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Abstract: Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive and molecule-specific
detection technique that uses surface plasmon resonances to enhance Raman scattering from analytes.
In SERS system design, the substrates must have minimal or no background at the incident laser
wavelength and large Raman signal enhancement via plasmonic confinement and grating modes
over large areas (i.e., squared millimeters). These requirements impose many competing design
constraints that make exhaustive parametric computational optimization of SERS substrates pro-
hibitively time consuming. Here, we demonstrate a genetic-algorithm (GA)-based optimization
method for SERS substrates to achieve strong electric field localization over wide areas for recon-
figurable and programmable photonic SERS sensors. We analyzed the GA parameters and tuned
them for SERS substrate optimization in detail. We experimentally validated the model results by
fabricating the predicted nanostructures using electron beam lithography. The experimental Raman
spectrum signal enhancements of the optimized SERS substrates validated the model predictions
and enabled the generation of a detailed Raman profile of methylene blue fluorescence dye. The
GA and its optimization shown here could pave the way for photonic chips and components with
arbitrary design constraints, wavelength bands, and performance targets.

Keywords: surface-enhanced Raman spectroscopy; genetic algorithm; metasurface

1. Introduction

Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive and specific molec-
ular detection technique based on nonlinear Raman scattering. SERS can deliver molecule-
specific information on samples for many different analyses such as cancer biomarker
detection [1], identification of bacteria [2], proteins [3], microRNAs [4], and DNAs [5]. The
essential features of a good SERS molecular detection system are a high signal-to-noise
ratio (SNR), Raman signal enhancement, and the reproducibility of the signal [6]. SERS
substrates, which can increase the intensity of molecule-specific peaks with higher contrast,
are preferred because they provide a higher SNR [7]. Besides the SNR, Raman signal
enhancement is a critical parameter related to the performance of the system and is dramat-
ically affected by the structure and the material of the SERS substrate on which the analyte
molecules are imaged or probed [7]. Recent studies focused on increasing the SERS signal
enhancement using different nanostructures. Camargo et al. used silver nanocubes and
an experimentally measured enhancement factor (EF) of 2 × 107 [8]. Elsayed et al. used
silver and silicon NPs to improve the enhancement and showed that an EF of 105 for silver
nanospheres, 109 for silicon nanowires, 2 × 109 for the combination of silver nanospheres
and silicon nanowires could be reached according to the electromagnetic simulations [9].

Nanomaterials 2021, 11, 2905. https://doi.org/10.3390/nano11112905 https://www.mdpi.com/journal/nanomaterials

https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0002-6260-784X
https://orcid.org/0000-0001-5294-6744
https://orcid.org/0000-0001-5939-4006
https://orcid.org/0000-0002-3554-7810
https://doi.org/10.3390/nano11112905
https://doi.org/10.3390/nano11112905
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nano11112905
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano11112905?type=check_update&version=3


Nanomaterials 2021, 11, 2905 2 of 15

The comparison of the performance of SERS chips using only the EF is quite challeng-
ing, as there are multiple definitions of the EF in the literature [10]. In addition, the EF of
different types of SERS structures (i.e., dynamic and static substrates) cannot be compared
directly [11]. Furthermore, the EFs are generally calculated using the spectra collected
from the hot-spot regions, and these regions are randomly distributed and may not be
fabricated reproducibly [12]. A recent study demonstrated that the hot-spot regions of the
SERS substrate contributes 24% of the overall SERS intensity [13]. Therefore, controlling
the distribution of localized areas on metasurfaces is an important issue for SERS substrate
design. The first method tries to test basic SERS nanostructures by changing their size;
however, geometric scaling gives a limited improvement since the overall structure does
not change much. Nonuniform structures could be an alternative for advanced SERS
substrate design. Since there are infinitely many nonuniform geometries, an efficient
design method to search for the solution set over arbitrary SERS constraints should be
developed. Therefore, a topology optimization step is needed to optimize the structure
of the SERS substrate for the desired Raman signal enhancement performance. While
finite-difference time-domain (FDTD) models can be used for an exhaustive SERS substrate
geometry optimization, such a systematic sweep becomes prohibitively time consuming in
a realistic design due to the number of geometric and material degrees of freedom. Thus,
more efficient design methods are essential.

