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Abstract: The health of individuals and communities is more interconnected than ever, and emergent
technologies have the potential to improve public health monitoring at both the community and
individual level. A systematic literature review of peer-reviewed and gray literature from 2000-present
was conducted on the use of biosensors in sanitation infrastructure (such as toilets, sewage pipes
and septic tanks) to assess individual and population health. 21 relevant papers were identified
using PubMed, Embase, Global Health, CDC Stacks and NexisUni databases and a reflexive thematic
analysis was conducted. Biosensors are being developed for a range of uses including monitoring illicit
drug usage in communities, screening for viruses and diagnosing conditions such as diabetes. Most
studies were nonrandomized, small-scale pilot or lab studies. Of the sanitation-related biosensors
found in the literature, 11 gathered population-level data, seven provided real-time continuous
data and 14 were noted to be more cost-effective than traditional surveillance methods. The most
commonly discussed strength of these technologies was their ability to conduct rapid, on-site analysis.
The findings demonstrate the potential of this emerging technology and the concept of Smart Sanitation
to enhance health monitoring at the individual level (for diagnostics) as well as at the community
level (for disease surveillance).

Keywords: sanitation; toilet; sewage; wastewater-based epidemiology; global health; health sensor;
biosensor; biological sensor

1. Introduction

Global health is the area of research and practice that prioritizes improving health and achieving
health equity for people worldwide [1]. It emphasizes transnational health issues and embodies
the idea that any one country cannot isolate itself from the public health challenges facing other
nations [1]. With increased globalization, infectious diseases of today’s world spread and affect larger
populations more rapidly than they ever have before. Global threats require global solutions that are
unified; therefore, nearly 70 national governments have partnered with international organizations and
nongovernmental stakeholders to ‘prevent, detect and respond’ to disease threats [2]. This initiative,
the Global Health Security Agenda (GHSA), acknowledges that outbreaks do not respect borders
and that a pathogen can travel across continents in a matter of hours [2]. GHSA is multisectoral and
multilateral; in addition to governments, GHSA membership includes the Global Health Security
Agenda Consortium, a collective of nongovernmental organizations, including RTI International
(formerly Research Triangle Institute) and Water Aid, as well as academic institutions [2]. Since its
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inception in 2014, the GHSA has informed the response to epidemics like Novel Coronavirus
(COVID-19), Zika virus, Avian Influenza and the Ebola Virus [2]. In 2019, the United States released its
own Global Health Security Strategy to affirm its commitment to the GHSA and outlined its plans for
responding to infectious disease threats including Public Health Emergencies of International Concern
(PHEICs), as declared by the World Health Organization (WHO) [3].

In addition to being international, GHSA initiatives are multi-sectoral, involving improvements
across clinical, agricultural and technological spheres. Similarly, the WHO calls for innovative ways to
connect communities, non-governmental organizations and private sector companies to improve health.
WHO outlines priorities for strengthening health systems around the globe by expanding effective
health services and ensuring equitable access to medical products and technologies [4]. The water,
sanitation and hygiene (WASH) sector is a key area to target such improvements as it has the potential
to prevent at least 9.1% of the global disease burden and 6.3% of all deaths [5]. Adequate WASH
infrastructure is essential for providing quality healthcare, improving infection control, reducing the
spread of resistant pathogens, promoting social and economic development and maintaining personal
dignity. Thus, the United Nations (UN) 6th Sustainable Development Goal (SDG) aims to “achieve
access to adequate and equitable sanitation and hygiene for all and end open defecation, paying special
attention to the needs of women and girls and those in vulnerable situations” by 2030 [6]. Adequate
sanitation must be safely managed throughout the sanitation chain and improved sanitation services
are those that separate excreta from human contact, including improved pit latrines, pour-flush toilets,
flushing toilets, sewage systems and septic systems [7].

