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Abstract: Flash-based storage is considered to be a de facto storage module for sustainable
Internet of things (IoT) platforms under a harsh environment due to its relatively fast speed and
operational stability compared to disk storage. Although their performance is considerably faster
than disk-based mechanical storage devices, the read and write latency still could not catch up with
that of Random-access memory (RAM). Therefore, RAM could be used as storage devices or systems
for time-critical IoT applications. Despite such advantages of RAM, a RAM-based storage system has
limitations in its use for sustainable IoT devices due to its nature of volatile storage. As a remedy to
this problem, this paper presents a durable hybrid RAM disk enhanced with a new read interface.
The proposed durable hybrid RAM disk is designed for sustainable IoT devices that require not only
high read/write performance but also data durability. It includes two performance improvement
schemes: rapid resilience with a fast initialization and direct byte read (DBR). The rapid resilience
with a fast initialization shortens the long booting time required to initialize the durable hybrid
RAM disk. The new read interface, DBR, enables the durable hybrid RAM disk to bypass the disk
cache, which is an overhead in RAM-based storages. DBR performs byte–range I/O, whereas direct
I/O requires block-range I/O; therefore, it provides a more efficient interface than direct I/O. The
presented schemes and device were implemented in the Linux kernel. Experimental evaluations were
performed using various benchmarks at the block level till the file level. In workloads where reads
and writes were mixed, the durable hybrid RAM disk showed 15 times better performance than that
of Solid-state drive (SSD) itself.

Keywords: IoT; sustainability; hybrid RAM disk; direct byte read; secondary storage;
operating system

1. Introduction

A reliable but responsive storage device is an inevitable concern for realizing sustainable Internet
of things (IoT) devices for mission-critical systems [1]. Unlike general consumer devices, sustainable
IoT devices must perform their own tasks correctly in a stable manner without failures. As shown
in Figure 1a, mission-critical systems need to ensure rapid system recovery and resilience, even in
the face of a sudden power failure because one failure inside a mission-critical system may result in a
mission failure or a tragedy. Therefore, realizing sustainable IoT devices ensuring low read latency for
accessing critical data, as well as data durability for storing critical data, is a critical factor for their
sustainability [2]. Short boot times are also an important factor in mission-critical IoT systems because
it should be ready for certain mission-critical tasks even after a sudden power failure. Regarding these
points, flash-based storage is considered to be a de facto storage module for sustainable IoT platforms
under a harsh environment due to its relatively fast speed and operational stability compared to disk
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storage. To achieve these design goals, usually flash-based Solid-state drive (SSD) is installed with
the configuration of single attached or Redundant array of inexpensive disks (RAID)manner, and
mostly, IoT operating systems such as Android Things [3], and an I/O subsystem in the operating
system, manages the storage device [4]. Although their performance is considerably faster than
disk-based mechanical storage devices, the read and write latency still could not catch up with that
of Random-access memory (RAM). Therefore, RAM could be used as a storage device or system for
time-critical IoT applications.

A traditional storage I/O subsystem, even if it uses flash-based SSD, will have larger latency and
lower bandwidth compared to memory-oriented read/write operations. Even though the performance
gap diminishes, there still exists several orders of magnitude for latency. Additionally, RAM can access
data on a byte-addressable level. There are a lot of studies to improve I/O performance with RAM
memory, and most of them use RAM memory as a buffer for storage devices [5–9]. The read and write
buffer can reduce write latency by buffering incoming data to a RAM buffer, or reduce read latency to
get data directly from a RAM buffer, with appropriate buffer-management algorithms. However, the
buffer-based approach still must go through existing file system operations and may have memory
management overhead such as page cache.

Figure 1. Software stack for the durable hybrid RAM disk (DHRD) with direct byte read (DBR).