Different topology optimization algorithms were presented in the literature [14–16].
To eliminate the prohibitive costs of FDTD-based geometric sweeps and development costs,
increasing noise tolerance, to find the global optimum geometry [17], the genetic algorithm
(GA) was preferred in this study for SERS substrate optimization. The GA is an adaptive
heuristic search algorithm that imitates the process of natural selection in order to find
the fittest offspring. It is an effective technique for nonlinear problems with multiple local
solutions. The GA is becoming more commonly used in optics for the optimization of
polarization rotators [18], integrated optical devices [19], and biosensors [20].

In this study, a GA was used to design a SERS substrate that has a controllable and
homogeneously distributed E-field localization over the surface. In our optimization
algorithm shown in Figure 1, we used FDTD models and nanostructure geometry revisions
on a 2D periodic single-unit cell. The electric field (e-field) enhancement factors (EFs) were
calculated using FDTD with 2D periodic boundary conditions, and the GA revised the
unit cell nanopattern geometry at each iteration. First, the parameters of the algorithm
were tuned to increase the optimization efficiency of the GA. After the optimal design had
been selected, the nanostructure (NS) was patterned onto the silicon substrate with an
electron beam (E-beam) lithography technique. The fabricated substrate was tested under
the Raman spectroscopy in order to compare the simulation results with the experimental
characterization.
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Figure 1. The workflow of one generation of the genetic algorithm (GA). The population number n is
determined by the user. The SERS substrates were represented with binary-coded matrices: if it is 1
(or 0), the corresponding pixel is filled with metal (or air). The fitness values are the electromagnetic
field enhancement factors and are calculated using the Lumerical FDTD solver.

2. Materials and Methods
2.1. SERS Substrate Optimization with the Genetic Algorithm

The GA is a heuristic search algorithm based on the natural selection process that
mimics Darwin’s theory of evolution by encoding the solutions into matrices and crossing
them with each other to produce the best solution based on their performances [21]. The
algorithm is composed of five main parts: the generation of the solutions, the fitness func-
tion, the selection function, crossover, and mutation. Each solution is encoded into a matrix
called an individual. Individuals could be binary or float matrices for different optimization
strategies. Binary-coded individuals were used for the SERS substrate optimization where
“1” represents the presence of gold and “0” represents the absence of gold in the selected
area. A certain number of individuals were created randomly to generate an optimization
set, which is called a population. The number of individuals making up a population is a
user-specified parameter and needs to be optimized for different applications. In order to
sort the individuals and select the best solution according to their fitness to the problem, a
problem-specific fitness value has to be determined using a function returning the fitness
success. Since the fitness value is the quantitative representation related to the probability
of the selection of the individuals, choosing a proper fitness function is the most important
part of the GA design. Previously, different fitness functions, such as the enhancement
factor, refractive index change, and wavelength shifts, have been implemented [22], for
different plasmonic topology optimization problems.

There are two different enhancement mechanisms for SERS that can be used as a fitness
function: electromagnetic and chemical enhancement. Electromagnetic enhancement (EME)
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is a physical enhancement due to the local electromagnetic fields enhanced by the resonant
excitation of plasmons, which is directly related to the size, shape, and material of the SERS
substrate [23]. Chemical enhancement (CE) is related to the electronic polarizabilities of the
analytes. The overall EF of a SERS substrate is the sum of its CE and EME; however, CE is
generally orders of magnitude lower than EME. Therefore, the overall EF of SERS could
be estimated using only EME, which could be calculated using the E-field distribution
provided by FDTD analyses. The EME is approximated as [24]:

EFEME(w0, wR, rm) ≈
∣∣∣∣Eloc(w0, rm)

E0(w0, rm)

∣∣∣∣2.
∣∣∣∣Eloc(wR, rm)

E0(wR, rm)

∣∣∣∣2 ≈
∣∣∣∣Eloc(w0, rm)

E0(w0, rm)

∣∣∣∣4 (1)

where ω0 is the photon frequency, ωR is the Raman scattered frequency, E0 is the incident
electric field strength, rm is the position, and Eloc is the local electric field strength. It
is represented as the fourth power of the electromagnetic field, |E|4. The optimization
process was investigated under the EF as a fitness function to find the optimal algorithm
structure for SERS substrate design, which is that EME occurs on the high-localization
regions called hot-spots.