These services are regularly monitored to ensure that infrastructure is properly functioning
and monitoring health outcomes, such as infectious and chronic diseases, could be integrated into
this process. Improved sanitation services can be leveraged for public health surveillance using
emerging technologies that examine the characteristics of waste to collect real-time data on human
health and behaviors [8]. The concept of Smart Sanitation could be a useful approach in making health
monitoring more efficient, comprehensive and less resource intensive. The Toilet Board Coalition
defines Smart Sanitation as a way to build resilience in cities, communities and sectors by utilizing
Fourth Industrial Revolution technologies to improve the collection and monitoring of wastewater for
both individualized and aggregate-level preventative health surveillance [8].

In the past decade, wastewater-based epidemiology has emerged as an innovative approach to
survey and evaluate population-level exposure to chemical and biological compounds by analyzing
biomarkers found in sewage [9,10]. Biomarkers are useful for characterizing exposures specific to
human consumption as they can target metabolites and excretion products that are not associated
with environmental sources [11]. Currently, biomarkers are being developed and validated to
quantify community consumption of pharmaceuticals, illicit drugs and pesticides, as well as to detect
specific diseases [11]. Compared with traditional survey methods, wastewater-based epidemiology is
cost-effective, rapid and does not rely on self-reported data [11]. Still, biomarker data often require
off-site preparation and analysis by trained laboratory personnel, which are limitations that could
potentially be addressed with autonomous biosensor technologies.

Biosensors input biological responses that occur as a body’s reaction to an external stressor, such as
variation in pH, temperature or enzymatic activity and convert them into a measurable, electrical
signal [12]. Today, digital technologies increasingly interact with the biological world and biosensors
have become a powerful tool in quantifying the health of human bodies and populations [13]. Related to
sanitation, biosensors can enhance population health monitoring and prevent outbreaks through
detecting specific biomolecules in urine and wastewater samples [11]. Biosensors can also be used to
assess health interventions with little cost to research participants [14]. In addition to wastewater-based
epidemiology, biosensors can assess the health of individuals by monitoring behaviors such as toilet
usage and health indicators such as urine flow [15]. Biosensors are currently being developed for
use in industrial wastewater treatment facilities and drinking water systems for quality control and
early detection of system failures [16,17]. The WASH field is a prime area for the development and
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implementation of biosensor technologies in lieu of traditional methods for sample collection and
analysis. This literature review addresses current research surrounding biosensors as a tool for public
health surveillance and individual health monitoring which could be applied to reach global health
security and health systems strengthening goals. This systematic review will assess how biosensors
are being used in sanitation infrastructure to monitor human health.

2. Materials and Methods

This study follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) statement [18].

2.1. Inclusion and Exclusion Criteria

Studies about the use of biosensors in WASH infrastructure were included if they were written
in English and were written between the year 2000 and the time of our systematic review. Both gray
literature and peer-reviewed literature were included. Papers were excluded if the use of biosensors
was primarily implemented for environmental monitoring or other outcomes not directly related to
human health. The full inclusion and exclusion criteria are listed in Table 1.

Table 1. Inclusion and Exclusion Criteria.

Category Included Excluded

Publication Language English

Study types and designs

Systematic reviews, random controlled
trials, product pilots/trials (non-random),
program reports, news articles describing

the use of biosensors by organizations

Publication Type
Peer-reviewed articles and gray literature
(including program reports and reputable

news articles about product pilots)

Textbooks, product manufacturer
documents such as schematics, patents

Intervention type

WASH interventions involving biosensors
aimed at improving human health either at

a public health (e.g., biosensors used in
wastewater treatment plants to evaluate

effectiveness of filtration systems) or
personal health (e.g., biosensors in toilets in
participant’s homes to alert the presence of

a certain bacteria) level

Interventions that do not utilize a biosensor,
do not relate to human waste and sanitation
(e.g., environmental/ecological monitoring
as the sole use of biosensors, sensors used

in industrial wastewater or sensors applied
to drinking water) or were not directly

related to a human health outcome

Publication dates 2000 to the present Literature dated 1999 and prior

2.2. Data Sources, Search Terms and Screening for Inclusion

A systematic literature search was conducted from January to April 2020 to identify all relevant
research and trials that met the inclusion criteria. The literature search was conducted in electronic
databases (Embase, CDC Stacks, Nexis Uni, PubMed and Global Health) to gather peer-reviewed
articles and gray literature. Searches used the following keywords—(i) terms related to WASH
(“sanitation,” “toilet,” “sewage,” “wastewater-based epidemiology”); (ii) “global health”; and (iii)
terms related to biosensors (“health sensor,” “biosensor,” “biomarker,” “biological sensor”).

