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Smal l  I g M  ÷, IgD ÷ B cells can switch to the  p roduc t ion  of  o ther  classes (and 

subclasses) of  immunog lobu l in  (Ig) (1-4). This  switch can be induced  by  ei ther  
an t igenic  (5, 6) or mi togenic  s t imula t ion  (7). T h e  na tu re  of  the  ant igen  (8), the site of  
an t igen  inject ion (9), and  the na tu re  of  the T cell response (8, 10-13) can de te rmine  
the class of  Ig p roduced  in vivo. In par t icu la r ,  the switch in isotype synthesis is 
re la t ively T cell dependen t  (8, 10, 11). Fur the rmore ,  T cells can influence the  subclass 
of  IgG secreted by  B cells (12, 13). However ,  in low densi ty  cell cul tures  in the  
presence o f  l ipopolysacehar ide  (LPS),  1 IgG secretion by  mur ine  B cells m a y  not 
require  T cells (5, 14-17). 

The re  is moun t ing  evidence tha t  T cel l -derived factors can p ro found ly  influence 
the growth  and  m a t u r a t i o n  of  l y m p h o i d  cells (18, 19). These  factors can be ob t a ined  
from T cell hybr idomas ,  lines, and  clones. The re  are  reports  (20-25) ind ica t ing  tha t  

subsets of  T cells can give isotype specific help, i.e., can enhance  the synthesis of  a 
pa r t i cu l a r  isotype. It was of  interest,  therefore, to de te rmine  whe ther  T cell lines and  
hyb r idomas  p roduced  factors tha t  affected the  isotype p roduced  by  B cells. 

In the  studies repor ted  here we have used B cells s t imula ted  by  LPS to invest igate 
the  effect of  several  T cel l -derived superna tan t s  on Ig isotype secretion. O u r  results 
suggest the existence of  a T cell lymphokine(s)  p roduced  by  a T cell h y b r i d o m a  and  
two T cell lines which can induce B cell different iat ion.  In  the  presence of  LPS,  this 
B cell d i f ferent ia t ion factor(s) (BCDF) 2 enhances  IgG secretion by  surface immuno-  
g lobul in  (sIgG-) cells and,  in par t icu la r ,  subs tan t ia l ly  increases the  secretion of  IgG1. 

* Supported by grants AI-12789 and AI-11851 from the National Institutes of Health. 
l Abbreviations used in this paper: AEF, allogeneic effect factor; BCDF, T cell-derived B cell differentiation 

factor; C', complement; CAS, supernatant from concanavalin A-activated spleen cells; Con A, concanavalin 
A; CSF, colony-stimulating factor; FACS, fluorescence-activated cell sorter; FCS, fetal calf serum; FITC, 
fluorescein isothiocyanate; HCSF, histamine colony-stimulating factor; IL-1, IL-2, interleukin 1 and 2; 
LPS, lipopolysaccharide; MAF, macrophage-activation factor; NRIg, normal rabbit Ig; PBS, phosphate° 
buffered saline; PFC, plaque-forming cell(s); RaS, rabbit anti-6 chain; Ra#, rabbit anti-/~ chain; Ray, 
rabbit anti-mouse y; RAMIg, rabbit anti-mouse Ig; RIA, radioimmunoassay; SDS-PAGE, sodium dodecyl 
sulfate-polyacrylamide gel electrophoresis; sIg, surface immunoglobulin; TRF, T cell-replacing factor(s). 

We have previously reported the induction of polyclonal IgM secretion by supernatants from T cell 
lines and hybridnmas (26). Since these T cells also secrete TRF, we previously referred to this polyclonal 
activity as TRF. We have recently shown that T cell lines that do not secrete conventional TRF a are 
capable of inducing polyclonal IgM secretion. Thus, we now refer to this activity as B cell differentiation 
factor for IgM (BCDF~). The relationship between BCDF~ and the BCDF defined in the present paper, 
which enhances polyclonal IgG secretion (BCDFv), is not clear. Therefore, in this report BCDF will be used 
to describe T cell-derived factors that can effect polyclonal Ig secretion of either isotype. 
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B C D F  appears  to be different  from other  known lymphokines ,  such as in ter leukin  1 
(IL-1), in ter leukin  2 (IL-2), T cel l - replacing factor (TRF) ,  some co lony-s t imula t ing  
factors (CSF), mac rophage -ac t iva t ion  factors (MAF),  and  i m m u n e  in terferon 

(IFN-y).  

M a t e r i a l s  a n d  M e t h o d s  

Animals. Female BALB/c mice (Cumberland Farms, Clinton, TN) were used at 8-16 wk of 
age. 

Deletion of T Cells. B cells were prepared by treatment of spleen cell suspensions with a 
monoclonal anti-Thy-1.2 (HO-13.4) and baby rabbit complement (C') (Pel-Freeze Biologicals, 
Rogers, AR). Alternatively, spleen cells were first treated with a combination of rat hybridoma 
antibodies against Thy-l.2 (HO12.4), LyT-1 (53.7.313), and LyT-2 (52.6.72), followed by 
rabbit anti-mouse y chain and C', as described (26). These treatments abolished the proliferative 
response to eoncanavalin A (Con A). 