The individuals were ranked according to their calculated fitness values. The ones
with the highest fitness values were kept for the next iteration, which is called elitism.
Then, individuals that would contribute to the creation of further generations were selected
from the remaining individuals by a selection algorithm. The selected individuals were
randomly crossed with each other using a crossover function to generate new individuals.
In order to increase the diversity of the population and to prevent from the convergence
to a local minimum point, some of the individuals were randomly modified to generate
slightly changed random topologies, which is called mutation. The new population was
generated after all the parts of the algorithm were completed, and again, the fitness values
of the new population were calculated. This loop continued until our two termination
criteria were reached: (1) the termination criterion was the change lower than 0.001% in the
fitness value for more than 10 generations and (2) the iterations reaching 100 generations.

In this study, the NS unit cell consisted of 10 × 10 px2 with 50 nm per px, which
means that each individual was represented by a 1 × 100 vector. Since recent studies have
shown that symmetric SERS substrates produce more reproducible signals compared with
asymmetric substrates [25], a 4-fold symmetry constraint was applied on the optimization;
therefore, only 25 genes were used for the representation of an individual. First, the
parameters of the GA were optimized for SERS substrate optimization, then the optimized
parameters were used to design an optimal SERS structure. The GA was designed and
optimized using MATLAB software, except the fitness value calculation. The generated
individuals were sent to the Lumerical FDTD solver, and the E-field over the substrate was
simulated to be used to calculate EME.

2.2. Electromagnetic Simulations

The E-field distribution was calculated using the Lumerical FDTD solver. The gold
cuboids were located on the silicon substrate. The total-field scattered-field source was
used with a 0◦ polarization angle. The override mesh was used at the interface between
the gold and the silicon. The conformal variant 1 mesh refinement method was used due
to the existence of the metal. Antisymmetric and symmetric boundary conditions were
used in the x-axis and y-axis, respectively. The unit cell was periodically patterned in the
x-axis and y-axis. A perfectly matched layer boundary condition was used in the z-axis.
The E-field was calculated with the frequency domain profile monitor located above the
gold surface.

2.3. SERS Substrate Fabrication

The optimized SERS substrate was fabricated in the Sabanci University Nanotech-
nology Research and Application Center (SUNUM) Cleanrooms. A bilayer process was
performed to achieve an easy lift-off. Si wafers were spin-coated with 495 poly(methyl
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methacrylate) (PMMA) C2 at 4000 rpm (rotations per minute) and baked at 170 ◦C for
5 min. Then, the 950 poly(methyl methacrylate) (PMMA) C2 was coated at 4000 rpm and
baked at 170 ◦C for 5 min. The resist thickness was 180 nm. Next, the wafer was exposed to
a Raith EBPG5000 plusES 100 kV electron beam lithography system with a low/small spot
size current (100 pA) and high-resolution parameters at a 750 µC cm−2 e-beam dose. After
exposure, the wafer was developed in 1:3 (by volume) MIBK:IPA (MIBK: methyl isobutyl
ketone; IPA: isopropanol) for 1 min and 1:1 (by volume) concentration MIBK:IPA for 10 s,
respectively. The wafer was then dipped into IPA for 30 s to stop the development, rinsed
with IPA, and blow-dried with nitrogen. To eliminate any PMMA residues, 7 s of oxygen
plasma was performed at 50 W, a 20 sccm O2 flow rate, and a 37.5 mTorr chamber pres-
sure. After development and plasma cleaning, 5 nm Cr/50 nm Au layers were thermally
evaporated on the wafer. The wafer was dipped in acetone overnight for lift-off. The chips
were ultrasonicated in a bath for a short time, rinsed with acetone and isopropanol, then
blow-dried with nitrogen.