Each database was assigned to a reviewer. Abstracts and titles of retrieved literature were screened
for relevance and those that were clearly ineligible were excluded (e.g., articles written in a language
other than English or published before the year 2000). Retrieved articles and reports that were not
excluded after the initial screening were reviewed using a checklist comprising all exclusion and
exclusion criteria presented in Table 1. Articles that passed this second level of screening were included
for data extraction and all excluded articles were recorded in an Excel spreadsheet.
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2.3. Information Extraction and Quality Assessment

After study selection, study characteristics including study design, country where the study
was conducted, whether data collected was at the individual or community level, type of technology
applied, study setting (toilet or latrine, community sewage system, treatment facility, etc.), purpose
of sensor (to detect a virus, hormone, pharmaceutical substance, etc.) and specific strengths and
weaknesses identified by paper authors were recorded in Excel. A second reviewer verified study
selection and data extraction. Disagreements were resolved by a third reviewer. Reviewers coded
the data and generated themes following the reflexive thematic analysis process [19]. Deductive and
inductive codes were created and applied to the included papers. Codes such as “rapid,” “ease of use,”
and “works remotely” were applied to the text only when directly mentioned by the study authors
rather than as an interpretation of the data by the research team. Themes were derived from the explicit
content of the data following a semantic approach [19]. No meta-analysis was conducted because of
the low number of studies eligible for inclusion and the heterogeneity of study aims and measures.

To assess the strength of reporting in selected papers, reviewers evaluated adherence to the
Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement for
observational studies [20]. If the STROBE guidelines were not applicable to the study design, reviewers
assessed the limitations and potential sources of bias both reported by study authors and identified by
the research team. Risk of bias was not used as exclusion criteria but was reported in the results and
discussion sections.

3. Results

This systematic literature review retrieved a total of 961 articles. After duplicates were removed,
959 papers were screened for eligibility. After screening the abstract for relevance, 849 papers were
excluded and an additional 89 articles were excluded after a full-text review, as they did not fit the
inclusion criteria outlined in Table 1. A total of 21 articles (18 peer-reviewed and 3 articles published in
gray literature) were included in analysis (Figure 1, Table A1).

3.1. Study Characteristics

Table 2, Table 3 and Appendix A Table A1 summarize the characteristics of the included papers.
There was heterogeneity in the country of study, as there were 15 countries and one multi-country study
represented among the 21 papers. The majority of these articles described biosensors in laboratory
experiments and the remaining were pilot studies and editorials. Biosensors were used to gather
individual- and community-level data. Most data were collected in toilets or wastewater systems,
but others included testing patient samples of excreta in a clinical setting and even agriculture,
where estrogen levels were measured in urine which could both assess human health and the suitability
of urine as fertilizer [21]. Of the biosensors used in toilets, studies also included “smart toilets,”
self-contained and autonomous technologies that analyze the user’s urine and feces for personalized
health monitoring.
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Figure 1. Study Selection.

Table 2. Study Characteristics.

