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A B S T R A C T   

Background: Cognitive impairment in schizophrenia remains a chief source of functional disability and impair
ment, despite the potential for effective interventions. This is in part related to a lack of practical and easy to 
administer screening strategies that can identify and help triage cognitive impairment. This study explores how 
smartphone-based assessments may help address this need. 
Methods: In this study, data was analyzed from 25 subjects with schizophrenia and 30 controls who engaged with 
a gamified mobile phone version of the Trails-B cognitive assessment in their everyday life over 90 days and 
complete a clinical neurocognitive testing battery at the beginning and end of the study. Machine learning was 
applied to the resulting dataset to predict disease status and neurocognitive function and understand which 
features were most important for accurate prediction. 
Results: The generated models predicted disease status with high accuracy using static features alone (AUC =
0.94), with the total number of items collected and the total duration of interaction with the application most 
predictive. The addition of temporal data statistically significantly improved performance (AUC = 0.95), with the 
amount of idle time a significant new predictor. Correlates of sleep dysfunction were also predicted (AUC =
0.80), with similar feature importance. 
Discussion: Machine learning enabled the highly accurate identification of subjects with schizophrenia versus 
healthy controls, and the accurate prediction of neurocognitive function. The addition of temporal data signif
icantly improved the performance of these models, underscoring the value of smartphone-based assessments of 
cognition as a practical tool for assessing cognition.   

1. Introduction 

Cognitive impairment is a core symptom of schizophrenia that 
directly impacts a patient's clinical trajectory and quality of life. Patients 
may experience deficits in attention, working memory, verbal fluency, 
verbal learning/memory, and executive functioning (Shamsi et al., 
2011). While these deficits are often assumed to be stable over the 
course of the illness, they are malleable and responsive to pharmaco
logical and behavioral therapies. Clinician engagement with assessing 
cognition in schizophrenia is limited, as even the brief assessment bat
teries currently in clinical use require specific training and more time to 

complete than is available in an outpatient visit. This paper explores 
how smartphone-based assessments of cognition may offer a more 
practical tool for quickly assessing cognition with a focus on attention 
and memory. 

Current research on cognition in schizophrenia is based largely on 
retrospective and sparse assessments. The impressive current research 
base highlights the opportunity for smartphone-based assessments. 
Retrospective research has identified early disruption of cognition as a 
predictor of long-term outcomes in schizophrenia that also may help 
predict clinical trajectories. Yet clinical experience and recent findings 
suggest that patient trajectories are not linear and that cognition will 
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vary across environments and situations. Patients with schizophrenia 
may not be able to accurately self-report their cognitive status (Potvin 
et al., 2017; Silberstein and Harvey, 2019; Treichler et al., 2019), and 
changes in cognition impact patients’ ability to report symptoms 
(Takeuchi et al., 2016) – highlighting the need for objective metrics. 
Recent studies using technology like EMA/smartphones to capture real 
time symptom reports from patients have noted that a failure to control 
for momentary cognition is a weakness of current methods (Blum et al., 
2015; Kimhy et al., 2020). Clinically, abrupt changes in both cognition 
and symptoms around relapse further highlight the need for accurate 
reporting and early indication of cognitive changes from baseline. 

Computerized and tablet assessment of cognition offers a scalable 
means to assess cognition, and although not providing temporal data, it 
does provide a mechanism to facilitate temporal sampling. The Brief 
Assessment of Cognition (BACS) has been validated on a tablet to offer 
research assessments of verbal memory, working memory, processing 
speed, and reasoning/problem solving (Atkins et al., 2017). The 
computer-based CogState Research Battery (CSRB), which offers a test 
structure that follows MATRICS-recommended cognitive domains, has 
rendered performance in first episode schizophrenia comparable to 
traditional paper/pencil testing for working memory, executive func
tions, and social cognition domains (Benoit et al., 2015). In addition to 
providing a platform for electronic versions of previously developed 
neurocognitive assessment, the devices may be used to develop entirely 
new neurocognitive tests by leveraging captured metadata, such as the 
timing and location of screen touches. Still, while computerized and 
tablet-based assessments of cognition increase remote access to cogni
tive testing, they still lack the scalability of smartphone assessments 
(Hays et al., 2019) and the ability to provide more momentary assess
ments necessary for relapse prediction or just-in-time adaptive 
interventions. 

