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Medical imaging provides a powerful tool for medical diagnosis. In the process of

computer-aided diagnosis and treatment of liver cancer based on medical imaging,

accurate segmentation of liver region from abdominal CT images is an important step.

However, due to defects of liver tissue and limitations of CT imaging procession, the

gray level of liver region in CT image is heterogeneous, and the boundary between

the liver and those of adjacent tissues and organs is blurred, which makes the liver

segmentation an extremely difficult task. In this study, aiming at solving the problem

of low segmentation accuracy of the original 3D U-Net network, an improved network

based on the three-dimensional (3D) U-Net, is proposed. Moreover, in order to solve the

problem of insufficient training data caused by the difficulty of acquiring labeled 3D data,

an improved 3D U-Net network is embedded into the framework of generative adversarial

networks (GAN), which establishes a semi-supervised 3D liver segmentation optimization

algorithm. Finally, considering the problem of poor quality of 3D abdominal fake images

generated by utilizing random noise as input, deep convolutional neural networks (DCNN)

based on feature restoration method is designed to generate more realistic fake images.

By testing the proposed algorithm on the LiTS-2017 and KiTS19 dataset, experimental

results show that the proposed semi-supervised 3D liver segmentation method can

greatly improve the segmentation performance of liver, with a Dice score of 0.9424

outperforming other methods.

Keywords: CT image, 3D segmentation of liver, semi-supervised, generative adversarial networks, feature

restoration

INTRODUCTION

Recent advances in deep convolutional neural networks (DCNN) have shown great promises in
handling many computer vision tasks such as target detection, image classification, and semantic
segmentation, which can usually reach human-level performance. However, one of the main
limitations of DCNN is that they require a large amount of labeled data for training process.
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This limitation is particularly prominent in dealing with medical
image segmentation problems. At present, the acquisition of
labeled three-dimensional (3D) medical images requires manual
annotation, which is time-consuming and labor-intensive,
limiting the further development of DCNN in medical image
processing. Moreover, 3D image segmentation for medical
applications needs great amount of computing resources,
hurdling its practical application. Although the neural network
has the characteristics of parameter sharing, it acquires a deeper
network structure to improve the performance of the model. As
the number of network layers increases, the parameter quantity
is increased proportionally. Therefore, the deep neural network
needs a large dataset to train the model for obtaining the
model parameters. In the absence of sufficient training data, the
neural network will have relatively low performance and poor
generalization ability.

In addition, there are some problems with liver tissue’s
structure and CT imaging procession. Firstly, due to the
differences in gender, age, and body type of patients, the shape
and size of the liver of individual patients are different in
appearance in their CT images. Moreover, there are many
abdominal organs of compact structure, with tissue density
similar to that of liver. Secondly, the area of the diseased area
in patients’ liver is not fixed in size and with random location
that will cause interference to the network in the process of the
liver recognition. Finally, there are problems such as sensitivity
to noise, metal artifacts, and body motion during the imaging
process of CT images, leading to variation of the gray value
of liver area due to the influence of the imaging environment,
resulting in uneven gray level of liver area, which affects the
accuracy of liver segmentation.

Aiming at the difficulty of liver segmentation in abdominal CT
images, this paper improves the contrast of the liver in the CT
images by preprocessing abdominal CT images, which improves
the recognition ability of the liver. Furthermore, semi-supervised
learning algorithms reduce the need of large amount of labeled
data. In recent years, generative adversarial networks (GAN) have
shown great potentials for improving semantic segmentation in a
semi-supervised manner (1). Thus, this study also employs GAN
to generate fake images by combining labeled CT images to train
the network in a semi-supervised manner, which can further
improve the algorithm’s performance of liver segmentation by
expanding the dataset.

The rest of this paper is organized as follows. In section
“Related Work”, we give a brief overview of relevant work on
liver segmentation. Section “Methods” then presents our 3D liver
image segmentation approach based on GAN, which is evaluated
and analyzed on the challenging task of liver segmentation in
section “Experiments and Discussion”. Finally, we conclude with
a summary of our main contributions and results.

RELATED WORK

Before deep learning was widely used, many methods have
been proposed for the liver segmentation of abdominal CT
images based on graphics, morphology, and traditional machine

learning. With the rapid development of deep learning and
its blossom in the field of computer vision, the direction of
research in the field of medical image segmentation has also
begun to transform to deep learning. In the field of liver image
segmentation, more and more methods based on deep learning
have also appeared.

