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Abstract: Trimethylamine N-oxide (TMAO) is a gut microbial metabolite that affects atherogenesis
and glucose dysregulation. The purpose of this study was to look at the link between blood TMAO
levels and metabolic syndrome (MetS) in individuals with coronary artery disease (CAD). Blood
samples were obtained in fasting status, and serum TMAO level was quantified by high-performance
liquid chromatography–mass spectrometry. MetS and its components were defined according to the
International Diabetes Federation diagnostic criteria. Of 92 enrolled patients, 51 (55.4%) had MetS.
Patients with MetS had a greater proportion of hypertension and diabetes mellitus, higher body
weight, waist circumference, body mass index, systolic blood pressure, fasting glucose, triglycerides,
blood urea nitrogen, creatinine, C-reactive protein (CRP), insulin level, homeostasis model assessment
of insulin resistance, and TMAO level. Multivariable logistic regression models revealed that TMAO
level (odds ratio: 1.036, 95% confidence interval: 1.005–1.067, p = 0.023) could be an effective predictor
of MetS among the CAD population. In these patients, the log-TMAO level was positively associated
with log-CRP (β = 0.274, p = 0.001) and negatively associated with eGFR (β = −0.235, p = 0.022). In
conclusion, our study revealed a positive association between serum TMAO level and MetS among
patients with CAD.

Keywords: metabolic syndrome; trimethylamine N-oxide; coronary artery disease; C-reactive protein

1. Introduction

Metabolic syndrome (MetS), which is a constellation of insulin resistance, hyper-
glycemia, hyperlipidemia, and hypertension, was reported to have a worldwide prevalence
of 10–40% and to predispose to type 2 diabetes and cardiovascular disease [1]. MetS is
associated with increased cardiovascular outcomes and all-cause mortality [2]. Patients
with coronary artery disease (CAD) concomitant with MetS have an increased risk of
cardiovascular morbidity after follow-up [1].

Trimethylamine N-oxide (TMAO) is a metabolite that is derived from gut microbiota,
comprises choline and L-carnitine, and is converted from trimethylamine by the liver
enzyme flavin monooxygenase 3 (FMO3) [3]. Multiple studies have demonstrated that
TMAO is an evident predictor of cardiovascular disease prevalence and the increased
incidence of major adverse cardiovascular events, such as myocardial infarction, stroke,
and cardiovascular mortality [4], especially in patients with preexisting CAD [5]. Recent
evidence in mice revealed that TMAO could induce M1 macrophage polarization and cause
pro-inflammatory environment and platelet aggregation, while reducing TMAO level
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stabilized atherosclerotic plaque via macrophage M2 polarization [6,7]. In addition, TMAO
has been linked to obstruct the hepatic insulin signaling pathway, and the correlations
between TMAO and diabetes risk appeared to be more reliable than those for cardiovascular
risk [8]. Accordingly, recent studies proposed that TMAO could be a novel biomarker for
MetS [9]. The purpose of this study was to look into the link between blood TMAO levels
and MetS in individuals with CAD.

2. Materials and Methods
2.1. Patients

From August 2016 to April 2017, 92 patients who were proven to have greater than
50% stenosis in any coronary artery segment on coronary angiography for more than
three months at the cardiovascular outpatient department at Hualien Tzu Chi Hospital
were included in this study. Coronary revascularization was performed according to 2021
American College of Cardiology/American Heart Association/Society for Cardiovascu-
lar Angiography and Interventions (ACC/AHA/SCAI) guidelines. The dual antiplatelet
agents were oral daily with clopidogrel 75 mg and aspirin 100 mg for at least three months
after coronary revascularization, and 70 patients had coronary artery stents (20 patients
with bare-metal stents and 50 patients with drug-eluting stents). This study protocol was
permitted by the Hualien Tzu Chi Hospital Research Ethics Committee (IRB108-96-B). Ac-
tive infection, severe gastroenteritis, heart failure at the time of blood sampling, consuming
probiotics or other nutraceuticals, or a pre-existing malignancy were all reasons for patients
to be excluded from the study. Hypertension and diabetes were classified according to the
ICD10 diagnosis in medical records, or via a prescription for antihypertensive/antidiabetic
agents. Figure 1 depicts the flow chart of this study.