Mobile technology, such as smartphones, offers a novel means to 
capture cognitive data on a true moment-by-moment basis, with the 
ability to offer repeated and longitudinal cognitive assessments in vivo. 
While mobile cognitive testing remains nascent, early studies have 
suggested that smartphone-based assessments are reliable between- 
person and within-person, in naturalistic settings (Sliwinski et al., 
2018). While most research to date has focused on neurocognitive dis
orders (Chinner et al., 2018), efforts in psychiatric illness are emerging 
(Moore et al., 2017). Prior research by this team suggests that time and 
accuracy to complete a modified Trails-B task on the smartphone can 
separate controls from subjects with schizophrenia (Liu et al., 2019). 
Mobile phone keyboard activity patterns have also been correlated with 
mood state in bipolar disorder (Zulueta et al., 2018) and cognitive 
functioning in healthy controls (Dagum, 2018). These assessments rely 
on temporal metadata in that they record how a person types or com
pletes a task. To date, there has not been exploration of how such 
temporal metadata can augment performance of smartphone cognitive 
assessments. 

This study investigates an assessment of working memory and 
attention using a smartphone application and whether temporal meta
data gathered during the task increases correlations with gold standard 
clinical tests, as compared to simple static metrics around completion 
time and accuracy. 

2. Methods 

2.1. Subject selection and measures 

Subjects with clinically diagnosed schizophrenia were recruited 
along with healthy controls. Patient subjects were recruited from a 
community mental health center in the metro Boston area, and health 
control subjects were recruited from Craigslist and local colleges. These 
subjects were informed of the risks and data use practices and provided 
consent to the study under BIDMC IRB #2017P00359. Subjects were 
assessed at two distinct clinical visits (Visit 1 and 2) and instructed to 

utilize their smartphones with specific applications installed in the 
intervening period (the Study Period) which was 90 days in duration. 
Smartphone application data was collected during the Study Period and 
clinical data from these subjects was collected at Visits 1 and 2. Details of 
the dataset have been previously published and the sensor data 
explored, but not the cognitive results (Henson et al., 2020). 

Clinical data included the following neuropsychiatric clinical mea
surements taken by trained staff from consenting subjects at each Visit: 
Social Functioning Scale (SFS), Patient Health Questionnaire-9 (PHQ-9) 
for Major Depressive Disorder, General Anxiety Disorder-7 (GAD-7), 
Behavior and Symptom Identification Scale (BASIS), Warning Signs 
Scale (WSS), Pittsburgh Sleep Quality Index (PSQI), interpersonal 
comparison (Comparison), the presence of false beliefs or delusions 
(Beliefs), Clinical Global Impression (CGI), Positive and Negative Syn
drome Scale (PANSS), and Brief Assessment of Cognition in Schizo
phrenia (BACS). Subscores were also recorded separately for pertinent 
tests, notably including PSQI subscores of Subjective Quality, Sleep 
Latency, Sleep Duration, Sleep Efficiency, Sleep Disturbance, Sleep 
Medication Use, and Daytime Dysfunction. Of particular note is BACS, a 
neurocognitive test which assesses verbal memory, digit sequencing, 
motor skills, semantic fluency, letter fluency, symbol coding, and 
problem solving (through the Tower of London task). BACS was 
administered electronically, on an iPad. In total, the resulting dataset 
included application use data from the LAMP (“Learn, Assess, Manage, 
Prevent”) smartphone application (Torous et al., 2019), as well as 
clinical measurements of neuropsychiatric function including depres
sion, sleep quality, and neurocognitive ability. 

2.2. Neurocognitive testing 

The LAMP application includes the Jewels Pro game, modeled after 
the Trails B exam (Fig. 1), a validated instrument for assessing executive 
functioning. In this team's prior work with 17 patients with schizo
phrenia, a modified Cox proportional hazard model to demonstrate this 
cognitive task could separate healthy controls from patients with 
schizophrenia (Liu et al., 2019) and other teams have applied the task to 
characterize cognitive deficits in Parkinson's Disease (Weizenbaum 
et al., 2021). 