Culture Conditions. BALB/c B cells were cultured in flat-bottomed microtiter plates (Linbro 
Scientific Co., Hamden, CT) at 0.5 × 105-5 × 105 cells/ml in RPMI 1640 with penicillin, 
streptomycin, and gentamycin (10 #g/ml), 50 #M 2-mercaptoethanol, and 10% fetal calf serum 
(FCS) (Grand Island Biological Co., Grand Island, NY). Cultures were incubated in a 
humidified atmosphere of 83% N2, 10% CO2, 7% 02 at 37°C. 

Plaque-Forming Cell (PFC) Assay.. Enumeration of Ig-secreting cells was accomplished by the 
reverse plaque assay of Gronowicz et al. (27). The antiserum used for detecting IgM-seereting 
cells has been described (28). The anti-y serum was raised against free gamma chain (29) and 
did not develop plaques with IgM-secreting myelomas. 

Antibodies. The preparation of affinity-purified rabbit antibodies against mouse Ig (RAMIg), 
# (Ra#), and y (Ray) heavy chains, and the hybridoma antibody, ant i -~ (H10.4.22) has been 
described (30). The anti-y reacts with all four subclasses of IgG as determined by binding of the 
relevant myeloma proteins. Two monoelonal anti-Thy 1.2 antibodies were used (31); the mouse 
IgMx product of HO-13.4 hybridoma cells was obtained from the Cell Distribution Center of 
the Salk Institute (La Jolla, CA), and the rat IgG product of HO-12.4 hybridoma cells was 
obtained from Dr. Noel Warner (Becton, Dickinson & Co., Palo Alto, CA). The rat anti-Lyt-1 
and anti-Lyt-2 hybridomas (31) were also obtained from the Cell Distribution Center of the 
Salk Institute. The purification of the monoelonal anti-Lyt-1 and anti-Lyt-2 antibodies has 
been described previously (26). Fluoreseein-isothiocyanate-conjugated F(ab')2-rabbit anti-mouse 
y (FITC-F(ab')2RAMy) has been described (32). 

Cell Sorting. BALB/c splenocytes were stained with FITC-F(ab')2-Ray (67 #g/ml) as de- 
scribed (32). This reagent stains ~5% of spleen cells. Stained cells were sorted sterilely on a 
FACS III (B-D FACS System, Becton, Dickinson & Co., Sunnyvale, CA). Scatter gates were set 
to exclude dead cells and erythrocytes. The brightest 15-20% cells were sorted from the negative 
population. After sorting, the cells were reanalyzed to determine the percentage of positive cells 
remaining in the negatively selected population. Typically <1% of the negatively sorted cells 
were positive. Sorted cells were pelleted and suspended in medium and treated with monoclonal 
anti-Thy-l.2 and C'. In some experiments, T cells were killed before sorting; similar results 
were obtained with each of the two procedures. Sorted cells, along with stained unsorted cells 
or untreated cells, were then cultured as described above. 

T Cell Supernatants (Table I) 
HYnmDOMA FS7-6.18 CELLS (33). These were obtained from Dr. P. Marrack, and were 

pulsed with Con A, and the supernatants prepared as previously described (26). 
T CELL LINES PK 7.1.1a ANn PK 7.1.2. Secondary ailoreactive AKR anti-C57BL/6 (B6) 

cells (104/ml) were subcultured weekly in the presence of irradiated (3,300 rad) B6 stimulator 
cells (106/ml) in medium supplemented with rat spleen Con A supernatant (CAS) as a source 
of IL-2 (34). These cells have been maintained in culture (75 cm 2 Falcon bottles, flat-bottomed, 
in 20-40 ml medium [Falcon Labwave, Oxnard, CA]) for >1 yr (34). Lymphokine release was 
induced after washing the cells in IL-2-free medium containing 2% FCS, pulsing them for 3 h 
with 10 #g/ml Con A, washing, and culturing for 24 h in medium free of both IL-2 and Con 
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TABLE I 

Lymphokines Produced by T Cell Hybridomas and Long-Term Lines 

Lymphokine 

Cell desig- CSF Refer- 
nation ence IL-2 TRF MAF IFN-y HCSF BCDF 

GM MEG EO E 

PK 7.1.1a - - ND* - + + + + + 
PK 7.1.2 - - ND - + + + + + 
FS7-6.18 + - ND ND ND ND ND ND ND 
PC-AKR - - + + + + - - - 

clone 29 
PC-AKR - - + + . . . . .  

done 96 
B151KI2 - + ND ND ND ND ND ND ND 
C.C3.11.75 - + ND ND ND ND ND ND ND 

+ 34 
+ 34 
+ 33 
- 34, 35 

34, 35 

36 
38, 39 

* Not determined. 

A. The  supernatants from these cells have been shown to lack IL-2 and T R F ,  but to contain 
CSF and histamine-producing cell stimulating factor (HCSF) (See Table  I) (34). 