2.4. Raman Spectroscopy Analysis

The SERS chips were analyzed with the methylene blue M9140 (Sigma-Aldrich,
St. Louis, MO, USA) fluorescent dye. The 0.25 g of the dye powder was mixed with
50 mL double-distilled water and dropped onto the SERS substrate. The SERS chip was an-
alyzed using with a 50× objective (Leica 50×/0.75), a 633 nm laser wavelength, 100% laser
power (source power of 18 mW), 1 s of exposure, one accumulation, and cosmic ray removal
using the Renishaw InVia Raman Microscope. The optimized structure was also compared
with an industrial Raman substrate J13856-01 (Hamamatsu Photonics, Hamamatsu, Japan)
under the same measurement parameters.

3. Results
3.1. Tuning the Parameters of the Genetic Algorithm

To optimize the GA, six substantial parameters needed to be determined: population,
fitness, selection and crossover functions, elitism, and mutation ratios. Parameter tuning
is an important step in the GA optimization as it can affect the convergence speed of
the algorithm and the probability of reaching the global optimum. Except for the fitness
function, the other parameters are the parameters that determine the structure of the GA.
The fitness function quantifies the figure of merit of each structure. In Figures 2 and 3, all
curves shown reached the stopping criteria, although not all cases completed the same
number of generations.

In this section, we present our refinement for the key genetic algorithm parameters.
The experimental demonstration of the enhancement factor refinement over the generations
that converged to the best performance would be the best unambiguous proof that the
genetic algorithm works as an advantageous optimization technique. However, fabricating
the semi-optimized structures pose significant lithography and lift-off challenges and may
prevent detailed testing. Nevertheless, the state-of-the-art electromagnetic FDTD simula-
tion tools can provide experimentally accurate results that can be validated quantitatively
by scanning near-field optical microscopy techniques.

3.1.1. Population

The population consists of two important parts: the initial population used to initiate
the optimization and the size of the population. The initial population is a critical parameter
since the future generations will be mostly composed of their offspring. There are two
main strategies to generate the initial population: predefined or random. In predefined
population generation, all or some of the individuals are included manually in the initial
population. This method is suitable when the algorithm is used to reach a topology that
exceeds the performance of a particular topology or when a powerful set of individuals
in terms of performance is known in advance. If these conditions are not met, manually
generating the population may adversely affect the performance of the algorithm. In order
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to see the effect of it, two different initial populations were generated and optimized with
the same GA parameters. The first one was composed of randomly created individuals, and
the second one was included a manually generated SERS substrate that was an unpatterned
gold thin film structure. The average distances of the individuals in a population for each
generation are shown in Figure 2A. Although a large part of the population was created
randomly even in the predefined initial population, it was observed that the variation of
individuals created in the predefined population generation case did not increase, but
rather decreased. The main reason for this is that we manually intervened in the diversity
of the seed population. Contrary to this case, if there were strong designs that we knew
in advance, this could lead the simulation to converge faster. Therefore, how to use the
initial population may yield different results depending on the problem. If there is a set of
acceptable solutions regarding the structure to be optimized in advance, using a predefined
initial design could improve the convergence speed. Otherwise, randomly generated
individuals should be used to increase the diversity of the solution set.

Figure 2. (A) The average distance between the individuals in each generation for different initial population functions.
Since generating individuals randomly increases the population diversity, it is the recommended method when there is no
prior information about the structure. (B) The fitness values obtained by GAs with different population sizes. According to
the obtained results, the population size of 50 is the most suitable parameter for the SERS substrate optimization. (C) The
fitness values obtained by GAs with different selection functions. Since the tournament function is affected by its parameters
of n, the roulette wheel selection function is used for SERS substrate optimization.

