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An immunotherapy response
prediction model derived from
proliferative CD4+ T cells and
antigen-presenting monocytes
in ccRCC
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and Xiaoyong Hu1*

1Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai,
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Zhongshan Hospital, Fudan University, Shanghai, China, 4Center for Tumor Diagnosis & Therapy,
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Most patients with clear cell renal cell carcinoma (ccRCC) have an impaired

response to immune checkpoint blockade (ICB) therapy. Few biomarkers can

predict responsiveness, and there is insufficient evidence to extend them to

ccRCC clinical use. To explore subtypes and signatures of immunocytes with

good predictive performance for ICB outcomes in the ccRCC context, we

reanalyzed two ccRCC single-cell RNA sequencing (scRNA-seq) datasets from

patients receiving ICB treatment. A subtype of proliferative CD4+ T cells and

regulatory T cells and a subtype of antigen-presenting monocytes that have

good predictive capability and are correlated with ICB outcomes were

identified. These findings were corroborated in independent ccRCC ICB

pretreatment bulk RNA-seq datasets. By incorporating the cluster-specific

marker genes of these three immunocyte subtypes, we developed a

prediction model, which reached an AUC of 93% for the CheckMate cohort

(172 samples). Our study shows that the ICB response prediction model can

serve as a valuable clinical decision-making tool for guiding ICB treatment of

ccRCC patients.

KEYWORDS

clear cell renal cell carcinoma (ccRCC), immune checkpoint blockade (ICB) therapy,
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Introduction

Clear cell renal cell carcinoma (ccRCC) is the most common

histological subtype and accounts for more than 70% of all renal

cell carcinoma (RCC) (1). The global incidence has shown an

upward trend in recent years (2). Large-scale tumor

transcriptome analysis revealed that ccRCC was highly

infiltrated by immune cells (3), and most notably, its T-cell

infiltration was the highest among tumor types within The

Cancer Genome Atlas (TCGA) (3). Based on this feature,

immune checkpoint blockade (ICB) therapy has significantly

improved advanced ccRCC treatment (4, 5). However, a large

proportion of ccRCC patients do not respond to this therapy for

unclear reasons (6). Such diversity in response to ICB highlights

the necessity of identifying predictive biomarkers.

Prev ious whole -exome sequenc ing (WES) and

transcriptome sequencing of tumors identified several factors

associated with ICB outcomes, such as high T/low myeloid cell

infiltration (7), high B-cell (8)/CD4 memory T cell abundance

(9), elevated PD-L1 expression (10), high tumor mutational

burden (TMB) (11), and high similarity/diversity of TCR

clonality (12, 13), which are associated with ICB responses.

Exhausted/dysfunctional CD8+ T cells (13, 14), anti-

inflammatory/M2-like tumor-associated macrophages (TAMs)

(13, 14), defects in IFNg signaling (15) or antigen processing and

presentation (16) all contribute to resistance. However, ccRCC is

unique compared to other tumors in response to

immunotherapy. For example, CD8+ T-cell infiltration (17),

tumor mutation burden (11), frameshift insertions and

deletions (fsINDELs) (18), and HLA heterozygosity (19) have

been described as pro-response effects in other tumor types,

whereas none of them have been shown to be associated with

ICB response in ccRCC (4, 7, 20). To date, the factors driving

ICB resistance remain largely unknown. Effective biomarkers for

predicting the ccRCC ICB response in clinical practice are

still lacking.

In this study, we reanalyzed two independent ccRCC single-

cell RNA sequencing (scRNA-seq) datasets (12, 14) to construct

a prediction model. We found that proliferative CD4+ T cells

(MKI67+ CD4Ts) and proliferative regulatory T cells (MKI67+

Tregs) can promote ICB resistance, and a subset of antigen-

presenting monocytes is related to the ICB response. Based on

these findings, we developed an effective ICB response signature,

and this signature was validated in several ICB pretreatment

bulk RNA-seq datasets. Overall, this signature reached an AUC

of 93% for a 172-sample cohort and is more effective than

previously published ICB response signatures. These findings

extend our understanding of factors associated with the ICB

response and provide a potentially powerful response prediction

model for ICB clinical treatment.
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Results

CD4+ T, Treg, and monocyte cells are
associated with the ICB response/
resistance in ccRCC

We reanalyzed two independent publicly available ccRCC

scRNA-seq datasets [Bi’s dataset (14) and Au’s dataset (12)],

which were both from ccRCC patients treated with PD-1/PD-L1

monoclonal antibodies. Then, the observations from single-cell

datasets were validated across multiple ccRCC bulk RNA-

seq datasets.

Details of all scRNA-seq and bulk RNA-seq datasets used in

this study are described in the Methods, and the metadata for all

samples are available in Supplementary Table 1. Patients were

divided into responders (R), including complete response (CR)

and partial response (PR), and nonresponders (NR), including

stable disease (SD) and progressive disease (PD), according to

the response evaluation criteria in solid tumors (RECIST) (21).

Not evaluable (NE) samples from all cohorts were omitted from

the RECIST response analysis but remained from the

survival analysis.

The overall design of this study is summarized in Figure 1.

We used the cell types of Bi’s dataset (n.patients = 7, R = 2, NR =

2, NoICB = 3) and Au’s dataset (n.patients = 2, R = 1, NR = 1)

defined by the original studies (Figure S1A). There were ten cell

types from Bi’s dataset, i.e., B cells, CD4+ T cells (CD4Ts), CD8+

T cells (CD8Ts), dendritic cells (DCs), monocytes, tumor-

associated macrophages (TAMs), natural killer cells (NKs),

natural killer T cells (NKTs), regulatory T cells (Tregs) and

cancer cells, as well as three cell types from Au’s dataset: CD4Ts,

CD8Ts and Tregs. Figure S1B shows the visualization results of

the 12 immune cell types (excluding cancer cells) in two-

dimensional space via uniform manifold approximation and

projection (UMAP).

According to the workflow in Figure S1A, we identified the

differentially expressed (DE) genes of R and NR in the 13 cell

types using the scCODE R package (22) and obtained a total of

26 DE gene lists (Extended data 1, see Study Design for details).

We sought to identify gene sets that were effective predictors of

ICB outcomes. From the Molecular Signatures Database

(MSigDB) (23), the 26 DE gene lists were found to be

enriched in 1008 gene sets, including GOBP, Hallmark,

KEGG, and Reactome (Extended data 2, see Study Design for

details). The predictive capabilities of the 1008 gene sets were

evaluated in terms of receiver operating characteristic (ROC)

curves obtained with the Cancerclass R package (24) in the

CheckMate cohort (20) (n.patients = 172, R = 39, NR = 133, see

Methods for details). ROC p values for these 1008 gene sets were

visualized and are listed in Figures S2 A–D and Extended data 2.
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We found that the GOBP gene sets had overall better

predictive performance than Hallmark, KEGG and Reactome.