Radioimmunoassay (RIA) for Secreted Ig. Supernatants from 6-d cultures of stimulated cells 
were assayed for the presence of secreted IgM and IgG by a solid phase RIA as previously 
described (28). Microtiter plates (Cooke Engineering, Alexandria, VA) were coated with 
affinity-purified R A M I g  and 1% FCS. IgM was detected with [t2SI]Ra# and IgG with 
[l~I]Ray. These reagents had negligible cross-reactivity (<1%) with inappropriate heavy chains 
or light chains. For quantitation, standard curves using purified myeloma IgM (MOPC-104E) 
or mouse IgG were included in each assay. 

Radiolabeling ofLPS-treated B Cells. B cells were cultured at 2 X 105/ml.in flat-bottomed 75- 
cm 2 flasks (Falcon Labware) with 20 #g /ml  LPS (Salmonella typhosa, Difco Laboratories, Detroit, 
MI) and the appropriate concentration of  T cell sup ernatant. After 6 d cells were harvested 
and washed with balanced salt solution. 0.3 x 107-1 X 107 cells were then labeled with 
[nH]leucine for 6 h as previously described (40). Secreted material was dialyzed against PBS 
before immunopreeipitat ion or column chromatography. 

Immunopredpitation and Sodium Dodecyl Sulfate-Polyac~ylamide Get Electrophoresis (SDS-PAGE). 
Secreted material (3H) or samples from protein A-Sepharose columns (all or x2sI) were treated 
with saturating amounts of affinity-purified rabbit antibodies directed against mouse #, y chain 
or ovalbumin (control). Complexes were bound to fixed S. aureus. The bacteria were washed 
with PBS, and the adherent radioactive material was eluted by boiling in 1% SDS containing 
2-mercaptoethanol. Samples of the eluate were electrophoresed on 7.5% SDS-PAGE. The areas 
under the # and y chain peaks were then determined from the gel plots. 

Separation ~ IgG Subclasses by Protein A Column Chromatography. To identify subclasses of IgG 
secreted by [ H]leucine-labeled cells, a modification of the method described by Ey et al. (37) 
was used. Briefly, columns containing 2 ml of Sepharose-protein A (1 mg protein A [Pharmacia 
Fine Chemicals, Piseataway, N J] per ml Sepharose) were washed with 50 ml of PBS pH 8.0 

(1-2 ml) of [ H]leucine-labeled material, dialyzed into PBSs, were passed over (PBSs). Aliquots a 
the column, and the pH 8.0 fall through and wash were collected. The  adherent material was 
eluted stepwise with 10 ml PBS-pH 7.0, 0.1 M Na citrate, pH 6.0 and Na citrate, pH  5.0. The  
fall through and the fractions eluting at each pH  were dialyzed for 16 h at 4°C against PBS, 
p H  7.3 and the Ig immunoprecipi tated from the dialyzed samples as described above. 

Separate experiments were performed to determine the elution profiles of each lgG subclass 
and established that 12sI-IgG1 (MOPC-21), l~I-IgG2a (RPC-5), 125I-IgG~b (MOPC-195), and 
lZSI-IgG8 (J606) eluted from the protein A Sepharose column at pH 8.0 (yl), 6.0 (y2,), and 5.0 
(yzu and yz), respectively. Moreover, it was found that the IgG eluted at pH  8.0 was not bound 
by S. aureus (at pH 7.3), whereas the IgG eluted at pH  6.0 and 5.0 were bound. This further 
confirmed that the pH 8.0 eluate contained IgG1, whereas the pH  6.0 and pH 5.0 eluates 
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None 

C.C3.11.75 

FS7-6 .18  

PKT, I. lo 

1 1 2 3 4 5 
IgG PFC/culture x 10 -a 

FIG. 1. Effect of T cell supernatants on IgG production by B cells. BALB/c B cells were cultured 
at 2 × 105/ml (4 × 104/well) for 6 d, then assayed for IgG-secreting cells by the reverse plaque 
assay. T cell supernatants were used at the following concentration (vol/vol): FS7-6.18 supernatant 
25%; PK 7.1. la supernatant 2%; C.C3.11.75 supernatant 5%. 

contained IgG~, IgG2b, and IgG3, respectively. Because IgG2b and IgGa could not be separated 
by chromatography on protein A-Sepharose, the pH 5.0 eluate will be referred to as IgG2b/ 
IgGa. In terms of the [3H]leucine-labeled Ig, 80-90% of [3H]leucine labeled IgM eluted at pH 
8.0, whereas the remainder eluted at pH 5-7. It is of interest that the small amount of IgM 
eluting with IgG2b/IgG3 at pH 5.0 (~ 10%) bound to S. aureus, whereas that eluting with IgG1 
(pH &0) did not. 