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 2 of 9 
 

 

pro-inflammatory environment and platelet aggregation, while reducing TMAO level sta-
bilized atherosclerotic plaque via macrophage M2 polarization [6,7]. In addition, TMAO 
has been linked to obstruct the hepatic insulin signaling pathway, and the correlations 
between TMAO and diabetes risk appeared to be more reliable than those for cardiovas-
cular risk [8]. Accordingly, recent studies proposed that TMAO could be a novel bi-
omarker for MetS [9]. The purpose of this study was to look into the link between blood 
TMAO levels and MetS in individuals with CAD. 

2. Materials and Methods 
2.1. Patients 

From August 2016 to April 2017, 92 patients who were proven to have greater than 
50% stenosis in any coronary artery segment on coronary angiography for more than three 
months at the cardiovascular outpatient department at Hualien Tzu Chi Hospital were 
included in this study. Coronary revascularization was performed according to 2021 
American College of Cardiology/American Heart Association/Society for Cardiovascular 
Angiography and Interventions (ACC/AHA/SCAI) guidelines. The dual antiplatelet 
agents were oral daily with clopidogrel 75 mg and aspirin 100 mg for at least three months 
after coronary revascularization, and 70 patients had coronary artery stents (20 patients 
with bare-metal stents and 50 patients with drug-eluting stents). This study protocol was 
permitted by the Hualien Tzu Chi Hospital Research Ethics Committee (IRB108-96-B). Ac-
tive infection, severe gastroenteritis, heart failure at the time of blood sampling, consum-
ing probiotics or other nutraceuticals, or a pre-existing malignancy were all reasons for 
patients to be excluded from the study. Hypertension and diabetes were classified accord-
ing to the ICD10 diagnosis in medical records, or via a prescription for antihyperten-
sive/antidiabetic agents. Figure 1 depicts the flow chart of this study. 

 
Figure 1. The study flow chart. 

  

Figure 1. The study flow chart.

2.2. Anthropometric Analysis

Bodyweight, body height, and waist circumference were measured simultaneously.
The body mass index (BMI) was calculated by dividing the subjects’ measured weight (kg)
by their height squared (m2).
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2.3. Biochemical Investigations

Venous blood was collected after an overnight fasting period. We measured blood urea
nitrogen (BUN), creatinine, fasting glucose, low-density lipoprotein cholesterol (LDL-C),
high-density lipoprotein cholesterol (HDL-C), total cholesterol (TCH), triglycerides (TG),
and C-reactive protein (CRP). An enzyme-linked immunosorbent test (ELISA) was used
to measure serum insulin levels. (Labor Diagnostika Nord, Nordhorn, Germany). The
homeostasis model assessment-estimated IR (HOMA-IR) was used to estimate insulin
sensitivity according to the following formula: fasting plasma insulin (µU/mL)× fasting
plasma glucose (mg/dL)/405 [10]. The estimated glomerular filtration rate (eGFR) was
calculated using the Chronic Kidney Disease Epidemiology Collaboration equation.

2.4. Metabolic Syndrome and Its Components

The definition of MetS required more than three of the following five components
according to International Diabetes Federation diagnostic criteria [11]: (1) central obe-
sity (waist circumference ≥ 90 cm for men or ≥80 cm for women); (2) systolic blood
pressure ≥ 130 mmHg or diastolic ≥ 85 mmHg; (3) fasting glucose ≥ 100 mg/dL; (4) HDL-
cholesterol < 50 mg/dL for women and <40 mg/dL for men); (5) TG ≥ 150 mg/dL.

