding opportunities may simply be owing to the fact

that natal dispersal occurs prior to any parental mortality

event. In any event, territory inheritance in the first scenario

is only possible for those offspring who also opt to help.

Our second expression for inclusive-fitness change corre-

sponded to a model in which normal offspring disperse only

when there is no opportunity to take over a territory vacated

following parental death. Consequently, the second expression

included a term that described the effect of local interactions

among kin—a term not found in the expression developed

by Pen & Weissing [11]. We found that it is possible for local

interactions among kin to yield an inclusive-fitness benefit,

for example when the help received by an offspring is out-

weighed by any risks that might come from that offspring

being displaced from its birthplace. However, we also found

the region of parameter space over which these net benefits

might be realized to be quite small. It is more likely, in our
view, that the local interaction among kin be considered an

additional cost of helping.

Overall, our second result effectively extends the findings of

Leggett et al. [13] to the case where a dominance hierarchy exists

among siblings (actually, half-siblings). Our second result also

supports Gaston’s [12] long-standing claim that, without the

possibility of territorial expansion, cooperative breeding can

coincide with severe competition among relatives. Future

work could certainly consider the effect of territorial expansion,

and based on recent work on helping in a homogeneous popu-

lation [24] we expect that such a modification would simply

promote the emergence of cooperative breeding. For now,

though, our second result puts Gaston’s idea into a clear

theoretical context.

Surprisingly, we found that, despite the occurrence of kin

competition, helping in model II was predicted to occur

under a broader range of ecological conditions than it was

in model I (we stress that this is entirely consistent with our

claim that kin competition in the second model is, most

often, costly). Broader support for helping in model II

occurs for two basic reasons. First, the fact that territory

inheritance did not require help in model II also meant that

a normal population could achieve stable numbers under a

broader range of ecological conditions. In other words,

there were simply more normal populations available to be

invaded under model II. Second, the net benefit of helping

in model II is simply larger than it was under model I. Of

course, this second point is rather facile, and luckily we can

point to one key fitness driver: the mortality cost of helping.

As we have seen, a helper who dies in model I reduces its
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direct fitness. A helper who dies in model II also reduces its

direct fitness, however, the reduction is countered by the fact

that the sibling who benefited from the helper’s actions can

still inherit the territory should it become vacant. The effect

of kin competition, here, is similar to that found in a theoreti-

cal study of bacterial persistence [25]. Bacterial persistence is

a helpful trait, because it is associated with reduced growth

rates. Importantly, modelling has revealed that kin compe-

tition can promote helpful persistence by reducing the cost

of reduced growth rate (i.e. costs of entering into a quiescent

state) [25].

In both model scenarios considered here, the decision to

help was perfectly coupled with the decision to remain on

the natal site. In other words, individuals who chose to delay

dispersal also chose to help in raising half-siblings. This

assumption is common to other models of cooperative breed-

ing [11,13,14] and reflects the biology of many cooperatively

breeding birds and mammals [26,27]. That said, the biology

of species such as the green jay (Cyanocorax yncas), the

Australian magpie (Gymnorhina tibicen) and the Siberian jay

(Perisoreus infaustus) shows that philopatry need not imply

that a non-breeder is willing to help its breeding parent

[26,28]. By setting q ¼ p in our model, one can easily turn

expressions (3.1) and (3.2) into expressions for the advantage

of delayed dispersal in the absence of helping. In this way,

our study can also be viewed as an extension of existing

work on the evolution of dispersal—work that has expressly

neglected complications arising from competition among rela-

tives [19,29]. It should be noted, however, that linking dispersal

and helping, as we have done here, is known to underestimate

the importance of ecological conditions (e.g. limited available

habitat) in the emergence of help [30].

Our model scenarios also assume that sex allocation

decisions—in other words, decisions about the effort put into

reproduction through male versus female function—do not

evolve. However, there is both empirical [31] and theoretical

evidence [32,33] that suggests a greater fraction of a breeder’s

effort should be allocated to the more helpful sex. In the

absence of local competition among kin, we expect cooperative

breeding will emerge more readily than predicted by our

inclusive-fitness analysis if breeders are able to invest more in

female function. With local competition, however, predictions

concerning the effect of changing sex allocation patterns

become less clear. Modelling has shown that, when the more
helpful sex is overproduced, local competition among kin can

actually increase [34]. This may work against the emergence

of cooperative breeding, but perhaps shifts towards investment

in the less helpful sex could mitigate the effects of increased

competition. We plan to address the topic of sex allocation

and helping in the face of local competition in greater detail

in the near future.

(b) Advantage of inclusive-fitness-based theory
The results presented above can be derived using detailed

mathematical models (see the electronic supplementary

material), but our inclusive-fitness-based approach allowed

us to develop them in a less technical way. In our view,

the presentation given above highlights the importance of

Hamilton’s notion of inclusive fitness to sociobiology.

Economic analogies are widely used to convey the adaptive

significance of individual behaviour [35], and inclusive fit-

ness provides us with the intuition we need to extend such

analogies to social behaviours. As we have illustrated here,

the idea that social behaviour functions to maximize an indi-

vidual’s inclusive fitness [36] effectively provides biologists

with a ‘calculus’ of sorts that may be used to describe the

action of selection in a rather straightforward manner.

Critics of inclusive fitness theory will likely have already

noted that our analysis has made use of weak selection. The

simulations showed that the conclusions of our analysis were

robust to violations of the weak-selection assumption. More

generally, weak selection is an approximation that makes

inclusive-fitness-based analyses simple, just as weak selection

makes population-genetic models simple (e.g. see ch. 7 of

[37]). In an inclusive-fitness model, weak selection ensures

that the distribution of deviant behaviour can be captured

using measures of relatedness alone [38,39]. Abandon-

ing weak selection does not mean that we are abandoning

inclusive-fitness-based models; it only means that we are

abandoning simple inclusive-fitness-based models [40]. We

expect, therefore, that an inclusive-fitness-based ‘calculus’

could be used in future model extensions that included

multiple helpers with synergistic interactions.
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