Results  

Effect of Con A-Induced Supernatant from FS7-6.18 and PK 7.1. la on Ig Production by B 
Cells. We determined whether supernatant from the T cell hybridoma FS7-6.18 and 
the T cell lines PK 7.1.1a and PK 7.1.2 could enhance the LPS-induced IgG 
production by splenic B cells in low density cultures. It was desirable to remove T 
cells to facilitate interpretation of the results because some supernatants tested 
contained lymphokines that could activate T cells; such activated T cells might 
influence the B cell response. Therefore, T cells were depleted by treatment with 
either anti-Thy-l.2 plus C', or anti-Thy.l .2 plus anti-Lyt-1 and anti-Lyt-2 followed 
by rabbit anti- 7 and C'. The  results with both B cell populations were similar. As 
shown in Fig. 1, LPS induced IgG PFC in B cells cultured for 6 d. Supernatants from 
both FS7-6.18 and PK 7.1.1a markedly enhanced the LPS-induced IgG response, 
whereas neither supernatant appeared to elicit a significant IgG response in the 
absence of LPS (see below). Supernatants from line PK 7.1.2 had activity identical to 
that found in PK 7.1. la supernatant and have been used in similar experiments; for 
clarity, only results obtained with PK 7.1. la supernatants are presented. In contrast, 
supernatants from C.C3.11.75 (38-39), a T cell line, and B151K12 (36), a T cell 
hybridoma (both of which produc~ TRF  and induce B cells to secrete IgM) had no 
effect on IgG secretion (Fig. 1 and data not shown). This suggests that a conventionally 
defined a T R F  is not responsible for the enhancement of the IgG response in the 
presence of LPS. Supernatants from several other T cell lines and clones tested in this 
system (see Table 1) were also found to be negative: BW5147 thymoma (one parent 
of FS7-6.18) , T33F6 hybridoma described by Pacifico and Capra (42), PC-AKR CL- 
96, which produces MAF and IFN-y (34, 35), and PC-AKR CL-29, which produces 
IFN-y, MAF, and several CSF (34). CAS uniformly suppressed the LPS-induced IgG 
PFC. Thus, IgG production was enhanced by supernatants from two T cell lines and 
one T cell hybridoma, and the activity of these supernatants did not correlate with 
the presence of TRF,  IL-2, MAF, GM-CSF, or Meg-CSF (see Table I). 

a TRF is used here to denote a factor that can replace T cells in the in vitro response to sheep 
erythrocytes, as defined by Schimpl and Wecker (47). 
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Effect of Supernatant Concentration and Cell Density on IgG Secretion. The relative potency 
of  the two positive supernatants (FS7-6.18 and 7.1. la) was assessed (Fig. 2). The FS7- 
6.18 supernatant, at any concentration tested, only induced IgG PFC in the presence 
of LPS. PFC were increased approximately fourfold as compared with PFC from 
cultures treated with LPS alone (Fig. 2). The PK 7.1.1a supernatant was >10-fold 
more potent than FS7-6.18 in enhancing an LPS response, although maximum 
responses obtained with each supernatant were similar. Although FS7-6.18 did not 
increase the LPS-induced IgM response at any cell density tested (Fig. 3), IgG 
secretion was substantially enhanced at a cell number as low as 1 × 105 cells/ml. At 
cell densities below 105 cells/ml, an abrupt decline in the IgG response occurred. This 
may reflect a requirement for accessory cells in the responder cell population. 
Analogous results were obtained with PK 7.1. la supernatant (data not shown). The 
data in Fig. 3 reflect the total IgG secreted over the 6-d culture period determined in 
a RIA; similar results were obtained in a PFC assay performed on day 6 of culture 
(data not shown). 

T Cell Supernatants Increase the Frequency of lgG-secreting Cells. One possible explana- 
tion for the enhanced IgG response induced by the T cell supernatants would be that 
such supernatants simply increased the number of cells recovered at the end of  the 
culture period. This was an important consideration because the FS7-6.18 often 
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Flo. 2. Effect of T cell supernatant concentration on induction of IgG secretion. B A L B / c  B cells 
were cultured at 2 x 105/ml for 6 d and assayed for IgG secreting cells. Concentration of T cell 
supernatant is (vol/vol). Data for the PK 7.1.1a and FS7-6.18 supernatants were obtained in 
separate experiments. 0 ,  without LPS;  O ,  wi th  LPS.  

I'gMI o 

2 0.2 
° 

1 ~ 3 4 5 2 3 4 5 

Cells/ml xlO -5 

Fla. 3. Effect o f  cell density on IgG secretion. B A L B / c  B cells were cultured for 6 d at the 
indicated initial cell densities. Supernatants were assayed for IgM and IgG by solid phase 
radioimmunoassay. Concentration of FS7-6.18 supernatant was 25% (vol/vol) .  O ,  cont ro l ;  A,  LPS;  
O,  L P S  + FS7-6.18. 
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enhanced the recovery of viable cells. Thus, the number of viable cells recovered after 
6 d was determined and used to calculate the PFC frequency, i.e., number of IgG 
PFC per 1,000 recovered cells. As shown in Table II, both FS7-6.18 and PK 7.1.1a 
markedly increased the frequency of IgG secreting cells, and therefore both superna- 
tants appear to induce differentiation rather than simply increase recovery of viable 
cells. 