Subjects were excluded if they did not successfully complete neu
rocognitive testing in both Visit 1 and Visit 2 or if they used the Jewels 
Pro game fewer than 5 times. Each use of the Jewels Pro game is sub
sequently referred to as an encounter. Subjects were able to 

Fig. 1. Jewels Pro game (modified Trails B) within the mindLAMP mobile app.  
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spontaneously engage in encounters with the Jewels Pro game and with 
other games at any time of day, without incentives or disincentives from 
the study. Jewels Pro game encounters were isolated for further analysis. 

2.3. Featurization 

In order to extract maximum signal from the collected LAMP Jewels 
Pro encounter data to train highly performing models, the raw data was 
transformed into two sets of features: (1) static features; and (2) tem
poral features. Static features were extracted from each encounter that 
represented the total length of time spent on each encounter, various 
measurements of the performance of the subject on that encounter, and 
the number of attempts the subject made during the encounter. 

To featurize a subject's performance in time, temporal features were 
introduced including the mean and variance of the amount of time a 
subject took to correctly click each jewel, and four measures of resil
ience. These resilience features were devised to featurize a subject's 
persistence after getting an answer incorrect in each episode. These four 
measures were as follows: (1) “corrected fraction”: the fraction of 
incorrect items the subject gets right by the end of the episode; (2) 
“corrected time”: the mean duration of time a subject takes to correct 
answers for incorrect items; (3) “resilience time”: the mean duration of 
time a subject plays after a wrong item; (4) “resilience items”: the mean 
number of items a subject plays after a wrong item. 

2.4. Training models 

The scikit-learn RandomForestClassifier was used with 100 estima
tors using Python v 3.3.8 on sklearn v 0.24.1 with the pre-set parame
ters. Then, leave-one-out cross-validation (LOOCV) was employed in 
order to estimate the performance of a model trained on the entirety of 
this dataset on predicting new data from a previously unseen subject. 
AUROC (area under the receiver operating characteristic) was used as 
the primary performance measurement. This process was repeated for 
100 iterations, with a random subset of 5 encounters used for each 
subject for each iteration. Limiting the sample to 5 encounters per 
subject ensured equally weighted contributions of subjects when 
training the models. Furthermore, this sampling with replacement 
approach enabled cross-validated models to be compared across the 
entire dataset to reduce potential bias. Of the 85 patients with LAMP 
mobile application data, 55 had 5 or more LAMP encounters (e.g. 
separate application sessions). 

2.5. Model interpretation 

To interpret the impact of various static and temporal features on 
trained random forest models, the SHAP score (SHapley Additive 
exPlanation) was used. The SHAP score is a game theoretic score that 
estimates the marginal contribution of adding a feature to prediction 
performance. Advantages of this approach include greater interpret
ability by optimizing feature credit allocation and local interaction ef
fects, as compared to model-agnostic methods. In this study, SHAP 
scores are used for the random forest models to identify which LAMP 
Jewels Pro user characteristics contribute most significantly to the 
model's successful prediction of clinical outcomes. For visualization, 
SHAP scores were plotted for 275 randomly selected episodes that were 
used to train a representative random forest classifier. 

3. Results 

3.1. Exploratory data analysis 

88 subjects were recruited (45 subjects with schizophrenia, 43 con
trols) to participate in the study; 55 (25 subjects with schizophrenia, 30 
controls) successfully both completed the battery of neurocognitive 
testing during the in-clinic pre- and post-study visits and had at least five 

encounters with the Jewels Pro game; these 55 subjects were included in 
subsequent analyses. 

Performing principal component analysis (PCA) on the six static 
features demonstrated clear separation between encounters originating 
from subjects with schizophrenia and controls, although this separation 
is not linear (Fig. 2A). Additionally, 42 ‘temporal’ features were engi
neered from the raw spatiotemporal data, including the mean and 
average time to successfully identify each Jewel, the idle time on the 
application, and the resilience a given subject has for recovering from an 
incorrect Jewel selection. PCA on the temporal data reveals a less clear 
separation of the subjects with schizophrenia from controls, potentially 
due to the increased noise introduced by the added new temporal di
mensions (Fig. 1B). PCA was also performed on the gold-standard neu
rocognitive testing battery at both visits and showed clear separation of 
subjects with schizophrenia from controls at both visits (S. Fig. 1A–B). 
Interestingly, subjects with schizophrenia did not separate from controls 
on a PCA constructed from the change in neurocognitive scores between 
visit one and visit 2 (S. Fig. 1C). 