To identify the cell types with good predictive capability, we

examined the enriched GOBP gene sets with ROC p values < 0.05

(without correction) within each DE gene list. A DE gene list was

considered significant if no less than half of its enriched gene sets

had ROC p values < 0.05. Next, based on the same criteria,

significant DE gene lists were identified in Hallmark, KEGG, and

Reactome. As a result, we identified 7 prediction-related DE gene

lists (Figure S2A). The DE gene lists were further reduced to 3

with FDR corrected ROC p values (Figure S2E): the monocytes

from Bi’s dataset responders (Bi’s_Mono.R), and CD4Ts and

Tregs from Au’s dataset nonresponders (Au’s_CD4T.NR and

Au’s_Treg.NR). We speculated that the CD4T, Treg and

monocyte subtypes might be correlated with ICB responses.
MKI67+ CD4Ts and MKI67+ Tregs were
enriched in nonresponders

The two significant nonresponder-associated DE gene lists:

Au’s_CD4T.NR and Au’s_Treg.NR in Au’s dataset was further

analyzed. The 1308 CD4Ts (NR.cells = 712, R.cells = 596) and

1501 Tregs (NR.cells = 126, R.cells = 375) were clustered into five

CD4Ts subclusters and four Tregs subclusters by Seurat (25),

respectively (Figures 2A, D). Subsequently, cluster-specific marker

genes were identified by FindAllMarkers (Seurat), and the

expression heatmap of the top 10 marker genes is shown in

Figures 2B, E. The classical marker genes of CD4Ts and Tregs

were highly expressed in all subclusters (Figures S3A, S3B).

There were 7 gene sets of Au’s_CD4T.NR and 5 gene sets

of Au’s_Treg.NR with ROC p.adjust < 0.05 (Figure S2E).
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We analyzed the expression of these gene sets via gene set

variation analysis (GSVA) (26) and found that they were highly

expressed in CD4T subcluster 4 (CD4T_C4, NR.cells = 24,

R.cells = 8) (Figure 2C, Figure S3C) and Treg subcluster 3

(Treg_C3, NR.cells = 96, R.cells = 5) (Figure 2F, Figure S3D).

Therefore, both CD4T_C4 and Treg_C3 cells were likely

associated with ICB resistance.

Further analysis of these two subclusters revealed that although

they belong to different cell types, they are both proliferative cell

populations. Specifically, they both highly expressed MKI67,

TOP2A, TUBB, TUBA1B, STMN1, TYMS and other

proliferation markers (27, 28) (Figure 2G, Figures S3E, S3F). The

GOBP, Hallmark, KEGG and Reactome analyses of their marker

genes showed that cell cycle-related pathways and metabolic

activities (e.g., DNA repair and oxidative phosphorylation

[OXPHOS], etc.), oncogenic pathways such as MYC (29) and

E2F (30) targets were dramatically enriched (Figure 2H, Extended

data 3). In contrast, pathways associated with tumor suppression,

such as immune activation-related pathways (31), antigen

presentation and processing (16), IFNg responses (15, 32), TNFa
signaling (33), and P53 pathways (34), were remarkably

suppressed in both subclusters (Figure 2H, Extended data 3). In

addition, CD4T_C4 also downregulated anticancer immune

responses and cytokine-related pathways (35), while Treg_C3

downregulated anticancer IFNa and IFNb signaling (15, 32) and

activated oncogenic mTORC1 signaling (36) (Figure 2H, Extended

data 3). Their top 20 pathways sorted by the absolute value of the

normalized enrichment score (NES) also confirmed the above

observation (Figures S3G, S3H). Next, we used ingenuity pathway

analysis (IPA) for further verification. IPA showed that CD4T_C4

and Treg_C3 cells have significantly activated cell cycle-related

kinetochore, chromosomal replication, cyclins and mitosis, as well
FIGURE 1

The overall design of this study. Au and Bi are scRNA-seq datasets, and CheckMate, CM025, CM010, CM009, Javelin 101, GSE67501 and
PMC6035749 are bulk RNA-seq datasets. GSEA, gene set enrichment analysis; DE, differentially expressed; ICB, immune checkpoint blockade;
IPA, ingenuity pathway analysis.
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as oxidative phosphorylation, while cell cycle-related checkpoints

were inhibited in CD4T_C4 cells (Figures S3I, S3J). Such

observations were consistent with previous studies, i.e.,

dysfunction of cell cycle-related checkpoints often results in

genomic instability and oncogenesis (37). Therefore, CD4T_C4

and Treg_C3 cells are proliferative subtypes and may impair

antitumor immunotherapy. In view of the high expression of

proliferation markers and enrichment of cell cycle-related

pathways in both CD4T_C4 and Treg_C3, we annotated them

as MKI67+ CD4Ts and MKI67+ Tregs, respectively.
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Validation of MKI67+ CD4Ts and MKI67+

Treg signatures in independent datasets

As mentioned above, we preliminarily confirmed that

MKI67+ CD4Ts and MKI67+ Tregs were related to ICB

resistance. To further validate this finding, we investigated

whether tumors enriched with these two cell subtypes were

more susceptible to ICB resistance.

The 70 marker genes of MKI67+ CD4Ts (annotated as

MKI67+CD4T.Sig) were characterized by cell cycle, MYC, E2F
B C

D E F

G H

A

FIGURE 2

Proliferative subtypes of CD4Ts and Tregs were enriched in nonresponders. Au’s CD4Ts and Tregs scRNA-seq datasets were analyzed. (A) UMAP
plot of Au’s dataset’s CD4Ts that were classified into 5 subclusters from R and NR of distinct ICB outcomes. Bar plots show cell proportions
grouped by clusters (left) and ICB outcomes (right). (B) Heatmap of scaled normalized expression for the top 10 specific marker genes of Au’s
CD4T subclusters as identified by a two-sided Wilcoxon rank-sum test with FDR correction (q < 0.05). (C) ICB response prediction-related
CD4T subcluster was identified by locating the effective (ROC p.adjust < 0.05) predictive gene set expression via gene set variation analysis
(GSVA). (D) UMAP plot of Au’s Treg dataset that was classified into 4 subclusters of distinct immune checkpoint therapy outcomes from R and
NR. Bar plots show cell proportions grouped by clusters (left) and ICB outcomes (right). (E) Heatmap of scaled normalized expression for the
top 10 specific marker genes of Au’s Treg subclusters as identified by a two-sided Wilcoxon rank-sum test with FDR correction. (F) ICB response
prediction-related Treg subtype was identified by locating the effective predictive gene set expression via GSVA. (G) Violin plot of the expression
levels of proliferative marker genes in Au’s CD4Ts and Treg subclusters. A two-sided Wilcoxon test was used to determine significance between
the subclusters of interest and others. ****P < 0.0001. (H) GOBP, Hallmark, KEGG and Reactome analysis results of Au’s CD4Ts subcluster 4
(CD4T_C4) and Au’s Treg subcluster 3 (Treg_C3) compared with other subclusters.
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targets and OXPHOS (Figure S4A, Extended data 4). The GSVA

(26) score of MKI67+CD4T.Sig was significantly higher than the

other CD4Ts subclusters (Figure 3A, Figure S4B). These genes

were enriched in nonresponders (Figure 3B), and the GSVA score

was notably higher in nonresponders as well (Figure S4C).