Traditional Methods
Apollon proposed a hybrid liver segmentation algorithm based
on pixel intensity threshold (2). It manually selects multiple
initial seed points in the image and calculates the average pixel
intensity value of nine adjacent pixels of the selected seed
points to obtain the segmentation results of the liver image.
Amir proposed a two-step liver segmentation method based on
threshold and active contour by the contrast characteristics of
liver CT image data set, liver shape diversity, and uneven texture
(3). Seong proposed an abnormal liver segmentation method
based on the adaptive threshold and angle line (4). Moreover,
Farzaneh applied the Bayesian-based adaptive threshold to
address the issue of liver segmentation (5). This algorithm
adjusts the threshold through self-learning to obtain the initial
segmentation result of the target area. Then, super pixels are used
to constrain the boundary of the liver area for obtaining the final
segmentation result. Chen proposed an improved slice-to-slice
region growing method, which introduced centroid detection
and intensity analysis, and applied morphological operations
to extract the liver region (6). Gambino proposed a texture-
based volume region growth algorithm, which effectively reduced
the impact of artificially selected seed points (7). Lu proposed
an improved region growing algorithm for liver segmentation
(8). Firstly, the original image is preprocessed by the non-
linear mapping. Then, the feature region of the liver is selected
through human-computer interaction. Finally, it used the quasi-
Monte Carlo method to generate seed points in the feature
region, improving the region growth criterion. Rafiei proposed
an innovative preprocessing and adaptive 3D region growth
method, which uses the map intensity and position of the
most probable voxel in the probability map as the region
growth boundary to limit the region growth so as to realize the
dynamic changes of region growth criterion during the training
process (9).

The level set method was first proposed by Osher (10). It has
become a classic image segmentation algorithm and has been
successfully applied to medical image segmentation problems.
Yang proposed a semi-automatic method based on level set
and threshold, which includes two level set methods (11). Zhou
proposed a liver tumor segmentation algorithm of unified level
set by combining regional with boundary information, which is
better than applying a single information-driven level set method
(12). Alirr proposed a method for automatically segmenting
the liver from CT dataset (13). This algorithm utilizes the
local shape model and the estimated liver intensity range to
establish the initial mask, and then the active contour algorithm
is utilized to make the initial mask into the liver boundary.
Kass first proposed the active contour model (Snake model)
in 1988 (14). This method modeled the problem of image
segmentation and transformed it into the problem of minimizing
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the energy generalization function, which provided a new way of
image segmentation. Chi proposed an automatic strategy-based
active contour segmentation method for accurate and repeatable
liver volume segmentation, which combines rotating template
matching, K-means clustering, and local edge enhancement
with gradient vector flow model (15). Bereciartua proposed a
method for automatic 3D liver segmentation, which achieved
liver segmentation by minimizing the fully variable dual (16).

Chen proposed a two-step liver segmentation method
based on low-contrast images (17). In the first step, K-
Means clustering algorithm and prior knowledge are applied
to find and identify liver and non-liver pixels. In the second
step, the liver is segmented from the low-contrast image
based on graph cutting. Sangewar proposed a new variational
model for segmentation of liver regions based on the idea
of intensity probability distribution and regional appearance
propagation, which overcomes the poor segmentation results
caused by the low contrast and edge blur of liver CT
images (18).

Deep Learning Methods
Deep learning (DL), as a branch of machine learning, has
shown potentials in medical image segmentation (19).
When using deep convolutional neural networks for organ
segmentation, thanks to its powerful feature extraction
capabilities, it can accurately extract the complex and
semantically rich feature information of organs, making
the network have high segmentation capabilities (20). The
advantages of deep learning are incomparable to traditional
machine learning algorithms. Therefore, the current mainstream
segmentation algorithms are based on deep learning, and
the segmentation accuracy is generally better than traditional
segmentation algorithms.

There are various types of segmentation methods. Some
researchers applied two-dimensional (2D) convolutional neural
networks (CNN) to deal with liver segmentation by learning 2D
context of the image (21, 22). Others designed models with 3D
contexts only in small voxels due to the high computation cost
and memory consumption of 3D CNN (23–25). Furthermore,
they used several 2D CNNs that are combined to enhance 2D
contexts during the liver segmentation (26, 27). Finally, the
2D and 3D contexts were considered to fuse for training the
network (28–31).

For the research of live segmentation, Ben-Cohen directly
applied the full convolutional network on a relatively small
liver dataset for liver and lesion segmentation. However, the
segmentation results were not ideal (32). Christ proposed a way
to automatically segment liver and lesions in CT abdominal
images using cascaded fully convolutional networks and dense
3D conditional random fields for the joint segmentation of the
liver and its lesions to achieve ideal effect (33). Yao proposed a
cascade structure to realize automatic segmentation of liver CT
images (34). A fully convolutional network is trained to roughly
segment the liver, and then the conditional random field model
is used as a post-processing refinement liver segmentation to
improve the effect.