2.5. High-Performance Liquid Chromatography-Mass Spectrometry

The serum TMAO levels were determined using a Waters e2695 high-performance
liquid chromatography system with a mass spectrometer (ACQUITY QDa, Waters Corpo-
ration, Milford, MA, USA) [12]. To monitor the participants’ compound (TMAO: 76.0 m/z;
d9-TMAO: 85.1 m/z), mass spectrometry was used with complete scan ranges of 50–450 m/z
for positive-ion modes and 100–350 m/z for negative-ion modes. TMAO and d9-TMAO
had a retention time of 2.54 min. The Empower® 3.0 program was used to collect and
analyze all of the examinations (New York, NY, USA).

2.6. Statistical Analysis

The Kolmogorov–Smirnov test was used to determine whether continuous variables
had a normal distribution. The Mann–Whitney U test was used to compare nonnormally
distributed data such as TG, fasting glucose, BUN, creatinine, CRP, insulin, HOMA-IR, and
TMAO. Data expressed as the number of patients was analyzed by the χ2 test. Variables
significantly associated with MetS were tested for independence by multivariate logistic
regression analysis. Because serum insulin and HOMA-IR levels had multicollinearity
with variance inflation factor > 10 with MetS. We did not add insulin and HOMA-IR in
multivariate logistic regression analysis for MetS. The nonnormally distributed variables
underwent logarithmic transformations with base 10 to achieve normality. In a simple
linear regression analysis, variables significantly linked with logarithmically transformed
TMAO (log-TMAO) were checked for independence, followed by a multivariate forward
stepwise regression analysis. The efficiency of the prediction models was assessed using
the areas under the receiver operating characteristic (ROC) curve generated by the logistic
regression model. Data were analyzed using SPSS for Windows (version 19.0; SPSS Inc.,
Chicago, IL, USA). Values of p < 0.05 were considered to be statistically significant.

3. Results

The demographic, biochemical, and clinical characteristics of the 92 CAD patients
included in this study are shown in Table 1; of these, 51 patients (55.4%) had MetS. Com-
pared with patients without MetS, those with MetS had significantly higher percentages of
hypertension (p < 0.001) and DM (p < 0.001); significantly higher body weight (p = 0.004),
waist circumference (p < 0.001), BMI (p < 0.001), SBP (p = 0.002), fasting glucose (p = 0.003),
TG (p < 0.001), BUN (p = 0.003), creatinine (p = 0.004), CRP (p = 0.048), insulin level
(p = 0.041), HOMA-IR (p = 0.004), and TMAO level (p < 0.001); and significantly lower
HDL-C (p = 0.006) and eGFR (p < 0.001).
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Table 1. Demographic and clinical characteristics of the study population.

Variables All Patients
(n = 92)

No Metabolic
Syndrome Group

(n = 41)

Metabolic Syndrome
Group
(n = 51)

p Value

Age (years) 65.44 ± 9.37 66.29 ± 8.77 64.75 ± 9.86 0.435
Height (cm) 161.30 ± 7.88 161.54 ± 6.26 161.12 ± 9.03 0.802

Body weight (kg) 68.59 ± 12.19 64.59 ± 9.51 71.82 ± 13.20 0.004 *
Waist circumference (cm) 92.52 ± 10.20 86.98 ± 7.99 96.98 ± 9.63 <0.001 *
Body mass index (kg/m2) 26.26 ± 3.59 24.73 ± 3.13 27.50 ± 3.48 <0.001 *

Systolic blood pressure (mmHg) 130.27 ± 16.47 124.44 ± 13.64 134.96 ± 17.16 0.002 *
Diastolic blood pressure (mmHg) 72.25 ± 10.29 70.73 ± 8.33 73.47 ± 11.56 0.206

Total cholesterol (mg/dL) 167.36 ± 37.17 164.85 ± 33.71 169.37 ± 39.94 0.565
Triglycerides (mg/dL) 120.00 (91.25–183.00) 104.00 (86.50–127.50) 151.00 (101.00–238.00) <0.001 *

HDL-C (mg/dL) 45.41 ± 12.15 49.27 ± 13.49 42.31 ± 10.05 0.006 *
LDL-C (mg/dL) 96.23 ± 27.47 95.56 ± 27.1 96.76 ± 28.00 0.836