On the other hand, the RAM disk is a software program that turns a portion of the main memory
into a block device [10–12]. The RAM disk is the most expensive and fastest storage device, in which
the RAM memory block device works like a disk drive. It is also referred to as a software RAM
drive to differentiate it from a hardware RAM drive. RAM disks can provide fast I/O response and
low latency when accessing data. However, it has the disadvantage of data loss in the event of a
power failure; therefore, it lacks durability and persistency. To address this problem, many studies
have been conducted on various types of systems. The simplest approach to prevent data loss is
to asynchronously dump the entire contents of the RAM disk into a dedicated hard disk drive [13].
For better durability, dumping into a hard disk drive can be performed synchronously, but this method
would use the inefficient traditional I/O for RAM-based storage [14]. In addition, there is little scope in
terms of byte addressability advantage of RAM devices when designing RAM-based storage systems.
The byte addressing data access operation provides very low latency.
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Figure 1b,c illustrate a basic difference between a RAM disk and the proposed scheme, durable
hybrid RAM disk (DHRD). The generic RAM disk has a block interface and loses data at a power
failure. However, DHRD with direct byte read (DBR) can improve both durability and read throughput.
The DHRD consists of a RAM disk and a non-volatile storage, such as SSD, as a hybrid storage system.
With this hybrid approach, the DHRD provides durability, which means it does not suffer data loss
during sudden power failure. The DBR DHRD performs I/O operations with the new read scheme that
does not use a disk cache, i.e., page cache, for reads and is byte-addressable unlike direct I/O, wherein
direct I/O uses a strict block-addressing mode. The byte-addressable feature is more convenient for
applications than the use of direct I/O. The new byte-addressable read scheme can be mixed with
buffered writes to apply it to the hybrid RAM disk; moreover, it can be applied to existing applications
without any modification. In addition to that, the initialization procedure of DBR DHRD can reduce
the boot time of the storage device, since it allows general I/O requests during the initialization process
itself, while other RAM disk-based storage cannot support general I/Os during the initialization.
Various experiments that could be applied to sustainable IoT devices were performed to DBR DHRD
and other storage configurations such as SSD and hybrid storage device. The experimental results
show that the DBR DHRD gives better I/O performance than others.

The rest of this paper is organized as follows: Section 2 provides an overview of related work,
Section 3 presents the design and implementation of DHRD in detail. The performance evaluation
of DHRD is presented in Section 4. Finally, Section 5 concludes this paper and presents the relevant
future work.

2. Related Work

RAMDisk is a software-based storage device that takes a portion of the system memory and uses
it as a disk drive with legacy file system operations. The more RAM your computer has, the larger the
RAM disk you can create, but the cost would also be more.

Recently, RAM has been used as a storage system for several high-end computing systems
and IoT devices to provide low latency and low I/O overhead. RAM is used for intensive random
I/O in various fields, such as in-memory databases [15], large-scale caching systems [16], cloud
computing [17–20], virtual desktop infrastructure [21–23], web search engine [24], and mission-critical
systems like space applications [25].

Several RAM disk devices were previously developed such as [10–12]. The most traditional
application of RAM disk modules is their use as virtual file systems for Linux kernel from the system’s
boot time. During the system boot time, Linux kernel uses more than one RAM disk file system
to mount the kernel image in its root file system. Also, at run time, Linux uses space to store
system information or hardware device information in proc file system or sysfs of the RAM disk.
The traditional RAM disk file system acts as a regular file system that is mounted in the memory
device in a single computing system. The RAM-based file systems used in Linux have no durability,
which means that if the system’s power turns off, the data of the RAM-based file systems would
disappear. Hence, to ensure durability, dumping from RAM disk drive to the hard disk drive should
be performed synchronously [14].

The development for RAM-based storage drive has been more revitalized as computing systems
require lower latency for single storage I/O operations, especially, applications that use distributed
storage systems such as big data databases and cloud computing systems. Distributed RAM storages in
cluster environments have been studied [14,17,18]. To overcome the volatility of RAM, RAMcloud [17]
provides durability and persistency in a cluster environment, where each node uses RAM as the main
storage. Every node replicates each object in the RAM storage and responds to write requests after
updating all the replicas. Hence, reliability is ensured even if a node fails. Additionally, modified data
are logged to two or more nodes and the logs are asynchronously transferred to a non-volatile storage
to achieve durability.
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A Solid-State Hybrid Disk (SSHD) is being used on a personal computer, in which SSHD is
composed of SSD and Hard disk drive (HDD) inside the storage device. In the SSHD, Several GB of
SSDs significantly improve overall performance. Modern state-of-art storage systems employ tiered
storage devices [26–28]. For the tiered storage device, the DBR DHRD scheme, proposed in this paper,
can replace SSD in SSHD device. It can significantly improve I/O performance with DBR method.