Each population consists of a determined number of individuals. The individuals that
will form the next generation are selected from among the ones in the previous population.
However, an increase in the population size also causes the duration of the simulation to
be prolonged. Since the E-field distributions calculated with the Lumerical FDTD solver
were used to analyze the performance of individuals for SERS optimization, the fitness
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value calculation of an individual lasted approximately 30 s. This means that increasing
the population size from 20 to 100 means increasing the optimization time from 8 h to
41 h for a GA limited to 50 generations. In addition to the simulation time drawback,
the population size also affects the algorithm’s performance; therefore, SERS surfaces
were separately optimized with three different sizes to analyze the effect of population
size on optimization success: 20, 50, and 100. The best individual obtained after each
generation for each optimization is shown in Figure 2B. It was observed that the population
consisting of 20 individuals was not sufficient for effective optimization; therefore, it could
not create enough variation and converged to the local maximum point. Although there
was no critical difference between 50 and 100, it was observed that a set of 50 individuals
gave better results. Increasing the population size too much both increases the time and
may prevent the algorithm from converging to an optimal solution over the generations;
therefore, the population size of 50 was chosen as the ideal population size. However, even
if this number is used with the same fitness function and problem optimization, it may
vary according to the size and structure of individuals; therefore, when a change is made
in the algorithm in this manner, this parameter must be re-optimized.

3.1.2. Selection Function

The selection function determines the individuals that will be used for the creation
of the next generation regarding the fitness values of the individuals. The most common
selection functions used in GA optimizations are the roulette wheel and tournament
selection functions. The roulette wheel function selects an individual with a probability
proportional to its fitness value [26]. The tournament function samples n number of
individuals randomly and then selects the best individual among them [27]. The number n
is determined by the user, and it dramatically effects the selection performance. Tournament
selection with different n numbers and the roulette function were compared, and the
achieved fitness values are shown in Figure 2C. The analyses proved that the n has an
important effect on the optimization; therefore, the n has to be optimized in advance.
Although the algorithm took longer to converge when the roulette function was used,
it had the advantage that the roulette function had no parameters to optimize. While
the roulette function caused the algorithm to converge over a longer time, it accelerated
the algorithm tuning since it had no parameters to optimize. On the other hand, while
the tournament function converged to the optimum result faster, it was necessary to
spend a certain amount of time to optimize the parameter of the function. This trade-
off may cause different functions to be preferred for solving different problems. The
roulette wheel selection is suggested for a problem-specific SERS substrate optimization
to reduce the complexity since the optimization process is already a complex process
involving calculating the E-field distribution, modeling the EF, and optimizing with the
GA. However, if a GA platform is desired to be developed for SERS optimization, the
tournament function could be preferred since the optimization time of each substrate will
become the most crucial parameter.

3.1.3. Crossover Function

After the selection function determines the individuals that are responsible for the next
generation, the crossover function combines two of them and creates their offspring. The
combination strategy of the two selected matrices is a significant factor. There are two main
methods that are widely used in the GA: single-point and two-point crossover functions.
The single-point crossover function divides the matrices at a randomly selected single point
and combines the divided matrices to create two new individuals. The two-point crossover
function works on the same principle, but divides the matrix by two points, not one [28].
For this reason, the diversity of individuals created with the two-point crossover function
is greater. To test this hypothesis, SERS substrates were separately optimized using with
the two different crossover functions. The obtained fitness values are given in Figure 3A.
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It was observed that the optimization made with the two-point crossover function gave
better results than one-point crossover function.

After the crossover function is determined, one should determine what percentage
of the individuals created with the crossover function will constitute the new generation.
The remaining individuals will be generated by the mutation; therefore, the crossover rate
has an effect on both the determination of the true optimization direction and the increase
in the diversity of the population to reach the global maximum point. In order to test the
crossover rate, three different rates were used to optimize the SERS substrate, and the
obtained fitness values are shown in Figure 3B. When the crossover rate was low, the GA
could not determine the correct optimization path and converged to a local minimum;
however, when it was increased too much, the improvements on the fitness value brought
by the variation obtained by mutation could not be achieved.

Figure 3. (A) Comparison of two different crossover functions. The two-point crossover function improves the performance
of the GA due to the increased variety. (B) The effect of the crossover rate on the optimization performance. The crossover
rate of 0.8 was set as the optimal parameter according to the obtained fitness values. (C) The effect of the elitism rates on the
GA optimization. The optimal parameter for elitism is 1. (D) The effect of different mutation rates on the GA optimization.
The mutation rate should be selected between 0.05 and 0.25.