Subsequently, we validated MKI67+CD4T.Sig in the

pretreatment CheckMate cohort (n.patients = 172, R = 39, NR =

133) (20) and found that nonresponders had higher GSVA scores

(p = 0.028) (Figure 3C). Consistently, gene set enrichment analysis

(GSEA) showed significant enrichment of MKI67+ CD4T.Sig in

nonresponders compared to responders (Figure S4D).

Next, we analyzed the impact of MKI67+ CD4Ts on the

prognosis of ICB treatment patients. It was found that in the

pretreatment CheckMate cohort (n.patients = 181, R = 39, NR =
Frontiers in Immunology 05
133, NE = 9, NEs were not removed for survival analysis, the

same below), the group with lowMKI67+CD4T.Sig GSVA scores

were associated with significantly higher overall survival (OS, p =

0.022) and progression-free survival (PFS, p = 0.022)

(Figures 3D, E). Subsequently, we corroborated this finding in

the Javelin101 cohort (4) with 726 pretreatment bulk RNA-seq

data (see Methods for details). Consistent results were obtained,

i.e., the group with low GSVA scores had markedly longer PFS

(p < 0.0001) (Figure S4E). To eliminate the effects of sunitinib

treatment on the above results, we extracted and analyzed the

avelumab plus axitinib group (4) bulk RNA-seq data (n.patients

= 354), and the results were the same (p = 0.022, Figure S4F). In

addition, we validated the results in the posttreatment bulk

RNA-seq dataset of the CheckMate 009 (CM009) cohort (38)
B C

D E

A

FIGURE 3

Validation of the MKI67+ CD4Ts signature using independent bulk RNA-seq datasets. Au’s CD4Ts scRNA-seq dataset and CheckMate cohort
were analyzed. (A) Violin plot of a 70-gene signature (MKI67+CD4T. Sig) GSVA scores showed that it can specifically characterize proliferative
subcluster 4 of CD4Ts (MKI67+ CD4Ts). Centerline, median. Box limits, upper and lower quartiles. Whiskers, 1.5 interquartile range. Points
beyond whiskers, outliers. A two-sided Wilcoxon test was used to determine significance. ****P < 0.0001. (B) GSEA revealed that
MKI67+CD4T.Sig was enriched in NR of MKI67+ CD4Ts. The p value was FDR-adjusted by the FDR method. (C) Boxplot validated that
MKI67+CD4T. The Sig GSVA scores of NR were significantly higher than those of R in the CheckMate cohort (n.patients = 172, R = 39, NR = 133)
via GSVA analysis. Centerline, median. Box limits, upper and lower quartiles. Whiskers, 1.5 interquartile range. Points beyond whiskers, outliers. A
two-sided Wilcoxon test was used to determine significance. (D), (E) Survival analysis was performed on GSVA scores for MKI67+CD4T cells. Sig
in the pretreatment CheckMate cohort (n.patients = 181, R = 39, NR = 133, NE = 9, NEs were not removed for survival analysis) based on the
Kaplan–Meier method. The groups were dichotomized at the median GSVA score, and the log-rank test was used to determine significance.
Dashed line: median survival time. Color range: 95% confidence interval (CI).
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(CM009_POST, n.patients = 55, R = 5, NR = 47, NE = 3, see

Methods for details). Lower MKI67+CD4T.Sig GSVA scores

after ICB treatment were also significantly correlated with

prolonged OS (p = 0.018) and PFS (p = 0.0093) (Figures S4G,

S4H) . F ina l ly , univar ia te log is t ic regress ion with

MKI67+CD4T.Sig in predicting ICB outcomes obtained an

AUC of 0.62 (p = 0.008, Figure S4I).

Similar procedures were used to verify MKI67+ Tregs. The

MKI67+Treg.Sig contained 80 genes involved in the cell cycle,

MYC and E2F targets, mTORC1 signaling, OXPHOS and DNA

repair (Figure S5A, Extended data 4). Violin and feature plots of

GSVA scores showed that this gene set had distinguished

specificity for characterizing MKI67+ Tregs (Figures S5B, S5C).

In both single-cell and bulk RNA-seq datasets, nonresponders

had higher MKI67+Treg.Sig GSVA scores than responders (p

values 0.046 and 0.0047, respectively) (Figures S5D, S5E) and

had significant MKI67+Treg.Sig enrichment (p < 0.001 and

0.0013, respectively) (Figures S5F, S5G). Survival analysis of

the CheckMate, Javelin 101 and CM009_POST cohorts

consistently demonstrated that high levels of MKI67+ Tregs,

either pre- or post-ICB treatment, were all associated with worse

OS and PFS (Figures S5H–S5L). The above results confirmed

that MKI67+ CD4Ts and MKI67+ Tregs could shorten OS and

PFS and promote ICB resistance. Similarly, univariate logistic

regression showed that MKI67+Treg.Sig performed well in

predicting ICB outcomes (AUC = 0.64, p = 0.011, Figure S5M).

Finally, we used an independent single-cell dataset, Bi’s

dataset, to validate the universality of MKI67+ CD4Ts and

MKI67+ Tregs characteristics. The 2245 CD4Ts (NR.cells =

818, R.cells = 641, NoICB.cells = 786) and 740 Tregs (NR.cells

= 89, R.cells = 307, NoICB.cells = 344) from Bi’s dataset were

clustered into five CD4Ts subclusters (Figure S6A) and three

Tregs subclusters (Figure S6D), respectively. We matched

subclusters with high levels of MKI67+ CD4Ts and MKI67+

Treg signatures through GSVA with CD4T_C0 (NR.cells = 56,

R.cells = 347, NoICB.cells = 277) and Treg_C0 (NR.cells = 20,

R.cells = 156, NoICB.cells = 106) (Figures S6B, S6E), respectively.

As previously described, there were 7 gene sets of Au’s_CD4T.NR

and 5 gene sets of Au’s_Treg.NR with ROC p.adjust < 0.05

(Figure S2E). In parallel, we found that these gene sets were also

specifically enriched in CD4T_C0 and Treg_C0 of Bi’s dataset

(Figures S6C, S6F), respectively. Such consistency was also

confirmed by overall expression (OE) (39). The results showed

that nonresponders in CD4T_C0 had higher MKI67+ CD4Ts-OE

signals than responders (p = 0.018, Figure S6G), and a similar

result was observed in Treg_C0 cells (p = 0.0004, Figure S6H).
Antigen-presenting monocytes are
associated with the ICB response

As mentioned before, some gene sets enriched in responder

monocytes (Bi’s_Mono.R) had good predictive capability
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(Figure S2E, Extended data 2), which suggested that certain

subtypes of monocytes might be associated with the ICB

response. The UMAP of monocytes (NR.cells = 122, R.cells =

364, NoICB.cells = 669) in Bi’s dataset showed four subclusters

(Figures 4A, B). The canonical marker genes of monocytes were

highly expressed in all subclusters (Figure S7A).