On the other hand, recently, some new memory-oriented devices are released to give better I/O
throughput for memory-intensive applications. The memory devices are connected to CPU via PCIe
NVMe (non-volatile memory express) interface, and the controller chip manages the hybrid storage
of the memory and non-volatile memory SSD. The main operation of the controller is caching other
NVMe SSDs connected to the systems for accelerating storage I/Os. It provides fast response time and
high throughput for both random as well as sequential reads and writes at block I/O levels. However,
it does not provide byte-level addressable I/O in the internal operations as it is connected to the
PCIe bridge interface. Moreover, the dedicated hardware device has limitations in terms of using and
enhancing internal I/O mechanism at the software level.

The proposed hybrid storage system is different from memory-oriented device and provides
advantages such as the use of a legacy storage device without any additional hardware devices to
provide fast response time for read requests using the new read scheme, and durability of RAM disk
drive for write requests. The proposed read scheme in RAM-based disk driver uses byte addressability
of RAM device for fast response time. The concept of byte-addressable I/O was proposed in our prior
work [29], but this paper presents a new byte-address read scheme that can be mixed with buffered
writes to apply it to the hybrid RAM disk. The read performance can be improved with the help of
byte addressability of RAM while providing durability similar to that of non-RAM disk systems.

3. Durable Hybrid RAM Disk

The DHRD is a hybrid storage that consists of volatile memory and non-volatile storage, while
providing the same durability as that of non-volatile storage. In addition, it improves the read
performance of RAM disks by using a new read interface that is different from buffered I/O and
direct I/O. Read requests are served by the volatile memory, while the write operations are performed
on both the volatile memory and the non-volatile storage simultaneously. Therefore, it provides the
same durability as that of a non-volatile storage. Read performance is determined by the volatile
memory but write performance depends on the non-volatile storage. The DHRD can be used in areas
where read performance is more important than write performance and data durability is mandatory.
For example, it can be applied to read intensive in-memory databases for sustainable IoT devices.
The detailed operations of the proposed system are explained in the next subsections.

3.1. Architecture

Figure 2 shows the software architecture of the DHRD to provide data durability. The DHRD
consists of high-performance volatile memory and non-volatile storage. The high-performance volatile
storage device can be implemented as a RAM disk (RAM disk software). The non-volatile storage
device can be implemented with flash-based SSDs. Non-volatile storage devices are generally slower
than volatile memory storage devices but do not lose data during power failure. In the proposed
system, the volatile memory storage is used as the main storage area, and the updated data in the
volatile memory also gets updated to the non-volatile storage device synchronously.

The DHRD is like a mirrored RAID that consists of a RAM disk and a flash-based SSD, where
read requests are served only from the RAM disk and write requests are duplicated to both the RAM
disk and the SSD. The RAM disk is mirrored with the SSD. Hence, the RAM disk can be recovered
from SSD even if the RAM disk loses its data due to a sudden power failure

When the system restarts, the RAM disk is automatically initialized with the data in the SSD.
Depending on the capacity of the RAM disk, it might take a long time to load all the data onto the
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RAM disk. This paper presents a technique that allows immediate response that takes care of the
initialization and hence, continues to serve I/O requests during the long initialization period.

The page cache that is used by block devices exhibits unnecessary memory copy overhead
for RAM disks. The proposed solution provides a cache bypassing read like direct I/O. This uses
the stringent block-level interface, where the buffer size, buffer address, request size, and request
position must be multiples of the logical block size. However, the proposed read scheme used in
DHRD provides a byte interface that has no constraints. This new read interface is described in detail
in Section 3.4.

Volatile Storage

(Software RAM disk or

RAM−based SSD)

Non−Volatile Storage

(Flash−based SSD)

Durable Hybrid RAM Disk(DHRD)

VFS & File System

Direct Byte Read

Operating System

Block Layer

Figure 2. Software stack for the durable hybrid RAM disk (DHRD) with direct byte read(DBR).

3.2. Basic Primitives

There are three primitive operations in DHRD, read, write, and initialization. Figure 3 shows
these primitive operations of DHRD. Each primitive operation acts as follows:

• Reads: Figure 3a shows the read operation of DHRD. The data contained in the RAM disk are
always the same as those in the SSD; therefore, all read requests delivered to DHRD are forwarded
only to the volatile memory. In other words, read operations are performed only in the RAM
disk.