3.1.4. Elitism and Mutation Ratio

The last optimization parameters are the elitism and the mutation rates. The elitism
rate determines how many individuals will be passed on directly to the next generation [29].
The mutation rate, on the other hand, determines what percentage of the genes that
make up individuals will mutate [30]. If a large ratio is chosen as the elitism rate, the
convergence efficiency of the GA may decrease as the number of individuals created by
crossing will decrease in the new generations. Just as elitism, the optimal value of the
mutation rate should be determined. In order to find the optimal numbers for SERS
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substrate optimizations, three different rates for each were used. The achieved fitness
values are shown in Figure 3. It was seen that if a large mutation rate was chosen, the
optimization time of the algorithm would take longer (or even, the GA may diverge if
elitism is not implemented), and if a very low value was selected, it would converge to the
local minimum point because of the insufficient variation in the further generations.

4. SERS Substrate Optimization

After all the parameters of the GA were analyzed, the optimal parameters were
selected for SERS substrate optimization: random initial population, population size of 50,
roulette wheel selection function, two-point crossover function with the ratio of 0.8, elitism
of 1, and mutation rate of 0.15. In order to show that the GA is a suitable method for SERS
substrate optimization, SERS surface design was made with the optimized algorithm. One
of the most important performance parameters for SERS surfaces is the reproducibility of
the Raman signal. In order to achieve this, SERS surfaces that provide localization in large
areas should be preferred instead of structures that provide very intense E-field localization
in narrow areas on the surface. For this reason, it is important how the E-field vector
obtained by FDTD simulations is used in a fitness function. In this study, two different
fitness functions were tested and their performances compared. The first function used was
the hot-spot average EF function, which is the average E-field intensity collected from the
hot-spot regions over the surface. The other function, overall average EF function, gives
the mean of the E-field intensities over the substrate. The optimization results, the obtained
structures, and their E-field profiles are shown in Figure 4.

Figure 4. The optimization of the surface-enhanced Raman spectroscopy (SERS) substrate with the
genetic algorithm (GA). (A) Optimization results using the hot-spot enhancement factor. (B) Opti-
mization results using the average enhancement factor.

The use of the average hot-spot EF allowed the algorithm to be optimized to the
surface with a higher performance. The mean operation might unintentionally prevent the
formation of highly localized areas. For this reason, the structure obtained with the hot-spot
EF was fabricated for the experimental tests of the SERS surfaces. It was seen that the field
was more localized on the sharp points and gaps, which is commonly observed in many
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previous SERS nanostructure studies. A highly enhanced E-field was obtained due to the
nonuniform structures composed of multiple sharp points and small gaps between them.
It was seen that the optimized structure did not localize the E-field onto the small sections;
instead, the E-field was distributed over the NS, which increased the reproducibility and
detection capabilities in sensing applications.

5. Experimental Analysis of the Optimized SERS Substrate

The optimized design was fabricated using an e-beam lithography. The fabrication
parameters are explicitly given in the Materials and Methods Section. In order to prevent
the unintended lift-off of the patterned areas, a 5 nm chromium adhesion layer was added
between the gold layer and the silicon substrate. A scanning electron microscope image of
the fabricated optimized geometry is given in Figure 5. The unit cells with 50 nm pixels
were fabricated properly and patterned over the substrate with a 100 nm unit cell spacing.

Figure 5. The fabrication result of the optimized SERS substrate captured by a scanning electron micro-
scope (SEM). The unit cell was fabricated properly after the optimization of the fabrication parameters.