T Cell Supernatants Induce IgG Secretion by IgG- Cells. The experiments presented 
above suggest that T cell factor(s) from two sources can enhance the appearance of 
IgG-secreting cells. In order to determine whether these factors selectively induced 
differentiation of IgG-bearing cells or induced a switch in IgG- cells, we removed 
IgG-bearing cells before culture. This was accomplished using the fluorescence- 
activated cell sorter (FACS). Spleen cells were stained with fluoresceinated F(ab')a- 
rabbit anti-), then analyzed and sorted. This reagent typically stains 5% of BALB/c 
spleen cells. Gates were set such that the 15-20% most positively stained cells were 
excluded from the negatively selected population. Thus, even weakly positive cells 
were removed by this procedure. The positively selected cells were not cultured for 
technical reasons. Negatively selected cells were then reanalyzed on the FACS and 
cultured in the usual manner; untreated cells and/or  stained but unsorted cells were 
also cultured as controls. A typical experiment is shown in Fig. 4. It is apparent that 
the removal of IgG-positive cells has no effect on the IgG-response of the cells to LPS 
or LPS plus T cell factors. Results similar to those shown in Fig. 4 were obtained in 
three other experiments. 

We also quantitated the amount of radioactive IgG secreted by both sorted and 
unsorted radiolabeled cells. Cells were labeled with [aH]leucine, and the secreted 
material was analyzed by immunoprecipitation with rabbit anti-), followed by SDS- 
PAGE. A typical gel profile is shown in Fig. 5. Similar cell numbers secreting identical 
acid-precipitable counts were used so that direct comparisons could be made. It is 
obvious that virtually identical amounts of IgG were secreted by both sorted and 
unsorted ceils. In addition, the secreted material from four cultures (two separate 
experiments) was precipitated with RAMIg, and the quantity of secreted IgM and 
IgG was determined by calculating the areas under the H chain peaks of the SDS 
gels. Although some variability in the total amount of IgG secreted was apparent, 
slgG- cells did not secrete substantially less IgG than uiasorted cells (4.4% decrease in 
IgG secretion by slgG- cells). 

TABLE II 
Effect of T Cell Supernatants on the Frequency of LPS-induced IgG-secreting 

Cells 

Experi- Initial cell 
ment density None 

Addition to culture* 

FS7-6.18 PK 7.1.1a 

* See Legend to Fig. 1 for experimental details. 
:[: IgG PFC per 1,000 cells recovered. 
§ Not done. 

× lOS/ml 

l 2 0.8:[: 7.8 ND§ 
2 2 0.3 19.2 ND 
3 1 2.0 9.0 24.0 
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No Addition 

PK 7.1.1o 

FS7-6.18 

1 2 3 4 5 
IgG PFC/Culture x 10 -3 

FIc. 4. Induction of IgG secretion in IgG- cells cultured with T cell supernatants in the presence 
of LPS. BALB/c B cells (prepared by treatment with anti-Thy-l.2 + C') were stained with FITC- 
F(ab')2-Ra7 and positively staining cells were sorted away as described in Materials and Methods. 
Three groups of cells were then cultured in microtiter plates at 2 × 10~/ml with 20 #g/ml LPS: D, 
untreated cells; ~,  cells which were stained but not sorted; and ! sorted (IgG-negative) cells. After 
6 d cultures were assayed for IgG PFC. 

, t;l 
o 

~a 

1 

, _ _  _ _  t 

10 20 30 40 50 60 

Froetions 

Fro. 5. Subclass analysis of the IgG secreted by cultured B cells. IgG positive cells were sorted 
away as described in Materials and Methods and the legend to Fig. 4. Unsorted (O) and sorted 
(C)), IgG negative cell populations were then cultured in 10-ml flasks at 2 × 10S/ml for 6 d with LPS 
and FS7-6.18 supernatant (20%). Equal numbers of cells (3 X l0 n) were labeled with [SH]leucine 
and the secreted material (which had equal amounts of TCA-precipitable counts) was immunopre- 
cipitated with rabbit anti-y and S. aureus. After elution, samples were electrophoresed under reducing 
conditions on 7.5% SDS-polyacrylamide gels. The IgM 0~ chain) shown in the gel was also bound 
by NRIg and S. aureus (not shown) and does not indicate the presence of anti-/× or anti-L antibodies 
in the anti-y serum. A portion of the IgG also bound directly to S. aureus (not shown) and reflects the 
presence of protein A-binding IgGs/IgGzw 

F u r t h e r m o r e ,  as shown  in T a b l e  III ,  a c o m p a r i s o n  o f  t he  a m o u n t  o f  secre ted  I g G  

a n d  I g M  showed  tha t :  (a) cells t r e a t ed  w i t h  L P S  a lone  secrete  p r e d o m i n a n t l y  I g M  