• Writes: All write requests delivered to DHRD are sent to both the RAM disk and the SSD. After
two writes are completed in these two lower devices, the response for the request is delivered
to the upper level of the DHRD. The endio in the figure represents the response for the request
meaning the I/O is completed. As a summary, the write operation works like a mirrored RAID.

• Initialization: The initialization is performed after the system boots. When the system boots,
DHRD copies the contents of the SSD to the RAM disk so that the RAM disk can now become
the SSD. Generally, the initialization time is quite long; however, the read and write operations
can be performed during this initialization time itself in the DHRD. The detailed read and write
operations during the initialization is described in the next subsection.

Data can be completely restored from the SSD despite a power failure because the SSD always
keeps up-to-date data. The data recovery efficiency of the DHRD depends on the mounted file system.
The read performance is determined by the RAM, but the write performance has a bottleneck in the
SSD. Consequently, the DHRD is applicable to a server that requires high durability and higher read
performance than write performance.
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DHRD

ramdisk SSD

1. write

2. write
3. write

DHRD

ramdisk SSD

read

read

DHRD

ramdisk SSD

copy

(c) initialization

(a) read

(b) write operation

4. endio 5. endio

6. endio

Figure 3. The three primitive operations of the durable hybrid RAM disk; read, write and initialization.

3.3. Rapid Resilience with a Fast Initialization

As soon as a system starts, the RAM disk has no data; however the SSD has valid data in the
DHRD, and hence, the RAM disk needs to be filled with the contents of the SSD. The DHRD initializes
the RAM disk with the data that are in the SSD so that the RAM disk has the same data as the SSD.
It takes a long time for this initialization as it is performed through read sequences from SSD device.
The DHRD provides data consistency even if I/O requests are delivered to the DHRD during the copy
operations from SSD to RAM disk at initialization. Consequently, it allows rapid resilience with fast
boot response. There are two operations during initialization: write and read, and there are several
cases for each request. DHRD performs proper policy according to the requests.

3.3.1. Writes During Initialization

Figure 4 shows how write requests are processed during the initialization stage. Data blocks are
divided into chunk units. Each chunk consists of multiple sectors. The chunks are sequentially copied
from the SSD to the RAM disk. As shown in Figure 4, Chunks 0 to 2 were copied from the SSD to the
RAM disk and Chunk 3 is being copied. Chunks 4 to 6 have not been copied yet. Write requests are
classified into three cases as follows:

• Case 1: A write request sent to a chunk before being initialized is blocked until the initialization
for that chunk completes. When the DHRD has finished copying the chunk to the RAM, all
blocked write requests to the chunk are resumed and processed as the initialized chunk.

• Case 2: Write requests to initialized chunks are processed as normal writes. This means that the
write requests are delivered to both the SSD and the RAM disk.

• Case 3: A write request to an uninitialized chunk is sent only to the SSD. The data written to
the SSD will later be copied to the RAM disk by the initialization process. A write request locks
the corresponding chunk and unlocks it after finishing the write operation. When the locked
chunk is chosen for initialization, the initialization process is suspended and resumed only when
the chunk is unlocked by the completion of the write operation. As shown in Figure 4, while a
write request to the uninitialized Chunk 4 is being processed, Chunk 4 is locked, Chunk 3 has
finished initialization, and the next initialization for Chunk 4 is blocked. The blocked initialization
resumes after all writes for Chunk 4 are completed.
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(to both RAM and SSD) 
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(to SSD only)
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Figure 4. Three write cases during initialization. DHRD ensures data integrity with proper policy for
each case.

3.3.2. Reads During Initialization

Read processing is classified into two cases as follows:

• Case 1: Read requests to initialized chunks are processed only on the RAM disk.
• Case 2: Read requests to chunks that are being initialized or were uninitialized are delivered only

to the SSD.

This scheme can improve the boot response of the DHRD system. However, requests may not be
processed with the best performance during initialization.

3.4. Direct Byte Read

The traditional RAM disk is implemented as a block device that is better suited in the form of
disks rather than as RAM disks. The block device causes an additional memory copy from the disk
cache, but, on the other hand, the RAM disk does not need this disk cache. Here, the disk cache is
integrated with the page cache in the Linux kernel.