METHODS

Overview of the Framework
This paper proposed a semi-supervised 3D liver segmentation
method based on deep convolutional GAN (DCGAN), which
consists of the discriminator and generator. Among them, the
improved 3D U-Net network is applied as a discriminator to
identify real images and generated fake images and obtain the
3D segmentation results of the liver. Then, we design a DCNN
based on feature restoration method to generate fake images by
the feature map of the real images. The network structure of
the optimization segmentation algorithm based on the GAN is
shown in Figure 1.

Preprocessing
Data preprocessing is an important means to improve the
effect of deep learning training, which can adjust the overall
distribution of the sample to make it more suitable for training.
Improving the quality of the sample can make the model easier
to fit the feature distribution of the sample. In CT images, CT
value is used to measure the density of human tissues or organs
by the Hounsfield Unit (HU). The CT value range is generally
[−1,000HU, +1,000HU], in which air is −1,000HU and dense
bone is +1,000HU. Therefore, the CT value in the image needs
to be converted into gray value before the liver segmentation. The
main steps are as follows:

(1) CT value truncation: As the highest contrast range of the
liver in the images is [−200HU, +200HU], so we cut the CT
value to a certain range, which the CT values smaller and
larger than −200HU and +200HU are set to −200HU and
+200HU to accomplish the CT value truncation. Clipping
is used to improve the contrast between the liver and other
tissues. This is a key step in preprocessing CT images.
Without clipping, the segmentation performance of CT
images is poor, and after the clipping processing, the network
can also converge faster. In addition, this paper is mainly to
segment the liver, which is not sensitive to bony structure
information. By clipping the intensity range of CT images,
the interference of bones and other tissues can be reduced.

(2) CT value normalization: CT images in the dataset were
obtained from several image acquisition sources with various
scanning equipment and imaging environments, which led
to different imaging effects and grayscales. Such difference in
the gray level has a greater impact on the training process
of the samples. Therefore, it is necessary to eliminate the
influence of imaging differences as much as possible in the
process of converting the CT value to the gray value. T The
normalized formula is shown in Formula (1):

H′
(

x, y,z
)

=
H

(

x, y,z
)

−HUmin

HUmax−HUmin
, (1)

where the values of HUmax and HUmin are +200 and
−200, H(x, y, z) represents the CT value of the voxel with
coordinates (x, y, z) in the CT image before normalization,
and H

′

(x, y, z) represents the normalized value.
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FIGURE 1 | The schematic diagram of the semi-supervised deep learning framework for liver segmentation.

(3) Gray value interval mapping: The normalization is set to
facilitate the calculation and supervision of the training
process. In the normalization stage, we multiply the
normalized value by 255 according to the range of RGB value
and convert it to an integer. Moreover, the normalized value
below zero is invisible to the naked eye, therefore, it needs
to be multiplied by a reasonable value in order to make the
contrast of the image clearer. Thereby the CT value of [−200,
+200] is mapped to the gray value interval of [0, 255].

Improved 3D U-Net Network Structure
The U-Net model was originally designed to solve the task of
2D medical image segmentation, which all network layers in
the model are 2D. In order to realize the 3D segmentation
of the images, a 3D version of the U-Net model needs to be
applied. On the basis of not changing the original encode-decode
structure of model, all the network layers in the model are
replaced with a 3D type to obtain the 3D U-Net segmentation
model (35). The 3D U-Net network structure is used to segment
3D images through the extension of the classic U-Net network
in processing data dimensions. Compared with the classic U-
Net network structure, in addition to the difference in the
dimension of the convolution kernel, the 3D U-Net network
only performs three down-sampling operations followed by one

batch normalization (BN) layer. In this paper, the liver 3D
segmentation algorithm is to increase the performance of the
network by adding some modules on the basis of the 3D U-
Net network. The specific improvements and operations are
described as follows.

Squeeze and Excitation (SE) Module
The original 3D U-Net model only uses convolution to extract
features. This paper has added SE structure to extract image
features, which can weight each feature channel according to the
value of the feature image to increase the weight of important
features and reduce the weight of the irrelevant features, thereby
improving the effect of feature extraction. The SE structure is
an attention mechanism based on feature channel weighting
(36). In this paper, the 3D SE structure and convolutional
layer are combined as the basic convolution module, which
is called the SE module. The SE module consists of two
convolutional layers. The first convolutional layer adjusts the
resolution and the number of channels of the input feature map
to a specific size. In addition, it can compress the feature channel
to reduce the amount of calculation. The second convolutional
layer is utilized in conjunction with the SE structure. The SE
structure first performs global pooling on the feature map and
applies the bottleneck structure to finally obtain the weights
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of each channel with a value range [0, 1] by the sigmoid
activation function. The structure of the SE module is shown in
Figure 2.