There were five gene sets with ROC p.adjust < 0.05 in

Bi’s_Mono.R (Figure S2E), and they were uniquely highly

expressed in subcluster 0 (Mono_C0, NR.cells = 56, R.cells =

262, NoICB.cells = 134) (Figure 4C, Figure S7B). Mono_C0

highly expressed MHC class II antigen and IFNg response-

related genes, including HLA-DRB1, HLA-DPA1, HLA-DPB1,

CD74 and TUBA1B (Figures 4B, E). GSEA showed that

Mono_C0 promoted the ICB response through multiple

pathways, including antigen processing and presentation (16),

adaptive immune response (31) and IFNg signaling pathways

(40) (Figure 4D, Extended data 3). In addition, IPA showed

significant inhibition of the PD-1/PD-L1 pathway (Figure S7C),

indicating that Mono_C0 may play an important role

in immunotherapy.

To validate the role of antigen-presenting monocytes in

immunotherapy, a Mono_C0.Sig gene panel was constructed

based on its marker genes. This gene panel consisted of 45 genes,

all of which represented characteristic pathways such as antigen

processing and presentation, IFNg signaling, and immune

response (Figure S7D, Extended data 4), with good specificity

for characterizing Mono_C0 (Figure 4F, Figure S7E) and

significant enrichment in responders (Figure 4G, Figure S7F).

We then validated Mono_C0.Sig in the CheckMate cohort

(n.patients = 172). GSVA and GSEA analyses revealed

significant enrichment in responders (Figure 4H, Figure S7G).

Survival analysis showed that higher GSVA scores indicated

better PFS (p = 0.042) (Figure 4I), although the GSVA scores

were not correlated with OS (p = 0.95) (Figure S7H).

Consistently, the same results were observed in the

CM009_POST cohort (Figures S7I, S7J). The results suggested

that ccRCC patients with abundant Mono_C0 subtypes had

prolonged PFS after ICB treatment. Such observations were

consistent with previous reports, e.g., MHC class II molecule

expression was related to the ICB response and prognosis

improvement (41, 42). Furthermore, univariate logistic

regression analysis showed that Mono_C0.Sig could predict

ICB outcomes with an AUC of 0.63 (p = 0.019, Figure S7K).

Comparing the NoICB and ICB treatment samples from Bi’s

dataset, the expression of Mono_C0. Sig was elevated after ICB

treatment (p < 0.001) (Figure S7L). We further analyzed a

subdataset from the CM009 cohort (CM009_Paired), which

contained paired kidney biopsy samples of ICB pretreatment

and week 4 treatment from 42 patients (38). A similar dynamic

pattern was observed (Wilcoxon’s paired test p = 0.0068) (Figure

S7M). Evaluation in the CM009_POST cohort indicated the

upregulation of Mono_C0.Sig was more obvious in ICB

responders than nonresponders (p = 0.038) (Figure S7N).
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B C

D E

F

A

G H I

FIGURE 4

Antigen-presenting monocyte subtype promotes ICB response and is validated in independent bulk RNA-seq datasets. Bi’s monocyte scRNA-
seq dataset and the CheckMate cohort were analyzed. (A) UMAP plot of monocytes from Bi’s dataset that were classified into 4 subclusters
from ICB-R, ICB-NR and NoICB samples. Bar plots show cell proportions grouped by clusters (left) and ICB outcomes (right). (B) Heatmap of
scaled normalized expression for the top 10 specific marker genes of Bi monocyte subclusters as identified by a two-sided Wilcoxon rank-sum
test with FDR correction (q < 0.05). (C) The ICB response prediction-related monocyte subcluster was identified by locating the effective
predictive gene set expression via GSVA. (D) GOBP, Hallmark, KEGG and Reactome analysis results of Bi’s monocyte subcluster 0 compared
with other subclusters. The top 20 pathways sorted by the absolute value of the normalized enrichment score (NES) are listed. (E) Violin plot of
the expression levels of MHC class II genes in Bi’s monocyte subclusters. A two-sided Wilcoxon test was used to determine significance
between the subclusters of interest and others. ****P < 0.0001. (F) Feature plot of a 45-gene signature (Mono_C0. Sig) GSVA scores showed
that it can specifically characterize the antigen-presenting subcluster 0 of monocytes (Mono_C0). (G) GSEA showed that Mono_C0. Sig was
enriched in R of Mono_C0. The p value was FDR-adjusted by the Benjamini–Hochberg method. (H) Boxplot validated that Mono_C0. The Sig
GSVA scores of R were significantly higher than those of NR in the CheckMate cohort (n.patients = 172, R = 39, NR = 133) via GSVA analysis.
Centerline, median. Box limits, upper and lower quartiles. Whiskers, 1.5 interquartile range. Points beyond whiskers, outliers. A two-sided
Wilcoxon test was used to determine significance. (I) Kaplan–Meier plot of progression-free survival (PFS) data for the pretreatment CheckMate
cohort (n.patients = 181, R = 39, NR = 133, NE = 9) on the basis of Mono_C0. Sig GSVA scores. The groups were dichotomized at the median
GSVA score, and the log-rank test was used to determine significance. Dashed line: median survival time. Color range: 95% CI.
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ICB response prediction model
construction and validation

As MKI67+ CD4Ts and MKI67+ Tregs tended to impair

immunotherapy efficacy and antigen-presenting monocytes

promoted the ICB response, we compared the predictive

capability of these three cell subtypes with that of other

CD4Ts, Tregs and monocytes subclusters. Specifically, the top

500 genes sorted in ascending order of adjusted p value

(obtained by FindAllMarkers of Seurat) were selected to

identify the top 10 enriched GOBP gene sets for each cell

subcluster of CD4Ts, Tregs and monocytes (Extended data 5,

Figure S8). We subsequently tested the predictive capability of

each individual gene set in the CheckMate cohort (n.patients =

172) using Cancerclass. Most gene sets associated with MKI67+

CD4Ts, MKI67+ Tregs and antigen-presenting monocytes had

high predictive capability compared with the rest (Figure S9A-

S9C, Extended data 5). This provided a foundation to develop a

signature panel for ICB outcome prediction based on the three

cell subtypes.

Based on the selected gene sets with significant predictive

capability (p.adjust < 0.05) (Figures S9A-S9C), we developed the

overall gene signatures using Cancerclass according to the

workflow shown in Figure S8 (see Methods for details).

Initially, 209 genes were obtained (Figure S8, orange box), and

GSEA showed that the top 20 pathways were mainly the cell

cycle, DNA metabolism and repair, E2F and MYC targets

(Figure S10A). Most of these pathways contributed to the poor

immune response according to previous studies (29, 30, 43). The

top 10 pathways were used to predict the outcomes of the

CheckMate cohort, and these pathways had good prediction

performance, with AUCs between 0.68 and 0.83 (Figure S10B).