Fasting glucose (mg/dL) 113.00 (98.25–157.00) 100.00 (92.00–146.50) 125.00 (105.00–157.00) 0.003 *
Blood urea nitrogen (mg/dL) 16.00 (13.00–20.00) 15.00 (12.00–17.50) 19.00 (13.00–22.00) 0.003 *

Creatinine (mg/dL) 1.10 (0.90–1.30) 1.00 (0.90–1.20) 1.20 (0.90–1.50) 0.004 *
eGFR (mL/min) 67.02 ± 19.42 75.03 ± 13.44 60.57 ± 21.14 <0.001 *

C-reactive protein (mg/dL) 0.19 (0.14–0.26) 0.18 (0.14–0.22) 0.22 (0.15–0.30) 0.048 *
Insulin (uIU/mL) 12.57 (9.34–17.13) 11.18 (7.09–15.69) 14.64 (9.89–19.60) 0.041 *

HOMA-IR 3.97 (2.81–5.39) 3.56 (2.17–4.72) 4.23 (3.30–6.22) 0.004 *
TMAO (µg/L) 119.58 (98.00–176.72) 99.96 (88.95–128.41) 153.67 (109.41–219.80) <0.001 *
Female (n, %) 21 (22.8) 6 (14.6) 15 (29.4) 0.093

Hypertension (n, %) 72 (78.3) 24 (58.5) 48 (94.1) <0.001 *
Diabetes (n, %) 41 (44.6) 10 (24.4) 31 (60.8) <0.001 *

ACE inhibitor use (n, %) 22 (23.9) 6 (14.6) 16 (31.4) 0.061
ARB use (n, %) 34 (37.0) 12 (29.3) 22 (43.1) 0.171

β-blocker use (n, %) 52 (56.5) 21 (51.2) 31 (60.8) 0.358
CCB use (n, %) 34 (37.0) 11 (26.8) 23 (45.1) 0.071

Statin use (n, %) 64 (69.6) 25 (61.0) 39 (76.5) 0.108
Fibrate use (n, %) 15 (16.3) 4 (9.8) 11 (21.6) 0.127

The categorial variables are presented as count and percentage; the continuous values are represented as me-
dian (interquartile range) or mean± standard deviation. Abbreviations: LDL-cholesterol, low density lipopro-
tein cholesterol; HDL-cholesterol, high-density lipoprotein cholesterol; eGFR, estimated glomerular filtration
rate; HOMA-IR, homeostasis model assessment of insulin resistance; TMAO, Trimethylamine N-oxide; ACE,
angiotensin-converting enzyme; ARB, angiotensin-receptor blocker; CCB, calcium-channel blocker. * p value
refers to the comparison between the metabolic syndrome group and the non-metabolic syndrome group.

Table 2 shows the odds ratio (OR) of TMAO for MetS after multivariate logistic
regression analysis. The unadjusted serum TMAO levels with MetS revealed that for every
1 µg/L that TMAO increased, the risk of MetS increased by 3.4% [OR: 1.034, 95% confidence
interval (CI): 1.017–1.052, p < 0.001]. Model 1 was adjusted for the MetS components, such
as waist circumference, DM, hypertension, fasting glucose, TG, and HDL-C. Model 1
showed a 3.3% increase in the risk of MetS (OR: 1.033, 95% CI: 1.009–1.058, p = 0.007)
for every 1-µg/L increase in TMAO level. In addition to the variables in model 1, other
variables that were significant for MetS (i.e., BMI, eGFR, CRP, insulin level, and HOMA-IR)
were included in model 2. Model 2 showed a 4.3% increase in the risk of MetS (OR: 1.043,
95% CI: 1.001–1.087, p = 0.043) for every 1-µg/L increase in TMAO level. The result above
suggested that TMAO had a positive association with MetS in patients with CAD after
adjusting for significant confounders. According to the ROC curve, the optimal cutoff
serum value of TMAO for predicting MetS in patients with CAD was 106.69 g/L, with
an area under the ROC curve of 0.832 (95 percent CI 0.739–0.902, p 0.001), a sensitivity of
86.3 percent, and a specificity of 68.3 percent (Figure 2).
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Table 2. Multivariable logistic regression investigation of serum trimethylamine N-oxide levels
among 92 coronary artery disease patients.

