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X-inactive–specific transcript (XIST) is one of the firstly discovered long non-coding
RNAs with prominent roles in the process of X inactivation. Moreover, this transcript
contributes in the carcinogenic process in different tissues. In addition to interacting
with chromatin modifying molecules, XIST can be served as a molecular sponge for
miRNAs to modulate expression of miRNA targets. Most of the studies have indicated
an oncogenic role for XIST. However, in prostate cancer, a single study has indicated a
tumor suppressor role for this lncRNA. Similar result has been reported for XIST in oral
squamous cell carcinoma. In hepatocellular carcinoma, breast cancer, ovarian cancer,
osteosarcoma, and renal cell carcinoma, different studies have reported inconsistent
results. In the present manuscript, we review function of XIST in the carcinogenesis.

Keywords: lncRNA, X-inactive-specific transcript, expression, biomarker, cancer

INTRODUCTION

X-inactive–specific transcript (XIST) RNA is among the firstly discovered long non-coding RNAs
(lncRNAs) in humans (Brown et al., 1992). The gene coding this lncRNA has at least eight
exons and spans an area of about 17 kb on the X chromosome, in a region containing the X
inactivation center (Brown et al., 1992). XIST RNA is primarily localized in the nucleus to a
location not discriminable from the X inactivation-associated Barr body (Brown et al., 1992).
The first important function attributed to XIST has been related to the process of X inactivation
during which XIST induces gene silencing through recruitment of several chromatin modifying
molecules (Loda and Heard, 2019). The indispensable role of Xist in X inactivation has been
proved by targeted mutagenesis and transgenic experiments in mice showing skewing of this
process following deletion of the Xist gene (Penny et al., 1996; Marahrens et al., 1997). Several
molecules have been identified to interact with XIST to contribute in chromosome-wide gene
silencing. SPEN, RBM15, WTAP, hnRNP K, and LBR are among molecules that participate in this
process through interplay with XIST (Chu et al., 2015; McHugh et al., 2015). In addition, XIST has
a prominent role in the carcinogenic processes. Several in vitro, in vivo, and clinical investigations
have verified this aspect of XIST functions. In the present manuscript, we review function of XIST
in the carcinogenesis.
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CELL LINE STUDIES

Breast Cancer
Functional impact of XIST in the breast carcinogenesis has been
assessed in a number of in vitro studies. Liu et al. (2020) have
reported down-regulation of XIST and UBAP1 in breast cancer
cells. Forced up-regulation of XIST has attenuated proliferation,
migration and invasion of these cells, and accelerated cell
apoptosis. From a mechanistical point of view, XIST can interact
with miR-362-5p and miR-362-5p to exert its effects. UBAP1
has been identified as miR-362-5p target, thus XIST modulates
expression this protein via sponging miR-362-5p (Liu et al.,
2020). Li et al. (2020d) have demonstrated down-regulation of
XIST in triple negative breast cancer cells. Up-regulation of
XIST has blocked cell proliferation and epithelial mesenchymal
transition (EMT) while inducing apoptosis in these cell lines.
miR-454 has been identified as a target of XIST in these cells
(Li et al., 2020d). On the other hand, Zong et al. (2020)
XIST has reported up-regulation of XIST in breast cancer
cells, parallel with down-regulation of miR-125b-5p and up-
regulation of NLRC5. XIST silencing has remarkably suppressed
cell proliferation, migration, and invasion aptitudes of breast
cancer cells. XIST has been shown to sponge miR-125b-5p

and subsequently influence NLRC5 expression (Zong et al.,
2020). Moreover, expression of XIST has been reported to be
higher in doxorubicin-resistant breast cancer cells compared with
parental cells. Furthermore, XIST up-regulation enhances cell
proliferation and prohibited apoptosis of doxorubicin-treated
breast cancer cells through enhancing expression of ANLN.
XIST functions as a sponge for miR-200c-3p, which regulates
expression of ANLN (Zhang et al., 2020). Figure 1 depicts
different roles of XIST in the breast carcinogenesis.