Among them, W×H×D×C represents the size of the feature
map, W, H, and D represent the width, height, and depth of the
feature map, respectively, C represents the number of channels
of the feature map, and r is the multiple of the restoration of
the number of channels in the Excitation operation. Scale is a
weighted operation which is followed by the rectified linear unit
(ReLU) activation function to output the result.

Pyramid Pooling Module
The 3D U-Net model only uses three downsamplings to obtain
the receptive field of the 3D image, and it elevates the role of
shallow features by jump connections allowing the model to
determine the importance of different scale receptive fields. In
this study, we have introduced the pyramid pooling module to
obtain a larger receptive field (37). The pyramid pooling module
applies multiple scales of pooling operations to obtain and fuse
feature information of multiple scales, which can improve the
degree of freedom of the model for multi-scale receptive field
selection. It also can add multi-scale information of features
without affecting the original features. Furthermore, in order
to splice the original feature image with the pooling results of
different scales, it is necessary to make the pooling results of
different scales to be the same size as the original feature map.
This module enables each location to obtain the information of
multiple ranges. Thus, the maximum range can directly reach
the global size, and the module can quickly acquire a larger
variety of information. This article will use the 3D structure of
the module to obtain a larger range of receptive fields. Firstly,
we applied the 1 × 1 convolution operation to perform feature
channel fusion for each scale pooling result, and it is up-sampled
to the original feature map size and spliced. Then, the number of
feature channels is also reduced through the 1 × 1 convolution
operation, and finally spliced with the original feature map as
the output.

Improved 3D U-Net Model
In order to improve the segmentation accuracy of the original
3D U-Net network, an improved network based on 3D U-Net is
proposed to perform the 3D segmentation of the liver. Firstly,
all the convolutional layers in the original 3D U-Net network
are replaced with the SE module. The improved structure is a
deep learning model based on the encoder-decoder structure,
in which the encoder is composed of SE module and down-
sampling, which is mainly responsible for extracting features
and expanding the receptive field. The decoder consists of
SE module and up-sampling, which has the main function of
extracting features and expanding resolution. There is a skip
connection between the encoder and the decoder. The skip
connection splices the shallow features in the encoder with the
deep features in the decoder, and the shallow features provide
detailed information for the decoder. The purpose is to make the
network pay more attention to the feature information related to
the liver and increase its importance while reducing the role of
irrelevant information such as background, enabling it to obtain

a finer segmentation boundary. In addition, the pyramid pooling
module was introduced to make the network obtain multi-scale
feature information and expand the receptive field of network. In
the improved 3D U-Net network, the pyramid pooling module
is added at the end of the encoding path that has the smallest
resolution in the entire network. The modified network structure
is shown in Figure 3.

The encoding part is shown in the left half of the figure. In
the encoding part, the model applies four SE module groups of
which each module group consists of two SE modules. The first
convolution step in the first SE module is 2 while the number
of channels is increased. After the four SE module groups, we
have added the pyramid pooling module that contains 3 parallel
average pooling layers with sizes of 1, 2, and 5, respectively. The
encoding part includes a total of 4 down-sampling, which are
all performed by convolution with a step size of 2. The pyramid
pooling module is added to the end of the encoding path that is
the place with the smallest resolution in the entire network.

The decoding part is shown in the right half of the figure. The
first part of decoding consists of three SE module groups—each
of which contains two SE modules. The first SE module has two
inputs: one is the output from the previous layer of the decoding
part, and the other is the output from the corresponding position
of the encoding part. The module first applies the transposed
convolution with a step size of 2 to expand the output resolution
of the previous layer to double the original resolution, reduce
the number of channels to 1/2 of the original, and splice the
output at the corresponding position of the encoding part. After
that, it performs another SE convolution operation. After three
SE module groups, the feature image is restored to the original
image size using the transposed convolution. After splicing with
the original image, it obtains the final segmentation result.

Deep Convolutional Generative Adversarial
Networks (DCGAN)
At present, convolutional neural networks have been widely
applied in generative adversarial networks. However, generative
adversarial networks lacked a general network architecture until
the emergence of DCGAN, which is an unsupervised learning
algorithm combining deep convolutional neural networks and
generative adversarial networks (38). The design idea of DCGAN
is to restrict the network structure based on the original network
framework to achieve a more powerful generative model.