3.2. Developing and characterizing machine learning classification models 

Based on this promising exploratory data analysis, a random forest 
classifier was built using the approach outlined in Fig. 3 and described in 
2.4 Methods to predict whether a given set of encounter data was 
generated by a subject with schizophrenia or a healthy control. 

The models built on this summary data demonstrated excellent 
performance, with a median AUROC of 0.940 (IQR 0.921, 0.955; 
Fig. 3B). Next, this approach was applied to the temporal data. The 
subsequent median AUROC generated from models built from these 
temporal features was 0.953 (IQR 0.940, 0.969; Fig. 3C) and was found 
to be significantly different from the performance from the static data 
alone by Mann-Whitney U test with p = 4.3E-16. (S Fig. 2). Interestingly, 
models built from the neurocognitive functioning data from in-person 
visits produced similar AUCs (Visit 1: of 0.891; IQR 0.884-0.896; Visit 
2: 0.932; IQR 0.929-0.934), respectively, highlighting the strong per
formance of mobile phone training data for classifying patients with 
schizophrenia. 

In order to understand the relative contribution of each feature to the 
predictive power of the models, a single model was trained using the 
entirety of the data, and the SHAP score calculated for each feature. The 
SHAP score represents the impact of each feature on model output. The 
total number of Jewels collected was found to be the most important 
factor for predicting the identity of both subjects with schizophrenia and 
the control group, followed by the total number of attempts (Fig. 4A). 
Similar results were observed in the model trained from the temporal 
data; total Jewels collected was again the most important single feature; 
‘durr_diff,’ or the difference in duration spent on all items and total 
episode time (an approximation of idle time with the application open), 
was found to be second-most important, followed by total attempts. 

After the successful identification of subjects with schizophrenia 
from the control groups, the next step was to predict the results from 
subject neurocognitive testing for 63 clinical outcomes.. In order to 
mitigate the increase in false positives from multiple hypothesis testing, 
the highly conservative Bonferroni correction was used, which takes the 
unadjusted p value cutoff (0.05) and divides it by the number of tests 
performed (63), yielding a Bonferroni corrected alpha value of 7.94E-4. 
After performing the model training workflow from Fig. 3A, 1 of the 63 
neurocognitive parameters, the Pittsburgh Sleep Quality Index (PSQI) 
Daytime Dysfunction met this predefined statistical significance 
(Fig. 5A). The PSQI is a validated measure of sleep quality, which is 
further sub-divided into 7 sub-categories, one of which is Daytime 
Dysfunction. The AUROC was found to be 0.795 (IQR 0.767,0.817). This 
distribution of AUROC for the trained model differed significantly by T- 
Test from the random model with p < 1E-50. The SHAP score revealed 
similar trends to the previous models; total jewels collected and ‘durr_
diff’ were again the first and second most important factors, 
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respectively, but now the maximum time taken to complete item 5 also 
served as a strong predictor for the model (Fig. 5B). 

The IQR of each ROC distribution is represented as the ROC at the 
25th and the ROC at the 75th percentile. The blue line represents 
random performance (AUROC = 0.5). The corresponding IQR of the 
Trained AUROCs is: (0.767,0.817). (B) SHAP Scores for All Features 
Predicting PSQI Daytime Dysfunction. The SHAP score represents the 
impact of each feature on model output. The actual value of the feature 
is displayed as an overlaid heatmap. 

4. Discussion 

This work demonstrates the power of improved data collection 
strategies coupled with machine learning approaches to generate a 
highly separable signal between populations with and without schizo
phrenia as well as to predict dysfunction related to the Pittsburgh Sleep 
Quality Index (PSQI). Notably, the addition of temporal data statistically 
significantly increased the performance of the model predictions. 
Although preliminary, this performance increase suggests that longitu
dinal monitoring of neurocognitive functioning of patients not only of
fers the potential for dynamic updates on a patient's condition, but also 

Fig. 2. PCAs for LAMP mobile data. (A) Principal component analysis (PCA) from the static data for each subject, downsampled to 5 encounters per subject, and 
labeled by disease status (proband = schizophrenia). The 6 variables included were duration, total attempts, total bonus collected, points, total jewels collected, and 
score. (B) PCA using temporal data for each subject, downsampled to 5 encounters per patient, and labeled by disease status. 