Gastric Cancer
In gastric cancer, XIST has been shown to exert oncogenic
effects. Zheng et al. (2020) have demonstrated over-expression
of XIST and down-regulation of miR-337 in these cells. XIST
silencing has simultaneously suppressed proliferation, invasion,
and migration of gastric cancer cells. Mechanistically, XIST
increases expression of JAK2 through sponging miR-337 (Zheng
et al., 2020). Consistently, over-expression of XIST in gastric
cancer cells has been accompanied by up-regulation of PXN while
down-regulation of miR-132. Furthermore, both XIST silencing
and miR-132 over-expression could inhibit gastric cancer cell
proliferation and migration (Li et al., 2020a). In this kind
of cancer, XIST has also been shown to promote cell cycle

FIGURE 1 | Different studies have shown the tumor suppressor role of XIST in breast cancer through sponging miRNAs (Li et al., 2020d; Liu et al., 2020) and
regulating expression of epithelial-mesenchymal transition (EMT) markers (right panel). On the other hand, other studies have reported oncogenic roles for XIST
(Zong et al., 2020) (left panel).
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TABLE 1 | Outcomes of studies which evaluated function of XIST in animal models (1: knock down or deletion).

Cancer type Animal models Results References

Bladder cancer NOD/SCID mice 1 XIST: ↓ tumorigenesis Xu et al., 2018

BALB/C nude mice 1 XIST: ↓ tumorigenesis Hu et al., 2017

Nude mice 1 XIST: ↓ tumorigenesis, ↑ PD sensitivity Chen et al., 2020

Nasopharyngeal carcinoma BALB/c nude mice 1 XIST: ↓ tumorigenesis Cheng et al., 2018

BALB/c nude mice 1 XIST: ↓ tumorigenesis Zhao et al., 2020

Nude mice 1 XIST: ↓ tumorigenesis Shi et al., 2020

Laryngeal squamous cell carcinoma Nude mice 1 XIST: ↓ tumorigenesis Liu et al., 2020

Oral squamous cell carcinoma Nude mice ↑ XIST: ↓ tumorigenesis Li et al., 2020c

Esophageal squamous cell carcinoma BABL/c nude mice 1 XIST: ↓ tumorigenesis Wu et al., 2017

Gastric cancer BALB/c nude mice 1 XIST: ↓ tumorigenesis Li et al., 2020a

BALB/c-nu/nu mice 1 XIST: ↓ tumorigenesis, ↓ invasion Ma et al., 2017

BABL/c athymic nude mice 1 XIST: ↓ tumorigenesis, ↓ metastasis Chen et al., 2016

BALB/c-nu/nu nude 1 XIST: ↓ tumorigenesis Li et al., 2020b

Colorectal cancer BALB/C nude mice 1 XIST: ↓ tumorigenesis Sun et al., 2018

BALB/c nude mice 1 XIST: ↓ tumorigenesis Wang et al., 2020b

BALB/C nude mice 1 XIST: ↓ tumorigenesis Yang et al., 2020

BALB/c nude mice 1 XIST: ↑ anti-tumor effect of DOX, ↓

tumorigenesis
Zhuang et al., 2016

Athymic nude mice 1 XIST: ↓ tumorigenesis, ↓ metastasis Chen et al., 2017

Pancreatic cancer Nude mice 1 XIST: ↓ tumorigenesis Sun et al., 2018

Nude mice 1 XIST: ↓ tumorigenesis Liu et al., 2020

Nude mice 1 XIST: ↓ tumorigenesis Liang et al., 2017

Hepatocellular carcinoma Nude mice 1 XIST: ↓ tumorigenesis Kong et al., 2018

BALB/c-nu/nu mice 1 XIST: ↓ tumorigenesis Mo et al., 2017

BALB/c thymus-free nude mice ↑ XIST: ↓ tumorigenesis Zhang et al., 2019

Nude mice ↑ XIST: ↓ tumorigenesis Lin et al., 2018

Renal cell carcinoma BALB/C mice ↑ XIST: ↓ tumorigenesis Sun et al., 2019

Lung cancer BALB/c nude mice ↑ XIST: ↑ tumorigenesis, ↑ cisplatin resistance Sun et al., 2017

Non-small cell lung cancer BABL/c athymic nude mice 1 XIST: ↓ tumorigenesis Jiang et al., 2018