To construct a more effective prediction model, we executed the

cycle algorithm shown in Figure S8 (purple box, seeMethods for

details) and examined the AUCs for combinations with different

numbers of genes (Figure 5A, Extended data 6). A good

prediction model should balance the highest reliability and

fewest genes. Therefore, to balance these two factors, we

selected the 47-gene combination as our ccRCC ICB response

prediction signature - ccRCC.Sig in downstream analysis

(Figure 5A, dotted line). Details of these 47 genes can be

found in Supplementary Table 2. The ccRCC. Sig

could accurately discriminate between responders and

nonresponders in the CheckMate cohort (n.patients = 172,

R = 39, NR = 133). Specifically, the AUC of this signature was

0.93 (95% confidence interval [CI]: 0.91-0.95), the sensitivity was

80% (74-86%), the specificity was 92% (81-98%), and p = 7.2e-07

(Figure 5B). This response prediction signature gathers

characteristic genes from MKI67+ CD4Ts, MKI67+ Treg cells

and antigen-presenting monocyte subtypes (Figures S11A–C).

In addition, we tested the performance of 30-gene and 20-gene

combinations in the CheckMate cohort. However, their

predictive performances were less than that of ccRCC.Sig, they
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were also effective, with AUCs of 0.89 (0.87-0.91) and 0.86 (0.84-

0.89), respectively (Figures S12A, B).

Subsequently, we validated the performance of ccRCC.Sig in

independent pretreatment bulk RNA-seq datasets. Because the

CheckMate cohort (20) is integrated data of the CheckMate 025

(CM025) (5), CheckMate 010 (CM010) (44), and CM009 (45)

cohorts (see Methods for details), we first validated separately in

each of these three cohorts. For the CM025 (n.patients = 111,

R = 25, NR = 86) and CM010 cohorts (n.patients = 45, R = 11,

NR = 34), the AUCs of this signature were 0.88 (0.85-0.91) and

0.99 (0.98-1), respectively (Figures S12C, S12D). For the CM009

cohort, we used its larger pretreatment dataset (38)

(CM009_PRE, n.patients = 56, R = 9, NR = 47), and this

signature possessed an AUC of 0.89 (0.85-0.93) (Figure S12E).

In addition, two more independent ccRCC bulk RNA-seq

datasets were utilized: PMC6035749 (46) and GSE67501 (47).

For PMC6035749 (n.patients = 17, R = 5, NR = 12), the

performance of ccRCC.Sig was AUC = 0.87 (0.79-0.96),

sensitivity = 100% (78-100%), and specificity = 60% (19-92%)

(Figure 5C). For GSE67501 (n.patients = 11, R = 4, NR = 7),

ccRCC.Sig accurately distinguished all responders from

nonresponders, with AUC = 1 (1–1), sensitivity = 100% (65-

100%), and specificity = 100% (47-100%) (Figure 5D).

To further justify the predictive capability of ccRCC.Sig, we

compared ccRCC.Sig with 13 other ICB response signatures

previously reported (8, 48–58), including the recognized

IMPRES signature (51). The details of these signatures are

listed in Supplementary Table 3. They were used as

independent classifiers to predict the ICB outcomes of six bulk

RNA-seq cohorts using Cancerclass. The results show that

ccRCC.Sig dramatically improved the performance of ICB

response prediction in most cohorts (Figure 5E, Figures S12F-

S12I, Supplementary Table 4). As a comparison, the performance

of IMPRES.Sig ranked fourth in both the CheckMate and

CM009_PRE cohorts (Figure 5E, Figure S12I) and fifth and

third in the CM025 and CM010 cohorts (Figures S12G, S12H).

We also compared ccRCC.Sig with clinical traits (e.g., age) and

other molecular features (e.g., TMB, PD-1, tumor purity and

angiogenesis, etc.), and the results showed the AUC of ccRCC.Sig

was 0.91 (115 samples remained after deleting missing data

samples) and that of other features was 0.48–0.62 (Figure 5F).

In addition, we validated ccRCC.Sig using three more machine

learning algorithms, i.e., support vector machine (SVM), naïve

Bayes (NB) and k-nearest neighbors (KNN). As shown in

Figure 5G, ccRCC.Sig still performed well in most cohorts.

These results indicate that its predictive performance is stable.

In particular, prediction using Cancerclass is able to generate

continuous prediction scores (z score) based on gene expression

levels and convert them to probabilities (24). Therefore, to assess

a patient’s resistance risk after ICB treatment, we converted the

prediction scores to nonresponse probabilities and estimated the

risk by logistic regression (Figure S12J). Based on the

pretreatment RNA-seq data of tumor patients, we can estimate
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the resistance probability and provide guidance and a reference

for patients to decide whether to accept ICB treatment by using

this model.

Moreover, we explored the relationship between ccRCC.Sig

and the prognosis of patients. Univariate Cox regression

demonstrated the pretreatment GSVA score of ccRCC.Sig,

PBRM1 mutation and intratumor heterogeneity (ITH) were

closely related to poorer OS (Figure 5H), and multivariate Cox

regression found that ccRCC.Sig, wild-type PBRM1 (20, 46, 59)

and ITH were independent risk factors (Figure S12K).

We also found a relationship between ccRCC.Sig and a few

known ICB response factors. The results showed that ccRCC.Sig
Frontiers in Immunology 09
was positively correlated with immune checkpoint molecules

(PD-1, CTLA-4 and IDO1, Figures S13A–S13C) but not with

TMB or ITH (Figures S13D, S13E). This is consistent with

previous studies. Although TMB and ITH are associated with

the ICB response in various tumors (11, 60–62), they are not

associated with the ICB response in ccRCC (4, 7, 12, 13, 20).

Angiogenesis (63, 64) and myeloid infiltration (7, 63) have been

reported to be related to the ICB response and resistance in

ccRCC, respectively. Our results show that ccRCC.Sig was

negatively correlated with pro-response angiogenesis signaling

(Figure S13F) but positively correlated with pro-resistant

myeloid infiltration (Figure S13G).
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FIGURE 5

The ccRCC.Sig signature can effectively predict ICB outcomes in ccRCC patients. The bulk RNA-seq datasets CheckMate (n = 172, R = 39, NR =
133), CM025 (n = 111, R = 25, NR = 86), CM010 (n = 45, R = 11, NR = 34), CM009_PRE (n = 56, R = 9, NR = 47), PMC6035749 (n = 17, R = 5, NR
= 12) and GSE67501 (n = 11, R = 4, NR = 7) were analyzed. (A) Bar graph showing the AUC of gene combinations with maximal AUC for each
cycle (different gene-number combinations). Dotted line: 47-gene combination - ccRCC.Sig. (B) ccRCC.Sig had significantly high predictive
value for ICB outcomes in the CheckMate cohort. (C), (D) ccRCC.Sig accurately predicted the ICB outcomes in the validation (C) PMC6035749
and (D) GSE67501 cohorts. (E) Comparison of the performance (AUC and p value) of ccRCC.Sig with 13 other ICB response signatures. (F)
Comparison of the performance (AUC) of ccRCC.Sig with other clinical traits and molecular features in the CheckMate cohort (115 samples
remained after deleting missing data samples). (G) Validation of ccRCC.Sig using three other machine learning algorithms. SVM, support vector
machine; NB, naïve Bayes; KNN, k-nearest neighbors. (H) Univariate Cox regression analyses of ccRCC.Sig, clinical traits and molecular features.
TMB, tumor mutational burden; ITH, intratumor heterogeneity.
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Discussion

Herein, we reanalyzed two publicly available ccRCC scRNA-

seq datasets (12, 14) to explore effective predictive immunocyte

subtypes and signatures in ccRCC. We identified three cell

subtypes that were closely related to ICB outcomes: MKI67+

CD4Ts and MKI67+ Tregs contribute to ICB resistance, while

antigen-presenting monocytes are correlated with the ICB

response. We harnessed the gene markers associated with the

above three subtypes and developed a signature, ccRCC.Sig. The

prediction capability of ccRCC.Sig was systematically evaluated

using various datasets, modeling methods and known risk

factors. Our analyses demonstrated that compared to

conventional prediction factors, ccRCC.Sig dramatically

improved the reliability of ICB outcome prediction for

ccRCC patients.