TMAO (µg/L)
Unadjusted Model 1 Model 2

OR (95% CI) p Value OR (95% CI) p Value OR (95% CI) p Value

Per 1 µg/L TMAO increase 1.034 (1.017–1.052) <0.001 * 1.033 (1.009–1.058) 0.007 * 1.036 (1.005–1.067) 0.023 *

Model 1 is adjusted for waist circumference, diabetes mellitus, hypertension, fasting glucose, triglycerides, and
high-density lipoprotein cholesterol. Model 2 is adjusted for the Model 1 variables and for body mass index,
estimated glomerular filtration rate and C-reactive protein. TMAO, Trimethylamine N-oxide; OR, odds ratio; CI,
confidence interval. * p < 0.05 was considered statistically significant.

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 5 of 9 
 

 

1 showed a 3.3% increase in the risk of MetS (OR: 1.033, 95% CI: 1.009–1.058, p = 0.007) for 
every 1-μg/L increase in TMAO level. In addition to the variables in model 1, other varia-
bles that were significant for MetS (i.e., BMI, eGFR, CRP, insulin level, and HOMA-IR) 
were included in model 2. Model 2 showed a 4.3% increase in the risk of MetS (OR: 1.043, 
95% CI: 1.001–1.087, p = 0.043) for every 1-μg/L increase in TMAO level. The result above 
suggested that TMAO had a positive association with MetS in patients with CAD after 
adjusting for significant confounders. According to the ROC curve, the optimal cutoff se-
rum value of TMAO for predicting MetS in patients with CAD was 106.69 g/L, with an 
area under the ROC curve of 0.832 (95 percent CI 0.739–0.902, p 0.001), a sensitivity of 86.3 
percent, and a specificity of 68.3 percent (Figure 2). 

Table 2. Multivariable logistic regression investigation of serum trimethylamine N-oxide levels 
among 92 coronary artery disease patients. 

TMAO (μg/L) 
Unadjusted Model 1 Model 2 

OR (95% CI) p Value OR (95% CI) p Value OR (95% CI) p Value 
Per 1μg/L TMAO increase 1.034 (1.017–1.052) <0.001 * 1.033 (1.009–1.058) 0.007 * 1.036 (1.005–1.067) 0.023 * 

Model 1 is adjusted for waist circumference, diabetes mellitus, hypertension, fasting glucose, tri-
glycerides, and high-density lipoprotein cholesterol. Model 2 is adjusted for the Model 1 variables 
and for body mass index, estimated glomerular filtration rate and C-reactive protein. TMAO, Tri-
methylamine N-oxide; OR, odds ratio; CI, confidence interval. * p < 0.05 was considered statistically 
significant. 

 
Figure 2. ROC curve for metabolic syndrome prediction by trimethylamine N-oxide level. 

Simple multivariate linear analyses positively correlated log-TMAO level with hy-
pertension (r = 0.260, p = 0.012); waist circumference (r = 0.279, p = 0.007); SBP (r = 0.265, p 
= 0.011); log-BUN (r = 0.246, p = 0.018); log-creatinine (r = 0.214, p = 0.041); log-CRP (r = 
0.335, p = 0.001) and was negatively correlated with eGFR (r = −0.306, p = 0.003) (Table 3). 
In a multivariate forward stepwise linear regression model, log-CRP (β = 0.274, adjusted 
R2 change = 0.103, p = 0.001) and eGFR (β = −0.235, adjusted R2 change = 0.042, p = 0.022) 
were independently and significantly associated with log-TMAO levels. 

  

Figure 2. ROC curve for metabolic syndrome prediction by trimethylamine N-oxide level.