The generator of DCGAN generates fake images by
convolution and up-sampling of random noise, which is
widely used in the task of generating 2D images. To generate a
3D image, the effect of using random noise is very poor because
of the difficulty to learn the 3D image distribution through a deep
neural network. Learning high-dimensional image distribution
is very slow by using noise as input, while using 3D U-Net
network as a discriminator is very quick to converge during the
training process. The contradiction will cause the problem of
gradient dispersion. In addition, we have used random noise to
generate CT images. However, the contours of the CT images are
difficult to generate, let alone the internal distribution. In order
to generate more realistic 3D images, it is necessary to add more
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FIGURE 2 | The structure of SE module.

real image distribution information to replace random noise,
which can speed up the learning rate of the generator.

In this article, we design a convolutional neural network based
on feature restoration method. By extracting the feature map
generated by the improved 3D U-Net network, a part of the

feature map is randomly selected as the input of neural network
due to the following reasons. Recovering all the feature maps
is a reverse process of feature extraction, which the distribution
obtained is the same as the real image. If a part of the feature map
is selected, the generator will learn the real image distribution
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FIGURE 3 | Improved 3D U-Net model.

and complete the missing parts. Moreover, the image obtained
is different from the real image which increases the variety
of images and achieves the purpose of expanding the dataset.
Because the feature map is randomly selected, the missing part
is also random, and, therefore, the generator can be trained to
restore the real image at any position. In addition, the reason why
the feature map, rather than the partially missing real image, is
applied is that the real image contains much useless information,
which causes the generator to converge slowly. Through up-
sampling and convolution operations, a fake image with the same
size as the real image slice is obtained. After that, the feature map
of fake and real images are, respectively, extracted through the
improved 3D U-Net network, and the mean difference between
the two feature maps is applied as the loss. Then, the network
parameters of generator are updated through multiple iterations,
making the generator better restore the feature map and, also,
making a fake image closer to the real image. The generator
structure is shown in Figure 4.

The Definition of Label and Loss Function
The proposed segmentation optimization algorithm is semi-
supervised. There are fully supervised learning for labeled
data and unsupervised learning for unlabeled data and fake
images. Therefore, the labels need to be redefined so that the
discriminator can identify fake images. The original label defines
the background and liver as 0 and 1. Now a new label category
needs to be added to mark the fake images, in which the label
is defined as 2. The output size of the improved 3D U-Net
network is H×W×D×3, 3 represents the number of labels, the

output vector of each voxel is [li,1, li,2, li,3], which represents the
probability that the current voxel is false. In order to learn from
unlabeled data, its output is forced to be a label of the real data
that is achieved by maximizing the output vector.

The loss function of the discriminator is shown in
Formula (2):

Ldiscriminator = Llabeled+Lunlabeled + Lfake (2)

where Ldiscriminator is the loss of the discriminator, Llabeled is the
loss of labeled data, Lunlabeled is the loss of unlabeled data, and
Lfake is the loss of fake images generated by the generator.

For labeled data, we use cross entropy loss function to
calculate as shown in Formula (3):

Llabeled =−Ex,y∼pdata(x,y)

H×W×D
∑

i=1

log Pmodel

(

yi|x,yi<K+1
)

(3)

where x represents the input image, K represents the number
of classes labels, y represents labeled image, x, y∼pdata(x, y)
represents that the input image is labeled, and pmodel(yi|x,
yi<K+1) represents the probability of the voxel prediction
category is yi in the image.

For unlabeled data, the loss function is shown in Formula (4):

Lunlabeled =−Ex∼pdata(x,y)

H×W×D
∑

i = 1

log
(

1− Pmodel

(

yi|x,yi<K+1
))

(4)
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FIGURE 4 | The generator structure.

where x represents the input image, x∼pdata(x, y) represents that
the input image is unlabeled, and pmodel(yi|x, yi<K+1) represents
the probability of the voxel prediction category is fake images.

For the fake images, the loss function is shown in Formula (5):

Lfake =−Ee∼Encoder(x)

H×W×D
∑

i=1

log Pmodel

(

yi = K+1|GθG (e)
)

(5)

where x represents the input unlabeled image, e∼Encoder (x)
represents the fake images generated by the generator based on
the unlabeled image distribution, and pmodel (yi =K+1|GθG(e))
represents the probability that the voxel prediction category is a
fake image in the fake images.

The loss function of generator is shown in Formula (6):

Lgenerator =
∥

∥Ee∼Encoder(x)f (x)−Ee∼Encoder(x)f
(

GθG (e)
)∥

∥

2
2 (6)

where x represents the input unlabeled image, f (x) represents the
extracted feature map from the unlabeled images through the 3D
U-Net network decoder, e represents the fake image generated
by the generator, f (GθG(e)) represents the extracted feature map
from the fake images through the 3D U-Net network decoder.