Nude mice 1 XIST: ↓ tumorigenesis Qiu et al., 2019

BALB/c nude male mice 1 XIST: ↓ tumorigenesis, ↑ DDP
chemosensitivity

Xu et al., 2020

BALB/c nude mice 1 XIST: ↓ tumorigenesis Zhang et al., 2017

Nude mice 1 XIST: ↓ tumorigenesis Zhou et al., 2019c

BALB/c nude mice 1 XIST: ↓ tumorigenesis, ↓ liver metastasis Wang et al., 2019

BALB/c nude mice 1 XIST: ↓ tumorigenesis Fang et al., 2016

BALB/c nude mice 1 XIST: ↓ tumorigenesis, ↓ DDP
chemoresistance

Tian et al., 2019

BALB/c nude mice 1 XIST: ↓ tumorigenesis Jiang et al., 2020

Nude mice 1 XIST: ↓ pulmonary metastasis Li et al., 2018

Nude mice 1 XIST: ↓ tumorigenesis Wang et al., 2017

Breast cancer BALB/c nude mice ↑ XIST: ↓ tumorigenesis Li et al., 2020d

Nude mice 1 XIST: ↑ tumorigenesis, ↑ brain metastasis,
↑EMT, ↑ stemness

Xing et al., 2018

BALB/c nu/nu mice 1 XIST: ↑ tumorigenesis, ↑ migration Zhao et al., 2020

BALB/c nude mice ↑ XIST: ↓ tumorigenesis Liu et al., 2020

Ovarian cancer Athymic nude mice ↑ XIST: ↓ tumorigenesis, ↑ cisplatin
chemosensitivity

Wang et al., 2018

Nude mice ↑ XIST: ↓ tumorigenesis, ↑ paclitaxel sensitivity,
↓ CD44 + /CD24-population cells

Huang et al., 2020

BALB/c mice ↑ XIST: ↓ tumorigenesis Guo et al., 2021

Prostate cancer BALB/C nude mice ↑ XIST: ↓ tumorigenesis Du et al., 2017

(continued)
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TABLE 1 | continued

Cancer type Animal models Results References

Osteosarcoma BALB/c nude mice ↑ XIST: ↓ tumorigenesis Zhang and Xia, 2017

BALB/C nude mice 1 XIST: ↓ tumorigenesis Xu et al., 2017

BALB/c athymic nude mice 1 XIST: ↓ tumorigenesis Gao et al., 2019

BALB/c nude mice 1 XIST: ↓ tumorigenesis, ↓ metastasis Yang et al., 2018

Glioma BALB/c nude mice 1 XIST: ↓ tumorigenesis Cheng et al., 2020

BALB/c nude mice 1 XIST: ↓ tumorigenesis, ↑ survival time Shen et al., 2020

BALB/c nude mice 1 XIST: ↓ tumorigenesis, ↓ angiogenesis Cheng et al., 2017

BALB/C athymic nude mice 1 XIST: ↓ tumorigenesis, ↑ survival time Yao et al., 2015

Nude mice 1 XIST: ↓ tumorigenesis Wang et al., 2020c

Thyroid cancer Athymic nude mice 1 XIST: ↓ tumorigenesis Liu et al., 2018

Acute myeloid leukemia BALB/c nude mice 1 XIST: ↓ tumorigenesis Wang et al., 2020a

Retinoblastoma BALB/c nude mice 1 XIST: ↓ tumorigenesis, ↑ VCR sensitivity Yao et al., 2020

Cervical cancer Athymic BALB/c mice 1 XIST: ↓ tumorigenesis, ↓ EMT Chen et al., 2019

Nude mice 1 XIST: ↓ tumorigenesis Liu et al., 2020

Neuroblastoma BALB/c nude mice 1 XIST: ↓ tumorigenesis, ↑ survival time Zhang et al., 2019

BALB/c nude mice 1 XIST: ↓ tumorigenesis Yang et al., 2020

Chordoma Nude mice 1 XIST: ↓ tumorigenesis, ↑ apoptosis Hai et al., 2020

FIGURE 2 | XIST can affect gastric carcinogenesis through sponging a number of miRNAs, thus regulating NF-κB and PI3K/AKT pathways (Chen et al., 2016; Lu
et al., 2017; Ma et al., 2017; Zhang et al., 2018; Li et al., 2020a; Zheng et al., 2020).
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progression at G1/S phase and block cell apoptosis through
repressing miR-497 expression and up-regulating MACC1 levels
(Ma et al., 2017). XIST can also sponge miR-185 to influence
expression of TGF-β1 in gastric cancer cells (Zhang et al., 2018).
Figure 2 depicts the role of XIST in gastric carcinogenesis.