There are few ICB response prediction biomarkers currently

available for ccRCC, and the predictive performance of these

biomarkers varies among different tumor types (65).

Immunohistochemistry (IHC) to detect PD-L1 expression on

tumor cells or tumor-infiltrating immunocytes is the first

clinically validated and the most widely used biomarker

currently in ICB therapy (66). However, a lack of PD-L1

expression is considered an insufficient negative predictor of

immunotherapy response, and patients with IHC PD-L1 (–) may

also benefit from ICB in some clinical trials (67). Another

biomarker is TMB, which is a measure of total tumor

mutation. However, the clinical application of TMB detection

is limited by high technical requirements, complex data and the

need for bioinformatics experts. Next-generation sequencing

(NGS) is immature and expensive. In addition, flow cytometry

can be used for the development and detection of biomarkers.

However, this method also has limitations of high cost, complex

operations, high technical requirements and limited antibody

availability in clinical application. The predictive biomarker we

developed, ccRCC.Sig has high sensitivity and specificity and can

be detected by real-time quantitative PCR, which enables it to be

a highly reliable and clinically practical prediction tool.

Studies have pointed out that CD4+ T cells are necessary for

effective antitumor immunity (68). CD4Ts exert antitumor

activity through various direct and indirect mechanisms,

including cytolysis of tumors and modulation of the tumor

microenvironment (TME) (69). It can increase the activity and

quality of B cells and cytotoxic T lymphocyte (CTL) responses

via cell–cell and cell surface receptor interactions (70). Tregs,

although a major subset of CD4Ts, differ from traditional

CD4Ts and normally mediate immunosuppression and

tolerance in homeostasis and inflammation (71). The

consensus holds that Tregs in the TME exert an inhibitory

effect against tumor immunity (72). In this study, MKI67+

CD4Ts and MKI67+ Tregs were identified as belonging to

proliferative subgroups. They are two cell subtypes with

similar specific functional characteristics, which are also
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similar to the proliferative CD8Ts described by Borcherding

et al. (27). Although the effects of proliferative MKI67+ CD4Ts/

Tregs on ICB outcomes have been reported in other tumor types

(73, 74), this correlation has not been documented in

ccRCC before.

In recent years, researchers have identified similar

proliferative populations in many tumor types, such as

melanoma (28, 48), lung cancer (75, 76), gastric cancer (73),

head and neck cancer (74), and colon cancer (77), by scRNA-seq

analysis or other experimental methods. The characteristics of

these populations appear to be shared across different tumors

(28), including ccRCC (27, 78). However, studies targeting these

proliferative populations have mostly focused on CD8Ts.

Interestingly, a proportion of hyperproliferative cells were also

present in Tregs and CD4Ts, similar to exhausted/dysfunctional

CD8Ts (28, 75). These CD8Ts have several common features,

including active proliferation (MKI67+), high immune

checkpoint or coinhibitory receptor expression (PD-1+,

LAG3+, CTLA4+), terminal differentiation (EOMES+) and

defective IFNg production (28, 75, 76, 78). In esophageal

squamous cell carcinoma, the proliferative CD4-C5-STMN1

cell subtype has the most exhausted features (79). Studies have

shown that PD-1+ CD8Ts proliferate explosively after PD-1

blockade and impair the ICB response in chronic viral infections

and cancers (76, 80). Similarly, a study of sarcoidosis showed

that PD-1 blockade rescued the proliferation of CD4Ts (81). We

also examined the expression of the above proliferative CD8Ts-

associated characteristic genes in our MKI67+ CD4Ts and

MKI67+ Tregs. We found that in these two cell subtypes, some

immune checkpoint molecules, effector molecules and exhausted

marker genes were preferentially enriched (Figures S14A, S14C).

This finding indicates that they also appear to share these

dysfunctional features with proliferative PD-1+ CD8Ts.

We also found that MKI67+ CD4Ts and MKI67+ Tregs

belong to the PD-1+ cell population (Figures S14B, S14D).

Consistently, a portion of Tregs have recently been found to

express moderate levels of PD-1 (73, 74), in addition to activated

and exhausted CD8Ts. PD-1+ Tregs show high proliferation and

DNA metabolism features in head and neck cancer (74), and the

proliferative activity of these cells with hyperprogressive disease

(HPD) is significantly increased after ICB treatment in gastric

cancer and compromises ICB treatment (73). PD-1 expressed in

these cells might be a negative regulator of proliferation and

immunosuppressive activity, while PD-1 blockade enhanced

those of these cells.

Monocytes bridge the innate and adaptive immune

response, with a paradoxical effect on tumors, involving

multiple mechanisms, such as immune tolerance, angiogenesis,

tumor cell metastasis, antitumor effector production, and

antigen-presenting cell activation (82). These effects depend on

monocyte plasticity under TME stimulation. It has been

reported that circulating monocytes can infiltrate mucosa or

inflammatory tissues and differentiate into monocyte-derived
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macrophages (mo-Macs) or monocyte-derived dendritic cells

(mo-DCs) (83). Studies have shown that mo-Macs are powerful

producers of proinflammatory cytokines (e.g., TNFa ,
interleukin, and IFNg) (84), which are essential for

immunocyte recruitment and immune response triggering. In

addition, mo-Macs isolated from ascites are capable of cross-

presenting antigens via specific pathways (85). In addition to

MHC class II molecular genes, the expression levels of

proinflammatory cytokines such as TNF, IFNg, and IL18, as

well as complement system genes such as C1QA, C1QB, and C3,

were also significantly higher in our antigen-presenting

monocytes (Mono_C0) than in the other monocyte subclusters

(Figure S14E). Antigen processing and presentation, IFNg
signaling, and inflammatory response/regulation-related

pathways were also dramatically enriched in this cell subtype

(Figure 4D, Extended data 3). Based on the above characteristics,

we speculated that Mono_C0 probably belongs to a monocyte

subgroup similar to functional mo-Macs. This hypothesis is also

supported by Lam et al. (86), who found that microbial signals

program monocytes to inflammatory macrophages ,

characterized by high expression of MHC class II molecules

and intermediate levels of F4/80 and CD68. This microbial-

induced transformation can effectively improve the ICB

response rate of melanoma.