Simple multivariate linear analyses positively correlated log-TMAO level with hy-
pertension (r = 0.260, p = 0.012); waist circumference (r = 0.279, p = 0.007); SBP (r = 0.265,
p = 0.011); log-BUN (r = 0.246, p = 0.018); log-creatinine (r = 0.214, p = 0.041); log-CRP
(r = 0.335, p = 0.001) and was negatively correlated with eGFR (r = −0.306, p = 0.003)
(Table 3). In a multivariate forward stepwise linear regression model, log-CRP (β = 0.274,
adjusted R2 change = 0.103, p = 0.001) and eGFR (β = −0.235, adjusted R2 change = 0.042,
p = 0.022) were independently and significantly associated with log-TMAO levels.

Table 3. Correction between log-transformed trimethylamine N-oxide level and clinical variables.

Variables

Log-Transformed TMAO (µg/L)

Simple Regression Multivariate Regression

r p Value Beta Adjusted R2

Change
p Value

Female 0.162 0.122 - - -
Hypertension 0.260 0.012 * - - -

Diabetes 0.075 0.477 - - -
ACE inhibitor use 0.031 0.768 - - -

ARB use 0.044 0.680 - - -
β-blocker use 0.157 0.134 - - -

CCB use 0.077 0.467 - - -
Statin use 0.102 0.333 - - -
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Table 3. Cont.

Fibrate use 0.137 0.194 - - -
Age (years) 0.067 0.528 - - -

Body weight (kg) 0.094 0.372 - - -
Waist circumference (cm) 0.279 0.007 * - - -
Body mass index (kg/m2) 0.190 0.069 - - -

Systolic blood pressure (mmHg) 0.265 0.011 * - - -
Diastolic blood pressure (mmHg) −0.008 0.942 - - -

Total cholesterol (mg/dL) 0.041 0.698 - - -
Log-Triglyceride (mg/dL) 0.187 0.074 - - -

HDL-C (mg/dL) −0.174 0.096 - - -
LDL-C (mg/dL) 0.008 0.941 - - -

Log-Glucose (mg/dL) 0.007 0.951 - - -
Log-BUN (mg/dL) 0.246 0.018 * - - -

Log-Creatinine (mg/dL) 0.214 0.041 * - - -
eGFR (mL/min) −0.306 0.003 * −0.235 0.042 0.022 *

Log-CRP (mg/dL) 0.335 0.001 * 0.274 0.103 0.001 *
Log-Insulin (uIU/mL) 0.125 0.235 - - -

Log-HOMA-IR 0.114 0.279 - - -
Data of triglycerides, glucose, BUN, creatinine, CRP, insulin, HOMA-IR, and TMAO values were log-transformed
before analysis. Simple linear regression or multivariate stepwise linear regression analysis performed with
adopted factors (hypertension, waist circumference, systolic blood pressure, log-BUN, log-creatinine, eGFR
and log-CRP). ACE, angiotensin-converting enzyme; ARB, angiotensin-receptor blocker; CCB, calcium-channel
blocker; HDL-C, high density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; BUN, blood
urea nitrogen; eGFR, estimated glomerular filtration rate; CRP, C-reactive protein; HOMA-IR, homeostasis model
assessment of insulin resistance; TMAO, trimethylamine N-oxide. * Statistical significance was regarded as
p < 0.05.

4. Discussion

This study on patients with CAD found that the fasting TMAO level was positively
associated with MetS. In addition, log-TMAO level was positively associated with log-CRP
level and negatively associated with eGFR.

Beyond the connection between atherosclerosis and poor cardiovascular outcomes,
increasing evidence suggested that gut microbiota is crucial in glucose hemostasis [13].
A recent meta-analysis suggested that high levels of serum TMAO were associated with
an increased risk of DM [14]. The precise mechanism of the effects of TMAO on insulin
resistance remains unclear. The proposed pathway was the TMAO-dependent elevation of
N-nitroso compounds, which induce DM [4]. Dietary TMAO was shown to impair hepatic
insulin transduction, deteriorate glucose tolerance, and cause adipose tissue inflammation
in mice fed with a high-fat diet [15]. Furthermore, high levels of plasma TMAO could
decrease the synthesis and transport the proteins of bile acids, which could regulate glucose
metabolism through several pathways [16]. Finally, the inhibition of FMO3 reduced TMAO
levels and lowered serum glucose in murine [17].