The performance of the optimized SERS surface was analyzed with an organic dye,
methylene blue (MB). The MB solution was dropped onto the silicon, plain gold, and
SERS surfaces, and their Raman spectra were measured. The collected Raman spectra
are shown in Figure 6. The measured Raman peaks and their band assignments are
given in Table 1. The spectra of silicon was used as a background signal since the SERS
surface was fabricated onto a silicon wafer, and the plain gold surface was analyzed for
performance analysis. A broad peak centered at 960 cm−1 occurred due to the transverse
optical phonons of silicon [31]. A decrease in the intensity of the silicon-specific peak in
the Raman spectrum of SERS substrate was observed due to the presence of gold at the
surface. The spectrum of the silicon substrate included just one peak related with the
MB at 1626 cm−1, which was attributed to the C-C ring stretch. Since the displacement is
generally bigger on the ring systems in heavy molecules, the presence of the ring stretching
peak on the silicon substrate’s spectrum was expected [32]. This peak was also visible in
the MB analysis on the plain gold surface. Besides, there were other weak peaks visible in
the plain gold measurements attributed to the in-plane and out-of-plane bending of C-H
and the symmetric and asymmetric stretch of C-N. However, their intensities were very
low compared to the peaks obtained in the SERS analysis. There were three peaks that
could only be detected during the analysis with the optimized SERS substrate: 1033 cm−1,
1299 cm−1, and 1331 cm−1. Since the deformation modes generally do not cause the
creation of strong polarization changes, the Raman signals generated by them are generally
weak [32]. The reason why these peaks could not be detected using a silicon or a plain
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gold substrate might be their weak Raman signal tendency. The optimized structure was
tested also with an industrial SERS chip (J13856-01), and the obtained spectrum is shown
in Figure 6. The optimized SERS substrate had a good performance comparable to the
industrial SERS chip. As a result of these analyses, it was seen that the optimization of SERS
substrates with the GA allowed a SERS system design with a comparable performance to
the current SERS substrates and in which the distribution of hot-spots on the surface could
be controlled.

Figure 6. Raman spectra of methylene blue (MB) collected from the silicon, the plain gold, the industrial, and the optimized
SERS substrates. The characteristic peaks of MB were detected in the spectrum collected from the optimized SERS substrate
with a good SNR, comparable to the industrial SERS substrate J13856-01.

Table 1. The obtained Raman spectra and attributed chemical structures (s, strong; m, medium;
w, weak peak intensity). Each of the spectra and peaks were measured 30 times and were reproducible.
The reproducibility of the spectra precludes any potential destructive effects of thermal drift due to
enhanced localization.

Silicon (cm−1) Plain Gold (cm−1) SERS (cm−1) Band Assignment [33]

- 676 (w) 683 (w) Out-of-plane bending of C–H

- 773 (w) 774 (m) In-plane bending of C–H

- 895 (w) 896 (m) In-plane bending of C–H

- - 1033 (w) In-plane bending of C–H

- 1178 (w) 1170 (m) Stretching of C–N

- - 1299 (m) In-plane ring deformation of C–H

- - 1331 (m) In-plane ring deformation of C–H

- 1389 (m) 1389 (s) Symmetrical stretching of C–N

- 1427 (w) 1431 (m) Asymmetrical stretching of C–N

1626 (w) 1625 (m) 1623 (s) Ring stretching of C–C

The experimental EF was calculated with the method used in the previous studies [10,34–37].
The EF was calculated using the following equation:

EF =
ISERS
CSERS

× C0

I0
(2)
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where ISERS and I0 are the intensities of the peak at 1626 cm−1 measured from the SERS
substrate and the reference, respectively. Similarly, CSERS and C0 are the concentrations of
MB on to the substrates. Using Equation (2), the EFs of the SERS were obtained as 8.8 × 106

and 6.3 × 106 compared with the silicon and plain gold substrates, respectively. Since
the assumptions made for the EF calculations were hardly fulfilled because of the surface
roughness and defects, the EF was not used as a substantial performance criterion, but as a
reference parameter that could give a clue about the performance of the SERS substrate.
According to our findings, the GA could be utilized as an optimization tool for sensitive,
repeatable, stable, and successful SERS substrate designs. These findings could pave the
way for an application-specific SERS substrate development platform based on topology
optimization algorithms.