Colorectal Cancer
Expression of XIST has been increased in colon cancer cells.
Mechanistically, XIST sponges miR-34a and increases expression
of WNT1. XIST also affects expression of β-catenin, cyclinD1,
c-Myc, and MMP-7 in colon cancer cells (Sun et al., 2018).
Moreover, expression of this lncRNA has been up-regulated
5-Flurouracil-resitant colon cancer cells. XIST silencing has
inverted resistance phenotype in these cells. XIST has been
shown to promote expression of thymidylatesynthase, an
enzyme which is targeted by 5-Flurouracil (Xiao et al., 2017).
Another study in colon cancer cells has demonstrated over-
expression of XIST and FOXK1, while down-regulation of
miR-497-5p. This study has also confirmed the significance of
XIST/miR-497-5p/FOXK1 in the pathogenesis of colon cancer

(Wang et al., 2020b). Figure 3 depicts the downstream targets of
XIST in colon cancer cells.

Pancreatic Cancer
XIST has also been up-regulated in prostate cancer cell lines
where it enhances their proliferation, migration and invasion,
and suppresses cell their apoptosis. These effects are exerted
through sponging miR-34a-5p (Sun et al., 2018). In these cells,
XIST has also interactions with miR-137 through which it
regulates expression of Notch1 (Liu et al., 2020). miR-141-3p is
another miRNA which has been shown to be sponged by XIST
in pancreatic cancer cells. XIST enhances expression of TGF-β2
through interacting with this miRNA (Sun and Zhang, 2019).
Figure 4 depicts the interaction between XIST and miRNAs as
well as their targets in pancreatic cancer cells.

Bladder Cancer
In bladder cancer cells, XIST serves as a molecular sponge
for miR-200c through which it enhances colony formation,
self-renewal capacity and EMT in cancer stem cells -like cells

FIGURE 3 | Downstream targets of XIST in colon cancer cells (Chen et al., 2017; Song et al., 2017; Xiao et al., 2017; Liu et al., 2020; Sun et al., 2018; Liu et al.,
2019; Wang et al., 2020b). XIST enhances proliferation and epithelial–mesenchymal transition of colon cancer cells via sequestering miR-486-5p and increasing
expression neuropilin-2 (Liu et al., 2019). It can also sequester miR-137 and subsequently increase expression of EZH2 to enhance metastatic ability of colon cancer
cells (Liu et al., 2018).
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FIGURE 4 | The interaction between XIST and miRNAs as well as their targets in pancreatic cancer cells (Liang et al., 2017; Wei et al., 2017; Sun et al., 2018; Shen
et al., 2019; Sun and Zhang, 2019; Liu et al., 2020; Zou et al., 2020). XIST interaction with miR-140 and miR-124 increases expression of iASPP and promotes
growth of pancreatic cancer cells (Liang et al., 2017). XIST also enhances expression of TGF-β2 through sequestering miR-141-3p. This interaction enhances
invasiveness of pancreatic cancer cells (Sun and Zhang, 2019).

(Xu et al., 2018). Another study has indicated parallel over-
expressions of XIST and androgen receptor (AR) in bladder
cancer cells. Mechanistically, XIST increases AR expression
though sponging miR-124 (Xiong et al., 2017). Moreover, XIST
can promote proliferation and metastatic ability of bladder cancer
cells via modulating miR-139-5p expression and subsequent
regulation of Wnt/β-catenin signaling pathway (Hu et al., 2017).
Figure 5 depicts the interactions between XIST and miRNAs in
bladder cancer cells.

Glioma
In glioma cells, XIST can modulate metabolism of glucose. XIST
silencing has suppressed viability, migration, invasiveness, hypo-
responsiveness to apoptotic stimuli, and glucose metabolism in
glioblastoma. Mechanistically, XIST functions as a molecular
sponge for miR-126 to subsequently regulate IRS1/PI3K/Akt
pathway (Cheng et al., 2020). Another study in glioblastoma has
shown the role of Steroid receptor coactivator-1 (SRC-1) in the

regulation of XIST at posttranscriptional level. In fact, the impact
of SRC-1 in enhancement of stemness features in glioblastoma is
mediated through XIST. SRC-1 enhances expression of Kruppel-
like factor 4 (KLF4) via the XIST/miR-152 axis (Gong et al., 2020).
Moreover, miR-204-5p has been identified as another target of
XIST in glioma cells. Interaction between XIST and miR-204-5p
regulates expression of Bcl-2 (Shen et al., 2020). Figure 6 shows
the interactions between XIST and miRNAs in glioma cells.