In summary, our study not only provides an effective

prediction model for ccRCC immunotherapy but also provides

a pipeline for the development of therapy prediction models.

Our method is applicable for prediction model development for

various tumor therapies. There are still limitations in this study.

We only described the relationship between the above three cell

types and ICB outcomes but did not clarify their mechanism. In

the future, large sample experiments with more rigorous designs

are needed to explore the mechanisms of these cells to

consolidate the biological findings in this study.
Methods

scRNA-seq and bulk RNA-seq datasets
collection

To explore immunocyte subtypes and signatures with good

predictive capability for ICB outcomes, we downloaded and

reanalyzed two available ccRCC scRNA-seq datasets published

in the initial article (12, 14) and validated the results in multiple

ccRCC pretreatment bulk RNA-seq datasets. The first scRNA-

seq dataset (Bi’s dataset) (14) was obtained from fresh biopsy or

surgical resection samples of 8 patients, of which 5 patients were

treated with ICB (anti-PD-1 combined with or without TKIs/

anti-CTLA-4), and the other 3 patients did not receive systemic

treatment. According to RECIST v1.1 (21), two of the five ICB-

treated patients had PR efficacy, and the other three had SD, PD,

and NE efficacy. In this study, the NE sample (P912) was omitted
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throughout. Bi’s dataset is available from the Single Cell Portal

(https://singlecell.broadinstitute.org/single_cell/study/SCP1288/

tumor-and-immune-reprogramming-during-immunotherapy-

in-advanced-renal-cell-carcinoma#study-summary). The

second scRNA-seq dataset (Au’s dataset) (12) was obtained

from nephrectomy samples from 2 patients treated with

nivolumab with RECIST efficacy of PD and PR. The single-cell

count matrices and metadata can be downloaded publicly from

the University College London (UCL) website (https://doi.org/

10.5522/04/16573640.v1). Detailed clinicopathological

information for all patients in Bi’s dataset and Au’s dataset, as

well as the processing, clustering and cell type definition

methods of the scRNA-seq datasets, were described in detail in

their original articles (12, 14).

The ICB pretreatment bulk RNA-seq data used for validation

consisted primarily of CheckMate 009 (CM009, NCT01358721)

(45), CheckMate 010 (CM010, NCT01354431) (44), CheckMate

025 (CM025, NCT01668784) (5) and Javelin101 (NCT02684006)

(4) cohorts. The first three are prospective phase I, phase II, and

phase III clinical trials of nivolumab in the treatment of advanced

ccRCC. The CheckMate cohort was an integrated dataset of the

above three bulk RNA-seq datasets selected against certain

criteria, leaving 181 nivolumab-treated samples after the

removal of the everolimus-treated samples. This cohort

included 16 CM009 samples (R = 3, NR = 13), 45 CM010

samples (R = 11, NR = 34), and 120 CM025 samples (R = 25,

NR = 86, NE = 9). The selection strategy and the integration,

alignment, quantification, and batch effect correction methods

for this dataset have been described in detail by Braun et al. (20),

and the normalized RNA-Seq expression data are provided in

their supplementary information. The Javelin101 cohort is a

randomized phase III clinical trial (NCT02684006) of

avelumab (anti-PD-L1) plus axitinib (TKI) versus sunitinib

(multitarget TKI) for the treatment of ccRCC (4). This cohort

includes pretreatment bulk RNA-seq data from a total of 726

patients, 354 of whom received avelumab plus axitinib and 372 of

whom received sunitinib, and its normalized RNA-seq data can

be found in the supplementary original article. In addition, we

downloaded the CM009 cohort dataset, which has a larger

number of patients (38) and can be subdivided into three

datasets: a pretreatment dataset (CM009_PRE, n.patients = 59,

R = 9, NR = 47, NE = 3), a week 4 treatment dataset

(CM009_POST, n.patients = 55, R = 5, NR = 47, NE = 3), and

a pretreatment and week 4 treatment paired samples dataset

(CM009_Paired, n.patients = 42, R = 5, NR = 37). They are

publicly available from ArrayExpress (accession number: E-

MTAB-3218). Two other independent datasets of anti-PD-1

treatment were also downloaded to test the predictive

performance of ccRCC.Sig, GSE67501 cohort (47), available on

Gene Expression Omnibus (GEO), and PMC6035749 cohort

(46), available from supplementary of original article. The

database used in our study included MSigDB v7.5.1 (23)

(http://www.gsea-msigdb.org/gsea/index.jsp), from which the
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Hallmark, KEGG, GOBP, and Reactome gene sets were

downloaded for GSEA.

Detailed metadata for all scRNA-seq and bulk RNA-seq

dataset samples used in this study can be found in

Supplementary Table 1.
Study design

According to the flow shown in Figure S1A, we extracted a

total of 13 cell types from two scRNA-seq datasets. We then used

scCODE v1.0.0.0 R package provided by Zou et al. (22) to

identify the DE genes of responders and nonresponders in the

above 13 cell types, respectively. scCODE can check the selected

DE genes through a variety of testing methods, improving the

accuracy of single-cell DE analysis. In this way, two DE gene

lists, which were remarkably highly expressed in R and NR, were

obtained for each cell type, with a total of 26 DE gene lists

(Extended data 1. We then used the Investigate Gene Sets tool

(http://www.gsea-msigdb.org/gsea/msigdb/annotate.jsp) to

compute enriched gene sets between our gene lists and gene

sets in MSigDB (23). Due to this tool’s limitation on the

submitted gene numbers (≤ 500), for the 26 DE gene lists

identified by scCODE, we sorted them according to the

absolute value of logFC of each DE gene list from large to

small. The gene sets enriched in GOBP, Hallmark, KEGG and

Reactome were identified by submitting the top 500 genes (all

genes were submitted if less than 500). With the default settings

of this tool (show top 10 genes & FDR q-value less than 0.05),

each DE gene list can obtain several gene sets enriched in GOBP,

Hallmark, KEGG and Reactome. The predictive capability of

these gene sets was tested using Cancerclass v1.34.0 R package

(24). Due to the limitation of this package on the input gene

numbers (minimum 3 genes), we excluded gene sets with fewer

than 3 genes. Eventually, 1008 gene sets were obtained for

subsequent analysis (Extended data 2).

We tested the predictive capability of the above 1008 gene

sets on the ICB outcomes of the CheckMate cohort (n.patients =

72, R = 39, NR = 133) using the Cancerclass R package. The

prediction sensitivity and specificity were assessed by ROC curve

and corresponding AUC. This R package is dedicated to

developing and validating classification tests for high-

dimensional molecular data. Feature selection and nearest

centroid classification were performed in sequence. Finally, the

classification results were carefully verified by using the multiple

random validation protocol to generate continuous prediction

scores (24). Each gene set was tested as an independent classifier,

and the p value of the ROC curve was calculated byWelch’s t test

built into the Cancerclass R package, which reflects the

effectiveness of the classifier’s classification test results. These

1008 ROC p values (Extended data 2) were used for subsequent

sorting of cell subtypes.
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Single-cell RNA sequencing data
processing

We directly extracted the cell types defined by the authors in

the original articles of Bi’s dataset (14) and Au’s dataset (12). For

subtype analysis of each cell type, we performed fine clustering

utilizing Seurat v4.0.4 R package (25). Specifically, we first

performed across-sample integration on the extracted datasets.