6. Discussion

The most substantial part of the study was the reconfigurability of the algorithm
for different applications. The optimization of integrated photonics is becoming more
advantageous and attractive since photonic system performance could be dramatically
improved. Table 2 shows selected previous research on the photonic optimization field.
Neural networks have been used for the optimization of core–shell nanoparticles [38];
however, the complex network structure and network design make the optimization
process complicated. Photonic devices optimized with the GA work in the long-wavelength
range [39–42]. Moreover, the GA has been implemented for the optimization of a surface-
plasmon biosensor [20]. One can observe that powerful designs could be obtained for
different applications using the GA optimization technique. In addition to the GA, deep
learning such as the generative adversarial network (GAN) is also used for optimizing
the system [43,44]. Although the results of the GAN-based optimizations are promising,
the performance of the network is directly related to the training set, which is generated
manually. It is not trivial to generate the training data for the discriminator and design a
system to evaluate the performance of both the discriminator and the generator. Therefore,
if there an application-specific single design is needed, the GAN is unnecessary and more
costly than the GA.

Table 2. Recent studies focused on the inverse design and topology optimization of different photonic
components using different methods such as deep neural networks (DNNs), the genetic algorithm
(GA), and the generative adversarial network (GAN).

Ref. Method Geometry Figure of Merit Wavelength

[38] DNN Core–Shell NP Loss Function -

[39] GA Metasurface Reflection 600 nm

[20] GA Metasurface Transmission 650–720 nm

[40] GA Metasurface Polarization & Scattering 1.5 µm

[41] GA Metasurface Transmission 16.9–44.7 mm

[42] GA Metasurface Absorption -

[43] GAN Metasurface Transmittance 27.2 mm

[44] GAN Metasurface Backpropagation efficiency 580 & 1550 nm

Complicated structures could dramatically improve the performance of the simple
spherical SERS NSs that are frequently used for research. The power of topology optimiza-
tion techniques is in their accelerated screening of high-figure-of-merit nanostructures out
of many different geometries. In our case, each unit cell consisted of 10 × 10 (100) px, which
can be reduced to twenty-five independent pixels due to the four-fold symmetry. Since
each pixel can be a void or gold, there are 225 different geometries, whose electromagnetic
field profiles are prohibitively expensive (225 × 30 s = about 32 y) to calculate by brute
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force modeling. This solution space becomes even larger when considering different pixel
types, materials, and system configurations. Using our GA, we started with a population
of geometries that span a large entropy space, which helped us narrow down the SERS
nanostructures with a near-global optimum figure of merit within only 1500 calculations.

Our methodology could also be used for different initial structures other than cuboids,
which may improve the results. Researchers have used different unit cells for the SERS
substrate design, such as spheres [45], nanocones [46], triangles [47], and nanostars [48].
SERS surfaces can be re-optimized by using these structures instead of cuboids. Besides
changing the pixel shape, the substrate material might also vary. Gold, silver, and copper
are metals commonly used in the visible and near-infrared wavelength ranges. In addition,
alkali metals, semiconductors, and 2D materials such as graphene have also been used for
different SERS substrate designs [49]. Since the GA can also be used for multi-objective op-
timization, material type can also be included as a parameter in the topology optimization.
In addition, SERS substrate optimization can be performed for a single wavelength, as well
as for a wavelength range. By using multi-objective GA, structures with the maximum and
the minimum EF at certain wavelengths can be designed, making different areas of the
SERS surface sensitive to different wavelengths. In this way, complex SERS substrates can
be designed that can simultaneously detect analytes tagged with different Raman markers.
Changing the fitness function could also improve the performance in other studies.

7. Conclusions

In this paper, the GA was used for the optimization of SERS substrates. This study
showed that the optimization of SERS substrates improved the performance drastically
and enabled the development of a SERS-based detection that might be used in analytical
chemistry and potentially for future clinical applications. The binary-coded GA was mod-
ified for SERS optimization using the electromagnetic field distribution profile of a unit
cell of the SERS substrate as a fitness value. The GA parameters were tuned in detail, and
their effects on the optimization performance were discussed. This detailed optimization
paves the way for the acceleration of the algorithm tuning to be performed if the GA would
be used in the optimization of different SERS structures. This demonstrates that the GA
is a powerful tool to design an application-specific SERS substrate that has a homoge-
neous localization distribution. To verify the simulation results with experimental data,
the optimized design was fabricated with e-beam lithography and tested under Raman
spectroscopy. An enhancement factor of >106 according to the background was achieved
with the fabricated substrate. This algorithm could be applied for other applications in
SERS substrate design that require multi-objective optimization.
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