(ave rage  o f  96%), a n d  (b) a d d i t i o n  o f  e i the r  FS7-6 .18  o r  P K  7.1.1a s u p e r n a t a n t  

resu l ted  in a s t r ik ing  increase  in I g G  secre t ion  (average  o f  20 a n d  24% o f  the  to ta l  Ig, 

respect ive ly) .  T a k e n  toge the r ,  these  results  suggest  t ha t  t he  T cell  s u p e r n a t a n t s  

p r e f e r en t i a l l y  e n h a n c e  the  L P S - i n d u c e d  I g G  secre t ion  by  s l g G -  ceils. 
Subclass Analysis of  the IgG Secreted by Cultured B Cells. Since  T ceils a re  k n o w n  to 

in f luence  the  subclass  as wel l  as t he  class o f  I g G  secre ted  by  B cells, we d e t e r m i n e d  

w h e t h e r  t h e  T cell  s u p e r n a t a n t s  a f fec ted  the  subclass  of  I g G  secre ted  by  ceils c u l t u r e d  

in t he  p resence  o f  LPS.  T o  q u a n t i t a t i v e l y  ana lyze  the  subclass  o f  I g G  secre ted  in t he  

a b o v e  e x p e r i m e n t s ,  we  l abe l ed  e q u a l  n u m b e r s  o f  L P S - t r e a t e d  B ceils (+_ P K  7.1.1a 
s u p e r n a t a n t )  w i t h  [3H]leucine on  day  6 o f  cu l tu re ;  c o m p a r a b l e  a m o u n t s  o f  [ZH]leucine 
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TABLE III 
Effect of T Cell Supernatants on LPS-induced IgM and IgG Secretion * 

LPS plus superna- 
tant from T cell 
lines added to 

culture 

Class of Ig secreted 
(percent of total secreted Ig):~ 

Experiment 1 Experiment 2 Experiment 3 

IgM IgG IgM IgG IgM IgG 

LPS 99 t 93 7 ND ND 
LPS + FS7-6.18 87 13 84 16 68 32 
LPS + PK 7.1.1a 83 17 79 21 65 35 

* 1 × 106-2 X 10 s cells were cultured at 2 X 10S/ml for 6 d, then labeled with 
[aH]leucine. Secreted material was analyzed by immunoprecipitation with 
RAMIg and S. aureus, and SDS-PAGE as described in Materials and Meth- 
otis. 

:~ Calculated from # and "t peaks on SDS-PAGE. 

TABLE IV 
Effect of T Cell Supernatants on the IgG Subclasses Produced by LPS-treated 

B Cells 

LPS plus superna- 
Experi- tam from T cell 
ment lines added to 

culture 

IgG subclass se- Increase in IgG 
creted (percent subclass~ 
of total IgG)* 

IgGal IgGa IgGal 
IgG, Ig(~b IgGzb 

O 30 70 -- -- 
FS7-6.18 85 15 4 1 
PK 7.1.1a 97 3 14 1 

2 O 46 54 - - 
FS7-6.18 97 3 38 1 
PK 7.1.1a 93 7 19 1 

* Based on the area under the yl or y3/y~ heavy chain peaks on SDS-PAGE. 
cpm of yl or y3/y~ chain of secreted IgG on SDS-PAGE of LPS + superna- 
tant/LPS alone. 

were incorporated into total acid-precipitable mater ial  and  into secreted Ig in both 

cultures. 
In  experiments shown in Ta b l e  III,  we observed that  <--7% of the Ig secreted by 

LPS-st imulated B cells was IgG. Approximate ly  50% of this IgG could not be bound  
by S. aureus at neutra l  pH,  suggesting that  it was IgG1 (data not shown). In  contrast,  
in cells cul tured in the presence of LPS plus P K  7.1. l a  superna tan t ,  20-25% of the Ig 
secreted was IgG (Table III). Little or none of this IgG was bound  to S. aureus (data 
not shown). To  further confirm that  the increase in IgG observed in B cells cul tured 

in the presence of LPS plus P K  7.1. l a  was IgG1, the subclasses of IgG in the secreted 
mater ial  were analyzed by chromatography on protein A-Sepharose (to separate IgG~, 

IgG~,  and  IgG2b/IgGs [37]). The  co lumn fractions were then analyzed by immuno-  
precipi ta t ion and  SDS-PAGE. The  results of two experiments are shown in Tab le  IV. 
LPS-treated cells secrete p redominan t ly  IgG2b/lgGa with lesser amount s  of IgG1; 
IgG2a was not detectable. In  contrast,  supernatants  from FS7-6.18 or P K  7.1. l a  caused 
a striking shift to IgGx product ion in LPS-treated cells. This  is par t icular ly apparen t  
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in the amount of each IgG subclass produced in the absence and presence of T Cell 
supernatants (Table III). It is evident that the increase in IgG PFC is due mainly to 
IgGl-secreting cells, since the amount of secreted IgG2b/IgG3 is similar in the presence 
an¢l absence of the T cell supernatants. 

Discussion 

This paper describes a lymphokine(s) produced by a T cell hybridoma and two 
alloreactive long-term T cell lines that markedly increases the recovery of IgG- 
secreting cells after culture of murine B cells in the presence of LPS. We have termed 
this lymphokine BCDF. Whereas LPS alone induces secretion of small amounts of 
IgG2b/IgGa and IgG1, the combination of LPS and BCDF induces a substantial 
increase in IgG1. The cells producing IgGx in the presence of LPS and BCDF were 
originally sIgG-, suggesting that LPS-stimulated B cells are induced to switch in the 
presence of BCDF. 