The traditional buffered I/O uses the page cache, which degrades the performance of the RAM
disk. The traditional direct I/O requires that the request parameters be aligned in the logical block
size. We need a new I/O interface that can process byte–range requests without the page cache.

This paper presents a new I/O that is optimized for the DHRD. It can process byte–range read
requests that bypasses the page cache and uses the buffered write policy for the SSD. The new I/O
requires a modified Virtual File System(VFS) in the Linux operating system and an extended block
device interface.

Figure 5 compares redundant memory copy with a direct byte read (DBR). The DHRD without the
DBR is presented only as a block device, and performs I/O with the page cache. If the DBR is applied
to the DHRD, data can be copied directly from the memory of the RAM disk to the user memory
without having to go through the block layer.
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Figure 5. Software stack of DHRD for the cases of redundant memory copy and direct byte read.

3.4.1. Compatible Interface

Applications using buffered I/O can use a DBR without modification. Applications use the
conventional buffered I/O interface to use the DBR. For direct I/O, the address of the application
buffer memory, size of the application buffer memory, request size, and request position must be
aligned in the logical block size. The DBR has no alignment restrictions on request parameters.
The DBR processes I/O requests in bytes. There is a requirement for the block devices to provide an
additional interface for the DBR, but DBR-enabled block devices are compatible with conventional
block devices. Thus, the DBR can use the existing file systems.

The applications use the file position in bytes, the buffer memory in bytes, and the size in bytes for
I/O. However, the block device has a block-range interface in which all the parameters are multiples
of the logical block size. In the traditional I/O interface, the file system in conjunction with the page
cache converts a byte–range request into one or more block-range requests. Thereafter, the converted
block-range I/O requests are forwarded to the block device.

The DBR requires a DBR-enabled block device, a DBR-enabled file system, and a DBR module
in the Linux kernel. A DBR-enabled block device has the traditional block device interface and an
additional function that processes byte–range requests. The DBR-enabled file system also has one
additional function for DBR. The DBR-support function in the file system can be simply implemented
with the aid of the DBR module.

When the kernel receives an I/O request for a file that is in the DBR-enabled block device, the
request is transferred to the DBR function of the DBR-enabled block device through the DBR interface
of the file system. Therefore, the byte–range request of the application is passed to the block device
without transformation.

3.4.2. Direct Byte Read and Buffered Write

The SSD processes only block-range requests, so the SSD cannot use the new I/O. The SSD is
used for write requests in the DHRD, but not for read requests. Therefore, the DHRD processes write
requests using the traditional block device interface that involves the page cache, while read requests
are processed by the direct byte read (DBR). Figure 5 shows the read path and the write path of the
DHRD with the DBR. The DHRD uses a buffered write policy that uses the page cache and DBR, which
does not use the page cache. To maintain data integrity when read requests and write requests are
delivered to the DHRD simultaneously, the DHRD operates as follows:

• Page not found: When a read request is transferred to the VFS, the VFS checks whether there is
buffered data in the page cache. If it is not there, the read request is processed by the DBR.

• Page found: If there is a buffered page that corresponds to the read request, the data in the
buffered page is transferred to the application buffer.



Sensors 2020, 20, 2159 9 of 16

This scheme provides data integrity even though byte-level direct reads are mixed with traditional
buffered writes.

4. Evaluation

4.1. Experimental Setup

This section describes a system that we build to measure the performance of the DBR, DHRD,
and evaluation results of the proposed DHRD in comparison with a legacy system. For the
performance evaluation, the proposed DHRD is compared with SSD RAID-0 and a traditional RAM
disk. Throughout the section, we will denote the DHRD having DBR capability as ‘DBR DHRD’ to
differentiate it from the basic DHRD. Also, we denote the software RAM disk as RAMDisk.