EXPERIMENTS AND DISCUSSION

Datasets
LiTS-2017 is a liver tumor segmentation challenge dataset
launched in 2017 (39). The data set includes 100 3D abdominal
CT scan images (nii format). In the experiment, 60 images were
selected as the training set, and the validation and test set contain
20 images, respectively. The training set is divided into 50 labeled
and 10 unlabeled images. The labeled and unlabeled images are
applied to train the segmentation network and generate fake
images. Firstly, we scale each image in the dataset and intercept
the liver position to change the size of the image to 256 × 256
× N. Then, the image is cut into patches with the size of 256
× 256 × 16 to obtain a total of 500 patches for training, which
the number of labeled and unlabeled patches is 400 and 100.
In the meantime, the validation and test set are processed to
contain 200 patches, respectively. Moreover, in order to verify

the generalization of the proposed model, we applied another
dataset, named KiTS19, which is a kidney tumor segmentation
challenge dataset launched in 2019 (40). The dataset includes
200 3D abdominal CT scan images (nii format). For the dataset,
we perform the same operations as the LiTS-2017. Finally, a
total of 1,000 patches are generated for training, of which the
number of labeled and unlabeled patches is 900 and 100. In the
meantime, the validation and test set are processed to contain
210patches, respectively.

Evaluation Etrics
To evaluate the segmentation performance of the proposed
network, we adopted the widely used segmentation evaluation
metric: Dice coefficient (Dice) (41). Dice is a function of ensemble
similarity measurement to calculate the similarity of two samples
with the range [0, 1] at the pixel level. The real target (Ground
truth) appears in a certain area A, and the target area of themodel
prediction result is B. Then the calculation of Dice is shown in
formula (7):

Dice (A,B) =
2 |A ∩ B|

A+B
(7)

where |AnB| represents the intersection between A and B, |A| and
|B| represent the total number of A and B pixels, respectively.
Because there are overlapping elements between A and B in the
denominator A + B, it adds a coefficient 2 to the numerator. In
the problem of medical image segmentation, A and B represent
the real label image and the segmented image predicted by
the model.

Training Process
Generation of Fake Images
Firstly, the unlabeled image is input into the improved 3D U-Net
network to obtain the feature map. Then, we randomly select a
part of the feature map as the input of the generator. Finally,
the generator generates fake images base on feature restoration
method. The flowchart is shown in Figure 5.

Discriminator Training
The labeled, unlabeled, and fake images are, respectively, passed
into the discriminator, and then the loss of the discriminator
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FIGURE 5 | The flow chart of generating fake images.

is calculated to update the gradient of the discriminator. The
flowchart is shown in Figure 6.

Generator Training
The fake and unlabeled images are, respectively, passed to the
improved 3D U-Net network after the gradient update to obtain
the feature map, and the generator loss is calculated according
to the similarity of the feature map to update the gradient of the
generator. The flowchart is shown in Figure 7.

The Results of Generated Images
The experiment proves that the fake image is very close to the real
image by the feature restoration method, and the speed of the
network learning distribution is faster than that of the network
using random noise as the input, which avoids the problem of
gradient dispersion. The fake images generated by the generator
is shown in Figure 8.

Experimental Results
Comparison of Experimental Results
For each group of experiments, the segmentation results were
verified on the same public dataset LiTS-2017. In the process of
network training, the Adam optimization algorithm is applied,

the learning rate of discriminator and generator are set to
10−4 and 3 × 10−4, and the batch size is set to 1. We have
trained the original 3D U-Net network, the improved 3D U-Net
network, and the generative adversarial network based on the
feature restoration method, respectively, and set up comparative
experiments for the improvement of each part.

In this study, each ablation experiment uses the same training
set, verification set and the test set, of which results are shown
in Table 1. From the comparison experiment, it can be seen
that the improved 3D U-Net network has improved compared
with the original 3D U-Net network in the validation set. The
improved 3D U-Net network also has a certain improvement
over the original 3D U-Net in the test, especially the introduction
of the GAN. The addition of the GAN not only improves the
segmentation effect of the training set and validation set, but also
improves the performance of the test set. For the improvement of
segmentation performance, we have analyzed the contribution of
each module, which are presented as follows.

Similar to the attention mechanism, the SE module integrated
in the original 3D U-Net network extracts the relationship
between the channels using the global information of each
channel and weights each channel. The SEmodule can determine
the importance of various features according to the value of each
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FIGURE 6 | The flow chart of discriminator training.