Codes Frequency Reference Number

Intended Setting for Use of Biosensor

Toilet 8 [22–29]
Wastewater 8 [11,30–37]
Bathroom 1 [38]

Patient Stool/Urine Sample in clinical setting 3 [39,40]
Agriculture 1 [21]

Purpose of Sensor/Health Outcome Measured
(Biosensors that measured multiple health outcomes are repeated)

Diagnosis of a health condition (e.g., diabetes) 4 [23,26,39,40]
Measure temperature 1 [24]

Measure gut health (CO2 or microorganisms) 2 [22,28]
Measure blood sugar 1 [27]

Detect presence or quantify of medications or illicit drugs 4 [31,32,36]
Detect Biomarkers of Disease 4 [11,30,39,40]
Determine latrine/toilet usage 3 [25,29,38]
Detect chemicals/heavy metals 3 [34,35,37]

Detect Estrogen 1 [21]
Estimate population size by detecting human population biomarkers 1 [33]

Study Type

Lab/experiment 16 [21,23,26–37,40]
Pilot study 4 [11,22,24,25,38]
Editorial 1 [11]
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Table 2. Cont.

Codes Frequency Reference Number

Population of Interest

Individual 10 [22–24,27–29,31,38–40]
Community 11 [11,21,25,26,30,32–37]

Samples Tested

Artificially prepared sample (e.g., chemical added to purified water) 5 [9,14,15,18,21]
Unmodified sample collected from the field or test subject

(e.g., wastewater or sewage samples) 13 [1–4,6,7,10,11,13,16,17,19,20]

No samples taken (e.g., motion detection for latrine use) 3 [5,8,12]

Article Type

Peer-reviewed 18 [21,22,24–27,29–40]
Gray Literature 3 [11,23,28]

Author’s Stated Next Steps

Improve sensor and/or resolve errors 9 [1,2,4,5,8,10,16,18,20]
Clinical Trials 2 [9,13]

Ready for use in toilets or wastewater systems 6 [7,11,14,15,17,21]
Unspecified/no next steps stated by the author 4 [3,6,12,19]

Table 3. Themes of interest.

Codes Frequency Reference Number

Biosensor Characteristics

Portable 11 [11,22–25,30,33–35,38,40]
Remote/Hands-off 7 [11,24–26,28,36,38]

On-site analysis (no separate lab test needed) 12 [11,22–24,26–29,34–36,40]
Continuously gathering data/longitudinal data collection 7 [11,24,25,27,28,31,38]
Easy to use without extensive technical knowledge, time or

money involved 9 [21,22,24,27,30,32,37,38,40]

Comparison to Current Methods

More Rapid than conventional data collection methods 8 [11,23,26,32–35,39]
Less Rapid than conventional data collection methods None mentioned n/a

Higher user acceptability/less invasive 7 [22–27,38]
Less user acceptability due to obstruction of their daily
behaviors, feeling discomfort from being surveyed, etc. 1 [26]

Low Cost 14 [11,21,23–25,30–35,37–39]
High Cost None mentioned n/a

Biosensors in these studies were developed for a variety of uses in sanitation infrastructure which
ranged from gathering data about specific health outcomes, such as quantifying drug consumption or
screening for infectious diseases, to monitoring individual health-related behaviors, such as tracking
latrine/toilet usage. Many biosensor and technology types were represented, including DNA biosensors
that could detect both cancer markers and pathogens [30], disposable carbon electrode sensors to
detect pathogenic bacteria [39] and smart toilets that quantify CO2 as a proxy measure for microbiome
health [22].

3.2. Effectiveness of Biosensors as Described in Included Papers

Among the 21 studies, five of the sensors were described as ready for use in toilets or wastewater
systems while nine required further design improvements or trials. The large proportion of biosensor
technologies in the prototype stage demonstrates that their use in sanitation is a relatively new and
growing field.
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The majority of papers mentioned that the biosensors were cost-effective and produced results
more quickly compared to the current standard method for detection. Many of the biosensors detected
the target substance on site and in real time rather than traditional surveillance methods that often
require intermittent manual sample collection and off-site laboratory analysis. As Yang and colleagues
described in a paper about using biosensors to monitor community health in sewage systems:

“Compared to conventional analytical tools, biosensors can provide rapid response times,
ultrasensitive detection of biomolecules and the potential to be miniaturized for portable
assays requiring minimal sample processing.” [11]