Lung Cancer
XIST has also been shown to be over-expressed in lung
cancer cell lines promoting their proliferation ability through
sponging miR-140. XIST silencing has repressed proliferation
and enhanced apoptosis of lung cancer cells. Besides, inhibitor
of apoptosis-stimulating protein of p53 (iASPP) has a prominent
role in mediation of this effect (Tang et al., 2017). Expression
of XIST expression has also been up-regulated in cisplatin-
resistant lung cancer cells compared with the original cells.
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FIGURE 5 | The interactions between XIST and miRNAs in bladder cancercells (Hu et al., 2017, 2019; Xiong et al., 2017; Xu et al., 2018; Zhou et al., 2019b). XIST
influences progression of bladder cancer through suppressing p53 via binding to TET1 (Hu et al., 2019). Another route of participation of XIST in tumor growth and
metastasis is exerted through regulation of miR-139-5p and Wnt/ β-catenin pathway (Hu et al., 2017).

Up-regulation of this lncRNA has enhanced resistance to
cisplatin through blocking apoptosis and increasing proliferation
ability. These effects are mediated through sponging let-
7i and regulating expression of BAG-1 (Sun et al., 2017).
Figure 7 shows the interactions between XIST and miRNAs in
lung cancer cells.

In addition to these types of malignancies, functional studies
have verified the impact of XIST in the pathogenesis of almost
all kinds of neoplasms. Supplementary Table 1 summarizes the
results of in vitro studies.

ANIMAL STUDIES

In line with in vitro studies, abnormal expression of XIST affects
tumorigenesis in animal models of cancer. Almost all studies
have indicated that up-regulation of XIST enhances tumorigenic
ability of cancer cells, while its silencing has the opposite effects
(Table 1). However, XIST has a tumor suppressor role in animal

models of oral squamous cell carcinoma and renal cell carcinoma.
Most notably, animal studies in hepatocellular carcinoma,
breast cancer, ovarian cancer and osteosarcoma have indicated
inconsistent results regarding the role of XIST (Table 1).

HUMAN STUDIES

Experiments in clinical samples obtained from patients have
shown that expression of XIST is principally increased in
tumoral samples compared with nearby non-cancerous samples
(Supplementary Table 2). However, in oral squamous cell
carcinoma, its expression has been decreased (Li et al., 2020c).
In hepatocellular carcinoma, most of studies have indicated its
down-regulation (Chang et al., 2017; Lin et al., 2018; Zhang
et al., 2019). However, few studies have reported opposite
results (Mo et al., 2017; Kong et al., 2018). Similarly, different
studies in breast cancer, ovarian cancer, osteosarcoma and
renal cell carcinoma(Supplementary Table 2) have reported
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FIGURE 6 | The interactions between XIST and miRNAs in glioma cells. XIST enhances glioma tumorigenic capacity and angiogenesis through sequestering
miR-429 (Cheng et al., 2017). In addition, through sequestering miR-126, XIST regulates cell proliferation and glucose metabolism of glioma cells via influencing
IRS1/PI3K/Akt axis (Cheng et al., 2020). The sponging effect of XIST on miR-29c modulates resistance of glioma cell to Temozolomide via DNA mismatch repair
pathway (Du et al., 2017).

inconsistent results. Moreover, expression levels of XIST have
been correlated with patients’ survival in different kinds of
cancers including bladder cancer, esophageal squamous cell
carcinoma, nasopharyngeal carcinoma, lung cancer, gastric
cancer, colorectal cancer and breast cancer.

In nasopharyngeal carcinoma, XIST expression levels could
differentiate tumoral tissues from nearby non-cancerous samples
with diagnostic power of 0.813 (Song et al., 2016). In colorectal
cancer, up-regulation of XIST in extracellular vesicles isolated
from serum samples had an appropriate diagnostic value
[Area under curve (AUC) = 0.86, sensitivity = 0.88 and
specificity = 0.90]. Most notably, over-expression of XIST in
serum extracellular vesicles has been associated with survival
rates (Yu et al., 2020). Expression levels of XIST have also been
shown to be appropriate markers for follow-up of patients with
lung cancer, since they have been reduced following surgical
removal of tumors. Receiver operating characteristic curves have
demonstrated the ability of XIST expression levels in separation

between the patients and healthy controls with an AUC value of
0.834. In addition, combination of expression levels of XIST and
HIF1A-AS1 in serum samples has enhanced the diagnostic power
(Tantai et al., 2015). Finally, serum levels of XIST could separate
breast cancer patients from healthy controls with AUC value
of 0.78 (Zhao et al., 2018). Table 2 summarizes the outcomes
of studies which evaluated this aspect of XIST application in
clinical settings.