FIGURE 7 | The flow chart of generator training.

Frontiers in Medicine | www.frontiersin.org 10 January 2022 | Volume 8 | Article 794969

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


He et al. 3D Liver Image Segmentation

FIGURE 8 | Fake images generated by the generator: (A) 1,000 iterations; (B) 5,000 iterations; (C) 10,000 iterations; (D) 15,000 iterations; (E) 20,000 iterations; (F)

Real images.
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TABLE 1 | Comparison of experimental results on the LiTS-2017 dataset.

Method Validation set Test set

dice coefficient dice coefficient

3D U-Net 0.9160 0.881

3D U-Net+SE+Pyramid pooling 0.9304 0.905

3D U-Net+SE+Pyramid pooling+GAN 0.9638 0.942

The bold values represent the highest score.

TABLE 2 | Comparison of experimental results with other methods.

Method Dice coefficient

DenseNet (42) 0.923

3D DenseUNet-65 (43) 0.929

FCN+ACM (44) 0.943

GIU-Net (45) 0.951

3D U-Net+SE+Pyramid pooling+GAN 0.942

The bold values represent the highest score.

channel, which can effectively improve the performance of the
model. Adding the pyramid pooling module, the application of
multi-scale pooling layer allows the model to obtain different
sizes of receptive fields, while further expanding the receptive
field of model. The two operations, together, improve the feature
extraction capability of the model. Furthermore, the GAN,
based on the feature restoration method, can generate more
diverse images containing real distribution information. On a
limited dataset, it can improve the segmentation performance
and generalization of the model, which is a promising way for
the generation of 3D medical images.

Finally, we have compared the proposed algorithm with
others. As shown in Table 2, our algorithm is better than
the DenseNet and 3D DenseUNet-65 algorithms (42, 43). In
addition, the performance of the proposed method is slightly
lower than the FCN+ACMmethod (44). The GIU-Net algorithm
(45) outperformed our proposed model for liver segmentation.
A suitable explanation for that is that they utilized more data
to train the model, while our model is trained on a limited
dataset. In the future, we will further improve the performance
and reduce the complexity of the model.

The Segmentation Results
The partial segmentation result is selected from the test set
as shown in Figure 9. The first column is the original image,
the second column is the ground truth, and the third and last
column are the segmentation results by the original 3D U-Net
and proposed algorithm. It can be found that using the proposed
algorithm, the 3D segmentation results of the liver are very
close to the real labels, which the problem of poor segmentation
accuracy of head and tail regions of the liver has been improved.
In order to further analyze the segmentation results, we have also
supplied the 3D surface plots with the color bar of the Hausdorff
Distance (HD).

In Figure 10, the first row is the 3D surface plot generated by
the original 3D U-Net network for two representative test data,
while the second row is generated by the proposed algorithm.
As we can see in the left column, the HD values of these
two algorithms are relatively high. The 3D surface plot above,
generated by the original 3D U-Net network, has a redundant
prediction (the blue area) and obtains an HD value of 18.68mm.
The 3D surface plot below is generated by the proposed algorithm
that has some outliers with the purple area, which has a greater
impact on HD obtaining the HD value of 15.33mm. In addition,
the average symmetric surface distance (ASSD) values are 0.93
and 0.64mm for the original 3D U-Net network and proposed
algorithm, respectively. For this test data, the segmentation
results of the two algorithms are not very good. However, the
proposed algorithm still performs better than the original 3D U-
Net network. For the right column, the segmentation effect of the
two algorithms is better than the previous one. The 3D surface
plot above was generated by the original 3D U-Net network
whose boundary segmentation is not ideal. In this case, the HD
value of 9.70mm. The 3D surface plot below is generated by the
proposed algorithm that is better than that the original 3D U-
Net network and reduces the HD value (8.06mm). Moreover,
the average symmetric surface distance (ASSD) value of the
original 3D U-Net network and proposed algorithm are 0.93 and
0.87mm. For the scores of HD and ASSD, they are not as ideal
as the Dice coefficient, because that we use the Dice coefficient to
determine the end of training and the model is more inclined to
calculate Dice to a certain degree. In the future, we will further
improve the performance of the model.

Evaluation of Model Generalization
Generally speaking, a network model is proposed to solve
and optimize a certain problem for obtaining satisfactory
results. Therefore, most of models have poor generalization
ability and can only be applied to a certain area or
dataset. In order to establish a general network model, the
accuracy may be sacrificed. However, thanks to the powerful
generation ability of the generative adversarial network,
the distribution of different organs can be learned through
iteration to generate fake images. By this expansion of the
dataset, the generalization ability of the model can be greatly
improved. In this study, the proposed 3D liver segmentation
model is applied to the KiTS19 kidney dataset to test the
generalization ability of the model. The results are shown in
Table 3.