Secretion of IgG can be induced in murine B cells in vitro by the mitogen, LPS (7, 
14-17). The LPS-mediated induction of IgG secretion has been shown to be T 
independent and optimal at low cell density (7, 15). Our results are entirely consistent 
with these findings. The fact that [gG secretion is optimal at low initial cell densities 
suggests that several rounds of cell division may be required to obtain a switch to IgG, 
and there is evidence to support this contention (43, 44). We found that the addition 
of supernatants from some T cell lines (FS7-6.18 and PK 7.1.1a), but not others 
(C.C3.11.75, B.151-K12, BW 51477 T33F6, PC-AKR CL 96, PC-AKR CL 29), could 
greatly enhance the in vitro IgG response. This enhancement occurred independently 
of the presence of T cells in the culture and was optimal at low cell density. The 
enhancement of IgG secretion by the T cell supernatants was dependent on the 
presence of LPS, suggesting the necessity for a specific signal induced by LPS. This 
could be a proliferative signal per se, or one that induces receptors for BCDF. 

Several lines of evidence indicate that the cells secreting IgG in both antigen and 
LPS-treated cultures arise from IgM-bearing cells: (a) early (but not late) addition of 
anti-# to cultures of normal spleen cells suppresses both IgM and IgG secretion (41, 
45, 46); (b) in limiting dilution analysis of LPS-treated B cells, IgG PFC appear in 
wells that first contain a clone of IgM secreting cells (14); and (c) removal of IgG- 
bearing cells does not decrease the appearance of IgG secreting cells in LPS-treated 
cultures (17). Nevertheless, we felt it was essential to prove whether or not BCDF 
selects and expands B cells already bearing IgO under our experimental conditions. 
To demonstrate that sIgG- cells were the precursor cells for BCDF-induced IgG 
secretion, essentially all sIgG + B cells were removed by cell sorting and the sIgG- cells 
were cultured in the presence of LPS and BCDF. In these experiments, the sIgG- B 
cells secreted amounts of IgG similar to those secreted by unsorted B cells, indicating 
that the precursors of the IgG secreting cells were originally sIgG-. 

The mechanism by which BCDF specifically increases recovery of IgG secreting 
cells is not known. Two possibilities are: (a) BCDF may selectively expand the B cell 
population that has been induced to switch to IgG by LPS, thus increasing the 
number of progeny of a given clone; .or (b) BCDF may increase the number of clones 
that switch. A distinction between these two possibilities may be approached experi- 
mentally by determining the effect of BCDF on the IgG precursor frequency using 
limiting dilution techniques (14). The results of such experiments (Krammer, Isakson, 
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Pure, and Vitetta, manuscript in preparation) support the contention that BCDF 
increases the precursor frequency but not the burst size of LPS-induced IgG secreting 
cells. This finding further suggests that BCDF enhances a switch from IgM to IgG. 

Several reports have demonstrated that soluble products of T cells can stimulate B 
cell differentiation (47, 48). Typically, these T cell factors have been obtained from 
mixed populations of T cells and their biochemical characterization has remained 
elusive. Recently, however, the establishment of long-term T cell lines (49-51) has 
allowed immortalization of particular T cell populations; this has greatly facilitated 
studies of T cell-derived lymphokines (18, 19, 33, 34). There are several reports of the 
establishment of T cell lines and hybridomas that secrete products which induce Ig 
secretion (36, 38, 39). Some of these factors appear to induce Ig secretion alone (26, 
52-55) while others may require the presence of antigen (36, 39). Whether these 
factors are identical or related to each other is not clear; their relationship to 
conventionally defined T R F  is not known. The two we have tested (CC3.11.75 and 
B 151K 12) appear to induce predominantly IgM secretion (26). 

The mechanisms by which T cells regulate synthesis of particular Ig isotypes are 
not understood. Ishizaka and co-workers have demonstrated that helper factors 
specific for IgE can be induced by various stimuli (24, 25).T cells can also influence 
the IgG subclass secreted by B cells (12, 13). Data from in vivo experiments suggest 
that IgG3 secretion occurs independently of T cells, whereas IgG1 secretion is strongly 
T cell dependent (8, 10). Rosenberg and Chiller (20) showed induction of polyclonal 
class-specific Ig secretion by several nonspecific stimuli. Whereas some T cell stimuli 
(e.g., Con A) induced increases in all classes of IgG, others (e.g., complete Freund's 
adjuvant) induced primarily IgG1 and IgG2 secretion. Thus, there is an in vivo 
precedent for our finding that T cells can regulate the subclass of IgG produced by 
polyclonally activated B cells. Using an in vitro system, Augustin et al. (21, 22) have 
demonstrated that the direct interaction of T cells with polyclonally activated B cells 
or B cell blasts results in an increase in IgG1 secretion. In addition, Elson et al. (23) 
have shown that Con A-activated Peyer's patch cells contain high numbers o f T  cells 
that drive LPS-induced B cells specifically to IgA secretion. Taken together, these 
studies indicate that the secretion of specific classes of Ig can be regulated by T cells 
or their soluble products. 