Fig. 3. Building and evaluating machine learning classification models (A). Flowchart for the machine learning approach employed for all prediction tasks. (B). 
Random forest ROC distribution for models trained on static features alone. The IQR of the ROC distribution is represented as the ROC at the 25th and the ROC at the 
75th percentile. The blue line represents random performance (AUROC = 0.5). The corresponding IQR of the AUROCs is: (0.921, 0.955) (C). Random Forest ROC 
Distribution Training on Static and Temporal Features. The IQR of the ROC distribution is represented as the ROC at the 25th and the ROC at the 75th percentile. The 
blue line represents random performance (AUROC = 0.5). The corresponding IQR of the AUROCs is: (0.940, 0.969). 
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increases the predictive power at any given moment in time. Addition
ally, this machine learning workflow demonstrates the accurate pre
diction of more fine-grained cognitive functioning metrics, such as sleep 
dysfunction. These results are in line with prior work from this team 
demonstrating that survival analysis on temporal data on this task of 
time-series data led to statistically significant, but overlapping, distri
butions between patients with schizophrenia and healthy controls (Liu 
et al., 2019). 

These new results suggest that remotely monitoring cognition across 
all serious mental illness is feasible through smartphone-based screening 
tools. While it is known that early intervention leads to improved out
comes in a variety of psychopathologies (McGorry and Mei, 2018), 
schizophrenia included (Kane et al., 2016), earlier interventions for 
cognition remain nascent. Implementing scalable screening tools, as 
demonstrated here, is the next step towards actualizing timely in
terventions for individuals experiencing neurocognitive impairment as a 
result of serious mental illness. 

Further, the signal observed for predicting daytime sleep dysfunc
tion, although weaker than that observed for predicting schizophrenia 
status, is tantalizing. It suggests that this approach, if appropriately 

refined and analyzed, potentially in parallel with other passive data 
streams such as geolocation and temporal data, could yield deeper in
sights into the more subtle neurocognition of subjects, and evaluate 
these states across time. Further research is required to elucidate the 
psychiatric dimensions most amenable to the described technology. 
Nevertheless, these findings outline the strength of leveraging machine 
learning approaches to mobile application data for the monitoring of 
psychiatric illness and prove that this approach could scale. The high 
AUCs for the neurocognitive functioning data with the smartphone 
scores at both visit 1 and visit 2 suggest that beyond being feasibility, 
this approach can be explored in the future regarding comparable pre
dictive power. 

While these results are encouraging, larger and more variegated 
patient use data is required to represent the heterogeneity of both 
baseline mental health and patient cell phone use. This study was 
limited by the sample size, sparse neurocognitive functioning data 
separated from the predictor data by up to several weeks, and a control 
group not age, gender, or SES-matched with the subjects with schizo
phrenia. This work lays the groundwork for establishing a low-cost, low- 
barrier longitudinal screening strategy for thought disorders. 

Fig. 4. SHAP scores for each model. (A) Static features. (B) All features.  

Fig. 5. PSQI daytime dysfunction prediction performance and interpretation. (A) Comparison of ROC Distribution in Random Forest Model for Trained vs. Control.  
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To build on the assessment of the smartphone application as a 
detection tool for serious mental illness, future research should aim to 
grow the number of subjects in the study and to diversify age, gender, 
and SES-matched controls. Additionally, the length of monitoring time 
should be increased to create longitudinal time series, and an opportu
nity for deep learning approaches capable of leveraging those intra
patient time series. Finally, while this study focused primarily on 
attention and working memory, recent work has also shown that verbal 
learning assessment via smartphones for those with serious mental 
illness, including schizophrenia, is feasible and ecologically valid (Par
rish et al., 2021). Future studies should incorporate verbal cognitive 
assessments adapted to smartphone use. 

5. Conclusion 

The machine learning models in this analysis were able to distinguish 
between those with and without schizophrenia at high accuracy, based 
on cognitive game performance within a smartphone app alone, with 
improved accuracy when temporal features were added. This work 
demonstrated how smartphones are uniquely suited to capture dynamic 
behavioral data which may serve as a biomarker for schizophrenia. The 
ability of this data to help predict functional symptoms highlights the 
clinical potential for early intervention in serious mental illness. Moni
toring digital biomarkers such as this one present an opportunity to 
advance research in psychiatry as well as augment care today. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.scog.2021.100216. 
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