It can be seen from the experimental results that the model
still performs well for the 3D segmentation of the kidney.
Comparing with the classic 3D U-Net network, the accuracy of
kidney segmentation is significantly improved on the verification
set. Furthermore, the segmentation ability of the model is still
strong on the test set, even exceeding the performance of the
verification set.

The partial segmentation result is selected from the test set
as shown in Figure 11. The left column is the original image,
the middle column is the annotated kidney image, and the right
column is the segmentation result. It can be found that the 3D
segmentation results of the kidney are also very close to the real
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FIGURE 9 | Schematic representation of the liver 3D segmentation results.
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FIGURE 10 | Comparison of the 3D surface plots of the two algorithms.

labels. Since it is only to verify the generalization of the image
generation method based on feature restoration, it has not been
further analyzed. In the future, we will further study and verify
the general 3D image generation method.

The Contribution and Future Work
Aiming at the problem of low segmentation accuracy of the
original 3D U-Net network, an improved network based on
3D U-Net is proposed to perform the 3D segmentation of the
liver. In order to make the network pay more attention to the
characteristic information of the liver and reduce the role of
irrelevant information, such as background, we introduce the
squeeze and excitation (SE) module to the network. Meanwhile,
in order to allow the network to obtain feature information of
multiple scales and expand the receptive field of the network,
we also introduce the pyramid pooling module to the model.
Through the combination of the two modules, we have improved
the overall segmentation performance of the liver.

TABLE 3 | Comparison of experimental results on the KiTS19 dataset.

Method Validation set Test set

dice coefficient dice coefficient

3D-UNet 0.906 0.871

3D-UNet+SE+Pyramid pooling+GAN 0.959 0.959

The bold values represent the highest score.

In view of the lack of labeled 3D data, we embed the
improved 3D U-Net network in the GAN as the discriminator
and propose a semi-supervised liver segmentation method. The
limited labeled images and unlabeled images are used to train
the learning model to generate fake images for expanding
the dataset. Aiming at the poor quality of generating 3D
abdominal fake images by using random noise as input, a
DCNN based on feature restoration method is designed to
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FIGURE 11 | Schematic representation of the kidney 3D segmentation results.
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generate more realistic fake images using randomly selected
feature maps, which is embedded in the GAN as the generator.
Based on the feature restoration method, the generator can
make better use of the real image distribution information to
generate more realistic images, which increases the diversity
of the images.

However, the network has a large number of parameters,
which leads to a long training period when the computing
resources are limited. Because the data is 3D volume of the liver,
the encoder-decoder structure is applied to extract features and
restore 3D images every time during the training. In addition, the
generator needs to use the random feature map generated by the
encoding part of the improved 3D U-Net model to generate fake
images. Therefore, it takes up massive video memory during the
training of the model. In this study, the training of the proposed
model (100 epochs) required approximately 50 h on a single
NVIDIA GTX 1080Ti with 11 GB, indicating that each epoch
takes about 30min. The total parameters of the proposed network
are about 150 million, which is a relatively complex model.

Because the images take up too much memory, we can
optimize the network structure and adjust the efficiency of
the video memory to reduce the training time of the model.
Moreover, in the field of medical image processing, there are
many methods that use GAN to expanse datasets. However, by
now, there is no meaningful and universal quantitative way to
judge the authenticity of the composite images generated by
these methods. Therefore, the improvement and application of
generative adversarial networks in the field of medical image
processing is a direction worthy of in-depth research.

CONCLUSION

In this study, we mainly conduct a lot of research on
the 3D segmentation of liver CT images, which has mainly
achieved the following research results. Firstly, in view of
the poor effect of 3D U-Net network feature extraction and
insufficient accuracy of liver segmentation results, the SE

module and pyramid pooling module are introduced into
the 3D U-Net network to improve the accuracy of the
segmentation results. Secondly, in view of the difficulty in
obtaining labeled 3D CT images, the improved 3D U-Net
network is embedded in generative adversarial network as the
discriminator. In view of the poor quality of using random
noise as input to generate 3D abdominal CT fake images,
more real image distribution information is added to the input
of the network, and a deep convolutional neural network is
designed as the generator based on feature restoration method
to generate more realistic fake images. Finally, the network
model was applied in the 3D segmentation of kidney to test
the generalization ability of the model, which have showed that
the model can also obtain better segmentation results on the
kidney dataset.
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