Several reports revealed that TMAO could alter lipid homeostasis. First, TMAO was
shown to promote foam cell formation by upregulating macrophage scavenger recep-
tors [18]. Second, TMAO inhibited hepatic bile acid synthesis by the downregulation of
Cyp7a1 expression, which is the rate-limiting step in cholesterol catabolism [19]. As a
critical enzyme of TMAO, FMO3 may promote hepatic lipogenesis and gluconeogenesis
and impair transintestinal cholesterol export [16]. Moreover, direct supplementation of
TMAO could enhance atherosclerotic lesion development in mice [20].

Regarding the last two components of MetS, there is limited literature on the corre-
lation of TMAO with hypertension and obesity. In one rat study, TMAO prolonged the
angiotensin II ability to elevate blood pressure, which is the crucial component of the renin-
angiotensin system [21]. In one human study with obese subjects, the TMAO level was
associated with visceral fat mass and liver fat content [22]. The pharmacologic inhibition of
FMO3 reportedly stimulated white adipose tissue to turn into beige adipose tissue, which
meant that the inhibition of FMO3 promotes resistance to obesity [23]. We found that serum
TMAO levels had positive correlations with waist circumference, SBP, and hypertension
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in patients with CAD. Antihypertensive agents including angiotensin-converting enzyme
inhibitor, angiotensin-receptor blocker, β-blocker, or calcium-channel blocker or the statin
or fibrate used revealed no significant correlation to log-TMAO levels in this study.

Several confounders could alter serum TMAO levels, and one of the most important
is renal function. TMAO is cleared by the kidney and excreted unchanged through the
urine. Nearly 95% of TMAO is excreted in the urine within one day [24]. Currently, the
organic cation transporter 2 is the critical channel for TMAO uptake [25]. In addition,
increased TMAO concentration was observed to normalize after renal transplantation [26].
A meta-analysis that included 13,783 participants noted that a circulating TMAO level was
positively associated with CRP on both two-class and dose-response meta-analyses [27].
Our study revealed that serum TMAO levels were associated with renal function and CRP
level in patients with CAD. The log-TMAO level was found to be negatively linked with
eGFR after a multivariate linear regression analysis.

The intestinal microbiota plays a pivotal role in cardiovascular diseases and vascular
aging [28,29]. With more knowledge about TMAO in cardiovascular disease and studies of
trimethylaminuria (TMAU), urine TMA/TMANO ratios could be a feasible clinical marker
instead of serum TMAO. Furthermore, FMO3 genotyping and intestinal microbiota analysis
might be the relevant steps to determine etiopathogenesis [30,31]. Beyond TMAO, recent
research suggested that nutraceuticals may play an essential role in MetS management and
affect the microbiome and oxidative stress [32].

The cross-sectional design of this study, as well as the small number of patients in-
cluded, and a post-hoc analysis noted the power is 0.655, were limitations of this work. Only
the correlation of TMAO with MetS was provided instead of causality. There was no diet
pattern evaluation or microbiome analysis of the subjects to prevent synthesis differences.
In addition, the discrepancies in sex, CRP level, estrogen concentration, and inflammation
severity may have confounded the TMAO levels. The highly positive correlation between
serum TMAO and urine TMAO suggests that urine TMAO has the potential to serve as
clinical applicability in the future [33]. Moreover, a recent study also noted that lower
ratios of urine to plasma concentrations of TMAO were associated with cardiovascular and
all-cause mortality in diabetic kidney disease [34]. Therefore, further studies are warranted
to validate the TMAO levels for MetS in patients with CAD.

5. Conclusions

In conclusion, serum fasting TMAO level was positively associated with MetS, CRP
level, and eGFR in patients with CAD.
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