Prior to this, the expression of each gene was normalized by the

total expression in the corresponding cells, multiplied by a

scaling factor of 10,000, and then log2 transformed (Seurat

default method). Two thousand variable features were

identified by FindVariableFeatures and used for subsequent

analysis. Then, the mutual nearest neighbors (MNN) method

of the batchelor v1.0.1R package (87) was used to correct batch

effects, and ScaleData were used to regress the percentage of

mitochondrial transcripts. The integrated assay was used only

for dimension reduction and clustering, and the raw log-

normalized expression data were used for all DE and gene

level analyses. Then, principal component analysis (PCA) was

performed on the integrated assay by using RunPCA. The first

20 principal components were taken for Louvain clustering of

cells with a resolution parameter of 0.5. Finally, visualization was

performed in two-dimensional space by uniform manifold

approximation and projection (UMAP) (Dims = 1:20). This

procedure was used for scRNA-seq datasets from all cell

type analyses.
Gene differential expression analysis

Using the FindAllMarkers built in the Seurat package, DE

analysis was performed on each Louvain cluster and all other

clusters by setting the parameters min.pct = 0.1 and

logfc.threshold = 0.25. Genes with p.adjust < 0.05 were

selected as cluster-specific marker genes. Using the

FindMarkers built into the Seurat package, we compared all

gene expression fold changes in nonresponders and responders

in corresponding cells by setting the parameter logfc.threshold =

-Inf, min.pct = -Inf, min.diff.pct = -Inf. Utilize the default

settings of scCODE v1.0.0.0 The R package (22) (https://

github.com/XZouProjects/scCODE) was used to analyze the

DE genes of responders and nonresponders in each cell type.

The generalized linear model method of Limma v3.46.0 The R

package (88) (https://doi.org/doi:10.18129/B9.bioc.limma) was

used to compute the gene expression fold changes of

nonresponders and responders in the CheckMate cohort. We

fit the linear model of each gene using the weighted least square

method through the lmFit function and compared each gene

through the contrasts.fit function. Finally, we used the empirical

Bayes smoothing of standard errors. In all DE analyses, genes
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with Bonferroni FDR-corrected p values < 0.05 were considered

DE genes by the bilateral Wilcoxon rank sum test.
GSVA, GSEA and IPA

We applied the GSVA method with default settings to assign

a specific gene signature activity score for individual cells or

samples, as implemented in GSVA v1.38.2 R Package (26)

(https://doi.org/doi:10.18129/B9.bioc.GSVA). GSEA was

performed on preordered DE gene l is ts based on

predownloaded Hallmark, KEGG, GOBP, and Reactome gene

sets using the default parameters of clusterProfiler v3.18.1 R

package (89) (https ://doi .org/doi :10 .18129/B9.bioc .

clusterProfiler). This R package can also be used to examine

whether a particular gene set is enriched at the top or bottom of a

preordered gene list. Gene sets with FDR-corrected p values <

0.05 by the Benjamini–Hochberg method were considered to be

significantly enriched in one group when two groups were

compared. Ingenuity pathway analysis was performed using

QIAGEN IPA software (IPA Spring Release April 2022,

[https://digitalinsights.qiagen.com/products-overview/

discovery-insights-portfolio/analysis-and-visualization/qiagen-

ipa/]) with lists of specific marker genes in the corresponding

clusters as detected by Seurat.
Survival analysis, Cox and logistic
regression analysis

Kaplan–Meier method-based survival analysis and

univariate and multivariate Cox regression were performed on

GSVA scores for specific gene signatures using Survival v3.2-13

R package and SurvivMiner v0.4.9 R package. To define “high-

score” and “low-score” groups, in the CheckMate cohort, the

groups were dichotomized at the median GSVA score. For other

bulk RNA-seq datasets, we calculated the optimal cutpoint using

the surv_cutpoint function built in the Survminer R package.

The groups were compared using the log-rank test. Logistic

regression analysis was performed using the R software

embedded glm function for ICB outcomes and mean

expression of specific gene signatures. The corresponding ROC

curves were drawn by the pROC v1.18.0 R package.
Workflow of ICB response prediction
signature development

Based on the cluster-specific genes of MKI67+ CD4T,

MKI67+ Treg and Mono_C0 subtypes, we developed our gene

signatures using Cancerclass v1.34.0 R package according to the

flow shown in Figure S8. Specifically, the p values of ROC curves

(30 in total) using the enriched GOBP gene sets of these three
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cells were obtained using Cancerclass v1.34.0 R package and

then FDR-adjusted with the Benjamini–Hochberg method

(Extended data 5). We united all the gene sets with p.adjust <

0.05 (26 gene sets in total) to obtain a total of 493 genes

(union.genelist). Meanwhile, we compared all gene expression

fold changes in NR and R through DE analysis in the

corresponding cell subtypes. For MKI67+ CD4Ts, we selected

the NR vs. R genes avg_log2FC > -0.1; for MKI67+ Tregs, we

selected the NR vs. R genes avg_log2FC > -0.3; and for

Mono_C0, we selected the NR vs. R genes avg_log2FC < 0.1.

After intersecting these selected genes, we obtained a gene list of

11,884 genes (intersect.genelist). Subsequently, we took the

intersection of union.genelist and intersect.genelist and

excluded absent genes in the CheckMate cohort. We finally

obtained the “genelist”, which contained 209 genes. Next, the

genelist was used to execute the cycle algorithm shown in Figure

S8 (purple box). First, we randomly selected combinations

containing 208 genes from the genelist, resulting in 209

different combinations. The predictive capability of all these

combinations was then tested, and the AUC was estimated in the

CheckMate cohort using the Cancerclass R package. The gene

combination with the largest AUC (genelistmaxAUC) of these 209

combinations was preserved and used for the next cycle. The

cycle was repeated until the total gene number of the gene

combination was < 3, and finally, all the circulating

genelistmaxAUCs and their corresponding AUCs were output

(Extended data 6). A combination with appropriate gene

numbers was selected as ccRCC.Sig for subsequent analysis.
Statistical analysis

The predictive capability of each classifier in this study for

ICB outcomes was assessed by plotting the ROC, calculating the

AUC, and estimating the sensitivity and specificity implemented

in Cancerclass v1.34.0 R package24, and its effectiveness was

assessed by the ROC curve’s p value. The 95% confidence

intervals for sensitivity and specificity were calculated by

Wilson’s method built into Cancerclass v1.34.0 R package, and

p-values were calculated by Welch’s t-test. Unless otherwise

noted, all p-values in this manuscript were adjusted by the

Benjamini–Hochberg method, and adjusted p-values < 0.05

were considered statistically significant. Wilcoxon’s test was

used to classify variables. All confidence intervals were

reported as binomial 95% confidence intervals. All statistical

analyses in this study were performed with R v3.5.3 software.
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