The mechanism by which B ceils switch isotype synthesis is beginning to be 
understood at the molecular level. Two different types of models have been proposed: 
(a) switching may be a stochastic process in which cells switch in a random fashion 
to secretion of previously unexpressed isotypes. The likelihood of productive recom- 
bination with a particular C region may, therefore, depend on such factors as distance 
from the C# gene, number and type of switch recombination sites (56-59), etc.; (b) 
switching may be due to the directed induction of a particular isotype. Thiv .zould be 
accomplished by isotype specific factors that act at the plasma membrane of B cells 
and direct particular DNA rearrangements. The two models are not mutually 
exclusive and there could be both random and isotype directed elements involved in 
switching. Mongini et al. (13) observed that in the absence of T cells, the magnitude 
of each isotype response to a T-independent antigen exactly mimicked the 5' to 3' 
order of the immunoglobulin H-chain genes ~ ,  Tz, yl, y2b, y2a). Thus, the likelihood 
of switching to a given subclass would decrease with increasing distance from the C# 
gene. This observation is consistent with a stochastic model. T cells might simply 
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increase the frequency of switching nonspecifically by driving cell division and/or  by 
increasing the levels of enzymes responsible for switching. In contrast, reports of class 
specific T cells (20-25) and T cell factors support a model of directed induction of 
particular isotype switches. The present data do not distinguish between these models. 
It would be of interest to extend the period of culture to determine whether BCDF 
can cause switching to Ig isotypes whose C-region genes map further downstream 
(e.g., IgA). If so, it would indicate that BCDF is not specific in inducing switching to 
synthesis of a particular isotype. 

We have not yet attempted to purify BCDF. Instead, we have relied on a variety 
of biological assays performed on the BCDF-containing supernatants for the identi- 
fication of lymphokine activity (Table I). From these comparisons, we conclude that 
none of the conventionally-defined lymphokines tested, with the possible exceptions 
of Eo-CSF, E-CSF, or HCSF, mediate this effect. Because the PK lines were derived 
by allogeneic stimulation, it is possible that they produce allogeneic effect factor 
(AEF) (60) and that AEF is responsible for the effects we observed. However, AEF is 
reported to be most effective on cells expressing the haplotype of the stimulator cells 
(60, 61). In the experiments reported here, BCDF induced IgG secretion by B cells 
expressing a haplotype (H-2 a) different from that of the stimulator cells (H-2b). In 
other experiments (manuscript in preparation), we have shown that BCDF works 
equally well using strains carrying the H-2 k and H-2 b haplotype. Therefore, although 
we cannot formally exclude the possibility that BCDF is AEF, we regard this 
possibility as unlikely. In any case, the lack of an overt correlation with other 
lymphokines, in particular TRF, suggests that a newly defined T cell factor may be 
present in the supernatants of these two lines and that this factor affects differentiation 
of B cells. It should be noted that the two lines (C.C3.11.75 and B.151-K12) that 
produce a factor which induces polyelonal IgM secretion (26), do not stimulate IgG 
secretion in this system; thus, BCDF is distinct from this activity as well. The fact 
that the FS7-6.18 supernatant, which contains interleukin 2 (IL-2) but not TRF (33) 
can induce IgG secretion, raises the possibility that IL-2 can mediate this effect (even 
though the PK 7.1.1a and PK 7.1.2 supernatants lack both IL-2 and TRF). In 
experiments with Dr. S. Gillis (Fred Hutchison Cancer Center, Seattle, WA), we have 
found that purified IL-2 has no BCDF activity (data not shown). This strongly 
suggests that both FS7-6.18 and the PK 7.1.1a and 7.1.2 lines secrete a lymphokine 
that induces B cell differentiation but that BCDF is not IL-2 or TRF. 

S u m m a r y  

Culturing BALB/c B cells for 6 d at low cell density in the presence of lipopolysac- 
charide (LPS) results in the appearance of a small number of IgG plaque-forming 
cells (PFC). The addition of supernatants from eoncanavalin A (Con A)-induced 
alloreactive (AKR anti-B6) long-term T cell lines (PK 7.1.1a and 7.1.2) or a T cell 
hybridoma (FS7-6.18) to LPS-treated B cells resulted in a marked increase in IgG 
PFC (3-10-fold higher than in cultures treated with LPS alone). The number of 
induced IgG PFC was not affected by removing IgG-bearing cells on the fluorescence- 
activated cell sorter, indicating that T cell-derived B cell differentiation factor 
enhances isotype switching of sIgG- cells, rather than selecting and expanding pre- 
existing subpopulations of sIgG + cells. We also investigated the subclass of igG 
produced in the absence or presence of T cell factors and found that PK 7.1. la, PK 
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7.1.2, and FS7-6.18 supernatants selectively incre~ed IgGa production. Several other 
T cell supernatants containing a variety of  lymphokines had no effect, suggesting that 
PK 7.1. la, PK 7.1.2, and FS7-6.18 lines produce factor(s) that can specifically enhance 
the recovery of IgG secreting cells in culture in the presence of LPS. These factors, 
which we have termed B cell differentiation factors, are different from interleukin 1, 
interleukin 2, T cell-replacing factor, colony-stimulating factor, macrophage-activat- 
ing factor, and immune interferon. Our  results suggest that soluble factors produced 
by T cell lines and hybridomas can markedly influence both the class and subclass of 
Ig produced by B cells. 
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