The system in the experiments uses two SSDs and 128 GB of DDR3 SDRAM 133 MHz and dual
3.4 GHz processors that have a total of 16 cores. Although the performance evaluation has been
performed on high-end IoT platform equipped with multicore processor, we note that the performance
of DHRD and DBR in terms of IO throughput and bandwidth is not affected by the number of CPU
cores because most of the internal operations of DHRD and DBR consists of IO bound operations, not
CPU bound operations. The SSD RAID is a RAID level 0 array that consists of two SSDs and provides
1.2 GB/s of bandwidth. A Linux kernel (version 3.10.2) ran on this machine hosting benchmark
programs, the XFS filesystem, and the proposed DBR DHRD driver. We developed DHRD modules in
the Linux kernel and modified the kernel to support DBR. The DHRD consisted of a RAMDisk and a
RAID-0 array consisting of two SSDs. The RAMDisk used 122 GB of the main memory.

We did performance evaluation with various types of benchmark programs to show its feasibility
with the aspect of various viewpoints regarding sustainability in IoT-based systems. Those benchmark
programs can cover several IoT devices such as Direct Attached Storage(DAS), Personal Cloud Storage
Device (PCSD), Solid-State Hybrid Device (SSHD), and Digital Video Recorder and Player(DVR),
which requires advanced I/O operations.

4.2. Block-Level Experiments

The first benchmark evaluations are testing for block-level I/O operations. This test is for
storage-oriented devices such as DAS, since DAS uses dense block-level I/O operations. In the
block-level benchmark, block-level read and write operations without file system operations are done
with the benchmark running, then the throughput of the read and write block I/O operations are
measured. The results of block-level benchmark evaluation are plotted in Figure 6, where it plots
throughputs of random read and random write workloads at block level.

At first, Figure 6a shows the performance of random reads in the block devices without a file
system. In the block-level I/O operations, the block devices could be driven by buffered I/O or direct
I/O, so these were applied to the SSD RAID-0, RAMDisk, and DHRD, respectively. The DBR DHRD
does not distinguish between buffered I/O and direct I/O for reads, instead always treats them as
DBR. As shown in the results, the proposed DBR DHRD showed 64 times better read throughput than
‘SSD RAID-0’, which uses direct I/O. On an average, the write throughput of the DHRD with direct
I/O was twice that of the DHRD that used buffered I/O. The DBR DHRD showed 2.8 times better
read performance than the DHRD that used direct I/O. DBR is implemented as light weight codes,
while direct I/O has more complex computing overhead than DBR that has less locks and has no page
cache flush and waiting calls. The DBR DHRD, which has low computing overhead and no redundant
memory copy, showed the highest read performance.

The write performance of the DHRD depends on the SSD. As shown in Figure 6b, the write
performance of the DHRD and that of the SSD RAID-0 are almost the same, but the write performance
of DHRD is 3% lower than that of ‘SSD RAID-0’ because the DHRD includes additional operation
in the RAMDisk. The write performance of the RAMDisk is superior to others. However, unlike the
RAMDisk, the DHRD and the SSD provide persistency. For DHRD with direct I/O, the performance
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was about 5 times higher when the number of processes were 32 than when the number was 1.
The reason being that the SSD consists of dozens of NAND chips and several channels so that the
maximum performance of the SSD can be achieved by several simultaneous I/O requests. The DHRD
with buffered I/O has less impact on the degree of concurrent I/O requests. When an application
writes data using buffered I/O, the data is copied to the page cache and an immediate response is sent
to the application. Therefore, the accumulated pages are concurrently transferred to the final storage
device later, so that this I/O parallelism is better for the SSD of the DHRD.

(a) The throughput of random reads at the block level

(b) The throughput of random writes at the block level

Figure 6. The results of block-level benchmark evaluation. It plots throughputs of random read and
random write workloads at block level.

Figure 7 shows evaluation conducted Storage Performance Council (SPC) traces that consist of
two I/O traces from online transaction processing (OLTP) applications running at two large financial
institutions and three I/O traces from a popular web search engine [30]. We replayed the SPC traces
on the DBR DHRD, DHRD, RAMDisk, and SSD RAID-0 at the block level. The DHRD showed 8%
slower performance than the RAMDisk. However, DBR DHRD showed 20% better performance than
the RAMDisk and 270% better performance than the SSD RAID-0. The DBR DHRD performed best on
SPC workloads that had mixed reads and writes.
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Figure 7. SPC traces: It plots two I/O traces from online transaction processing (OLTP) applications
running at two large financial institutions and three I/O traces from a popular search engine.