Biosensors have the ability to continuously collect data, often remotely/hands-off, reducing the
resources needed to collect information and improving the ability to detect outcomes early or serve as
early warning systems. The majority of sensors in this study were portable, allowing for samples to
be taken in a variety of locations. Passive data collection using biosensors is often less invasive than
other methods, such as blood tests or colonoscopies [23,24] and is more reliable than self-reported data
regarding health behaviors [25]. When discussing the benefits of smart toilets specifically, Park and
colleagues explained that:

“The intersection of continuous health monitoring and the valuable clinical information
obtained from analyzing human excreta lies in the smart toilet. This toilet system is expected
to have a major impact on health monitoring research, as the toilet enables longitudinal
monitoring of human health with minimal interference of human behavior. It enables patients
to reliably obtain data for their own health as well as enabling investigators to conduct large
clinical trials.” [26]

Many papers stated limitations of the use of biosensors, either from their performance in the
current study or in future applications. Lab experiments conducted in ideal conditions, especially those
that tested artificially prepared samples, would require further testing of biosensors for direct use in
wastewater and sewage systems. While papers often cited that maintenance needs of biosensors were
less intensive than current methods, smart toilets and other sensors often require regular cleaning [31,41].
One paper specifically states that, “Most of the bacterial biosensors that are currently available are
large, require electronics or are too complicated to operate in [developing] countries” [25].

Specifically concerning sensors in toilets, the effects of environmental variables, including whether
the user was standing or sitting and the presence of irregular airflow, could affect the biosensor
results [25,26,31,38]. One paper explicitly mentioned that while user acceptability of biosensors in
toilets “was within an acceptable range,” participants expressed concerns about “privacy protection
and data security” as well as the use of cameras identifying toilet users by “analprint recognition” [26].
Authors also raised concerns about the need to validate the lifetime of the biosensor in hot operating
environments [24].

3.3. Bias and Study Quality

Most of these studies were small-scale, non-randomized pilot or lab studies. Only four [22,24,25,38]
papers were eligible to be assessed for reporting quality with the STROBE guidelines for observational
studies and all four met at least 17 of the 22 STROBE reporting criteria. While 19 out of the 21 papers
were published in peer-reviewed literature, many of these biosensors are in a pre-experimental phase.
The lack of randomization, representative samples and adequate controls present among papers in
this literature review warrants caution when drawing any generalizable conclusions. Due to these
limitations and the nascent nature of this field, further product implementation and research are
needed to determine whether biosensors offer improved detection of outcomes of interest compared to
the current standard of care.
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4. Discussion

4.1. Strengths and Weaknesses of Biosensors in Sanitation Infrastructure

This literature review shows that there is interest in continued prototyping and piloting of
biosensors in sanitation infrastructure. These emerging technologies have the potential to gather
preventative and behavioral health data about individuals and populations that could save time
and money compared to traditional methods. From as early as 2014, mainstream publications and
companies have promoted the concept of Smart Sanitation by predicting and provocating that sewage
systems will become ‘smart’ and could include ‘lab-on-chip biosensors’ which will permit continuous
data collection and real-time surveillance for viral outbreaks at the aggregate level [14]. As one of the
papers in our literature review stated:

“Infectious diseases require rapid or even real-time detection to assess whether there is a
need for the containment of the disease carriers to certain areas and prevent the development
of an epidemic. To this end, there is a need to develop novel analytical tools that are able to
accurately and rapidly monitor low levels of biomarkers/pathogens with minimal sample
processing by unskilled personnel at the site of sample collection.” [11]

Overall, our findings demonstrate that biosensors are being developed for use in the sanitation
sector and preliminary results indicate that these biosensors can collect useful health-related data.
Additionally, biosensors could be used to supplement standard tests that are already in place,
such as colonoscopies, surveys or blood work testing to monitor individual and population health
more holistically.