DISCUSSION

Although XIST has been primarily identified as a transcript
whichregulates X inactivation, subsequent studies have
show thatthislncRNA has several regulatory roles beyond
thisphysiologicalprocess. In addition to interacting with
chromatin modifyingmolecules, XIST can be served as a
molecularsponge for miRNAs to modulate expression of miRNA
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FIGURE 7 | The interactions between XIST and miRNAs in lung cancer cells. XIST has an oncogenic role in lung cancer through different mechanisms including
epigenetically silencing of KLF2 expression (Fang et al., 2016). Moreover, it can enhance viability and invasiveness of lung cancer cells through regulation of
miR-137/PXN axis (Jiang et al., 2018). XIST can also enhance TGF-β-associated epithelial-mesenchymal transition through regulation of miR-367/141-ZEB2 (Li
et al., 2018).

TABLE 2 | Diagnostic value of XIST in cancers.

Cancer type Numbers of clinical samples Distinguish between Area under curve Sensitivity (%) Specificity (%) References

Nasopharyngeal
carcinoma (NPC)

108 pairs of NPC tissues and
ANTs

NPC patients vs. controls 0.813 0.886 0.795 Song et al.,
2016

Early gastric cancer
(EGC)

76 pairs of EGC tissues and
ANTs and EGC plasma

EGC patients vs. controls 0.733 0.846 0.590 Lu et al.,
2017

Colorectal cancer 120 serum specimens from
CRC responding and
non-responding patients to 5FU
treatment

CRC patients showing
response to 5FU treatment
vs. patients showing no
response

0.717 0.756 0.683 Xiao et al.,
2017

Serum EVs from 94 CRC
patients and 41 healthy
participants

CRC patients vs. healthy
controls

0.864 0.883 0.902 Yu et al.,
2020

Non-small cell lung
cancer

32 pairs of NSCLC tumor
tissues and ANTs 64 serum
samples

NSCLC vs. controls 0.834 0.726 0.935 Tantai et al.,
2015

Breast cancer 36 serum samples from breast
cancer patients and 32 control
healthy subjects

Breast cancer patients vs.
healthy controls

0.78 0.67 0.89 Zhao et al.,
2018

Thyroid cancer 77 pairs of thyroid cancer
tissue samples and ANTs

Thyroid cancer patients vs.
healthy controls

0.7360 – – Liu et al.,
2018
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targets. miR-362-5p/UBAP1, miR-125b-5p/NLRC5, miR-200c-
3p/ANLN, miR-337/JAK2, miR-132/PXN, miR-497/MACC1,
miR-185/TGF-β1, miR-497-5p/FOXK1, miR-141-5p/TGF-
β2, miR-152/KLF4, and let-7i/BAG-1 are among molecular
cascades downstream of XIST which are involved in the
carcinogenesis process.

XIST can modulate resistance to chemotherapeutic agents
in a number of cancers including breast and lung cancers
(Sun et al., 2017; Zhang et al., 2020). Thus, modulation of
its expression might beregarded as a strategy for combatting
chemoresistance of cancercells. However, tissue-specific effects
of XIST in conferring resistance to chemotherapeutic agents
should be considered. Most of the above-mentioned studies
have indicated an oncogenic role for XIST. However, in
prostate cancer, a single study has indicated a tumor suppressor
role for this lncRNA (Du et al., 2017). Similar result has
been reported for XIST in oral squamous cell carcinoma
(Li et al., 2020c). In hepatocellular carcinoma, breast cancer,
ovarian cancer, osteosarcoma and renal cell carcinoma, different
studies have reported inconsistent results (Supplementary
Table 2). Most notably, animal studies in hepatocellular
carcinoma, breast cancer, ovarian cancer and osteosarcoma
have indicated inconsistent results regarding the role of XIST.
Although these discrepancies might be due to possible tissue-
specific roles for XIST or differences in cell lines (particularly
passage number) and animal models, future studies with larger
sample sizes from different ethnic groups are needed to solve
these discrepancies.

XIST has both diagnostic and prognostic values in different
cancers, albeit the prognostic value of this lncRNA has been
more validated. Both tissue and serum levels of XIST can
be used to distinguish disease status, yet the latter source is
superior regarding the non-invasive route of access. The best
diagnostic power values have been reported in CRC, NSCLC,
and nasopharyngeal carcinoma, respectively. However, all of
these studies lack validation in independent samples. So, future
studies should assess this aspect of XIST application in larger
cohorts of patients.

In brief, XIST has been shown to affect carcinogenic process
possibly in a tissue-specific manner. Therefore, therapeutic
strategies targeting this lncRNA should consider this point to
design a personalized regimen for treatment of cancer.
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