However, many papers noted that despite the promising advantages that biosensor technology
can bring to health systems, this is a nascent field; therefore, it requires continued rigorous research
and product development to reach its potential. Additionally, the lifespan of these various biosensors
from both a hardware and surveillance perspective is largely unknown since the majority of the studies
were lab-based or pilot studies [24]. These systems may be less accurate when applied to complex
matrices such as sewage due to the variable mix of multiple contaminants, pathogens and physical
trash (such as used diapers or menstrual health products) that perhaps were beyond the scope of many
of the lab-based tests [11]. Some experiments that did test real wastewater, sewage or human specimen
samples in the lab tried to account for temperature and other conditions that would be encountered in
the field, but these technologies would still require pilot testing to ensure they would be reliable on site.

Additionally, there were some limitations that were only mentioned in a few papers (such as
data privacy and impracticalities for low-resource settings [25,26]), while some limitations were not
mentioned explicitly but are feasible (such as the potentially high costs related to biosensor technology
or installation [26,27]). One paper also reported that “it is uncertain whether the algorithm [that was
used with the biosensor to detect ‘likely defecation events’] detects child feces disposal, child latrine
training and menstrual [health] management events as ‘likely defecation events’,” which is also a
notable limitation [25]. The majority of the actual limitations reported for biosensors embedded in
sanitation infrastructure are technological rather than methodological barriers; therefore, they have
the potential to be improved through iterative changes in the various devices’ product designs and
fine-tuning their technological prowess.

Despite the current limitations of biosensors, the long-term benefits outweigh the barriers.
Public health stakeholders and WASH practitioners should not be deterred from adopting biosensors
into sanitation products and infrastructure and should seek to further build the evidence base to
determine the true global health potential that this Smart Sanitation technology could have.

4.2. Population- and Individual-Level Health Considerations of Smart Sanitation

Transforming sanitation infrastructure into a health diagnostic tool has implications both on
the population and individual levels. At the population level, decision makers and public health
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practitioners could use biosensors that have been integrated into public sanitation infrastructure to
mitigate and prevent infectious disease outbreaks [11]. On the individual level, there is also a demand
for personal health monitoring. Similar to the biometric sensors integrated into consumer products
such as the Apple Watch [42] or Fitbit [43], there appears to be a growing demand for individuals
to use Smart Sanitation products to inform their lifestyle decisions and personal health investments.
There are already at-home diagnostic methods available, such as Cologard’s colon cancer screening kit
where individuals can mail stool samples to be tested [44], which have potential to be improved and
streamlined with the use of biosensors.

There has been an influx of Smart Sanitation private sector products on the market, such as TOTO’s
Flow Sky Toilet in 2018, a toilet that is equipped with a biosensor to capture the flow rate of the
user’s urine as an integrated urological medical examination [15], and Pampers’ ‘smart diaper’ in 2019,
which tracks an infant’s sleep and urine patterns which is oftentimes a recommended practice from
pediatricians [45]. These technologies represent the burgeoning market and demand from consumers
for Smart Sanitation-related products for monitoring their individual health.

While there are a myriad of innovative opportunities for further research in the field, it is
imperative that these products account for data privacy. Capturing data about individual-level
health data, as opposed to information gathering about population-level health, must often adhere to
regulatory standards such as the Health Insurance Portability and Accountability Act (HIPAA) Privacy
Rule [46] in the United States of America and the General Data Protection Regulation (GDPR) [47] in
the European Union. Smart Sanitation consumer products should be developed in such a way that is in
line with these standards to safeguard individual-level health data while also fostering consumer trust
as a result of transparent data protections in these products.

4.3. The Covid-19 Era: Furthering the Case for Increased Smart Sanitation Research

The need for embracing and further researching the implications of Smart Sanitation has
been underscored by the widespread societal implications of the Novel Coronavirus (COVID-19).
Recent studies have also shown SARs- CoV-2, the virus causing COVID-19, is shed in feces which
means that fecal-oral contamination could be another route of transmission [48]. Biobot, a wastewater
epidemiology startup, has conducted opioid and COVID-19 wastewater analytics and monitoring
within the United States to create data-driven maps for community-level decision makers to see as the
disease spreads in real time [49]. Researchers in Spain are now collecting samples approximately twice
a week from over 250 wastewater treatment facilities for improved COVID-19 surveillance through
sewage [50]. This would be an ideal place to implement biosensors in sewage systems, which would
allow for this data collection to occur more quickly with less potential for exposure for field workers
and lab technicians.

However, due to the nascent nature of this sector, the preventive health benefits of the Smart
Sanitation Economy will likely not be realized quickly enough to meaningful impact the COVID-19
pandemic. Beyond current pathogenic testing, next generation Smart Sanitation biosensors could be
made to detect a wide array of biomarkers to mitigate and monitor future epidemics.

4.4. Limitations of this Review

This review has a number of limitations. First, identifying findings that explicitly explained
product/device failures or misuses in this sector was difficult. While this could be attributable to
publication bias, it could also be because the field is so new that few reports of product trials exist at all
or they are not publicly available. Second, the research team exclusively searched for gray literature in
the Nexus Uni database, which may have missed internal product reports, news articles and other
relevant information. Third, academic literature on this subject tended to focus on the mechanics of
the technologies rather than the practicalities of the device in practice (such as cost, maintenance and
usability), which is likely because these technologies are largely in the pre-implementation phase.
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5. Conclusions

The findings of this systematic review demonstrate the public health potential of biosensors as
an emerging technology and how Smart Sanitation can be used to enhance health monitoring at the
individual level as well as at the community level. Most studies were nonrandomized, small-scale
pilot or lab studies and revealed that few biosensors have been used in toilet or human sewage settings
outside of lab tests. Many of the biosensors provided real-time continuous data and were reported
to be more cost-effective in terms both time and money when compared to traditional surveillance
methods. The most commonly discussed strength of these technologies was their ability to conduct
rapid, on-site analysis. The use of biosensors in sanitation is a nascent field that has the potential to
promote global health security and strengthen health systems. In order to effectively develop and
implement these technologies for public health surveillance and individual health monitoring at a
large scale, more robust research is needed to evaluate and improve existing biosensors technologies to
not only ensure the efficacy of their use but also their compliance with global data privacy and human
study protocols. Additional research in this field could also identify gaps where next generation
versions of the biosensor technologies can emerge.
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Appendix A

Table A1. Study Characteristics of Included Papers.

Author, Publication Year, Country [ref] Technology Used Setting of Use in Study

Yang et al., 2015, Europe (multiple) [11] Multiple (review paper) Wastewater
Jaatinen et al., 2016, Finland [21] Whole cell sensor Urine samples

Lucarelli et al., 2002, Italy [30] Carbon electrode sensor Wastewater
Webster et al., 2014, United States [39] Carbon electrode sensor Urine samples

Hirayama et al., 2010, Japan [22] Infrared Toilet
Soh, 2005, Singapore [23] Electric biosensor Toilet

Kawanami et al., 2012, Japan [24] Thermocouple sensor Toilet
Delea et al., 2017, Bangladesh [25] Motion sensor Toilet
Park et al., 2020, United States [26] Smart toilet, DNA biosensor Toilet

Masemola et al., 2020, South Africa [31] Electric biosensor Water
Chapron et al., 2019, Canada [38] Infrared Toilet

Ghosh et al., 2020, India [27] Smart toilet, Transducer Toilet
Porecha, 2015, United States [28] Smart toilet Toilet
Nakagawa et al., 2018, Japan [29] Electrocardiogram Toilet

Mao et al., 2019, China [32] Colorimetric biosensor Wastewater
Yang et al., 2015, United Kingdom [33] DNA biosensor Wastewater

Timur et al., 2004, Turkey [34] Whole cell sensor Wastewater
Gao et al., 2017, China [35] Whole cell sensor Wastewater

Pham et al., 2015, Germany [36] Whole cell sensor Wastewater
Gagnon & Lajeunesse, 2008, Portugal [37] Whole cell sensor Wastewater

Bunyakul et al., 2015, Thailand [40] Microfluidic immunosensor Stool samples
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