4.3. File-Level Experiments

Data storage of IoT devices is a kind of remote storage device that lets systems store data and
other files for sustainable IoT-based services. In this device, file-level I/O throughput is critical
to the system to give best responsiveness. This section presents an evaluation that uses file-level
benchmark programs. It exhibited more computing overhead than the block-level benchmarks. In the
file-level benchmark running, we do sequential read, sequential write, random read, random write,
and mixed pattern of random read/write operations at a file system level with XFS file system [31].
For the sequential benchmark running, a single process does file-level read and write operations, while
throughput of random read and write are measured as the number of processes increases to make
more complex situations. For each pattern running, DBR DHRD, DHRD, RAMDisk, and SSD RAID-0
are compared. The results of these file-level benchmark evaluation are shown in Figure 8, where
throughputs of sequential read and write, random read, random write, and mixed random read/write
workloads are plotted.

Figure 8a,b evaluate the sequential and random read/write performance with a 16 GB file on
an XFS filesystem. Figure 8a shows sequential read and write performance. As shown in the results,
the DBR DHRD gives 3.3 times better sequential read performance than the DHRD in terms of the
throughput aspect. It is because the DBR DHRD has half of the memory copy overhead and simpler
computing complexity than the DHRD. The write performances of the SSD RAID-0, DHRD, and DBR
DHRD were almost the same due to the bottleneck of the SSD as shown in Figure 8d. The performance
of the RAMDisk was the best. Figure 8b shows the mixed random reads and random writes, where the
ratio of reads and writes was 66:34. Most applications showed similar behavior with this I/O ratios.
The DBR DHRD outperformed the DHRD by 16% on average. The DBR DHRD showed 15 times better
performance than the SSD RAID-0 on average with the same durability.

Filebench is a file system and storage benchmark that can generate a wide variety of
workloads [32]. Unlike typical benchmarks, it is flexible and allows an application’s I/O behavior
to be specified using its extensive Workload Model Language (WML). In this section, we evaluate
them with the predefined file server workloads among various Filebench workloads. The file server
workload runs 50 threads simultaneously, and each thread creates an average of 128 KB of files, adds
data to the file, or reads a file. We measured throughputs for four system configurations as the number
of files varies from 32 k to 512 k.
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(a) Sequential I/Os at the file level (b) Mixed random reads and writes at the file level
(read:write = 66:34)

(c) Random read at the file level (d) Random write at the file level

Figure 8. The results of file-level benchmark evaluation. It plots throughputs of sequential I/O, random
read, random write, and mixed random read and write workloads at file level.

Figure 9 shows performance results obtained using file server workloads using Filebench. In the
figure, the x-axis represents the number of files and the y-axis represents throughputs of each system
running. The file server workload has a 50:50 ratio of reads and writes. As shown in Figure 9, the DBR
DHRD showed 28% and 54% better performances than the DHRD and the SSD RAID-0, respectively.
As this workload has many writes, the RAMDisk achieved the best performance. Although RAMDisk
shows higher throughput than DBR DHRD, the RAMDisk suffers from low durability. Thus, DBR
DHRD can be said to show better performance while keeping reasonable durability when RAM and
SSD are used together in the computing system.

Figure 9. A benchmark using Filebench with fileserver workloads.

4.4. Hybrid Storage Devices and DVR Applications

The tiered storage is a data storage method or system consisting of two or more storage media
types. Generally, the frequently used data are served from the fasted storage media such as SSD, and
other cold data are accessed from a low-cost media such as HDD, where the first-tier storage as the
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fasted media is usually performed as a cache for the lower-tier storage. Therefore, the first-tier storage
is also called a cache tier.

One of the emerging storage devices is a tiered storage such as SSHD, which is a traditional
spinning hard disk with a small amount of fast solid-state storage. BDR DHRD can be applied to
the solid-state storage in a SSHD as shown in Figure 10, BDR DHRD can replace the solid-state
storage of SSHD, thereby improving the performance of the solid-state storage of a SSHD. To see if
the performance of DBR DHRD is improved in a tired storage, we compared the I/O performance of
tiered storage devices with DBR DHRD. In this experiment, SSD, HDD, DHRD, and DBR DHRD were
configured in tiered storage devices. Three-tiered storage models, SSD+HDD, DHRD + HDD, and
DBR DHRD + HDD are considered.

SSHD can be implemented by the flashcache [33] module in Linux. The flashcache can make a
tiered storage with SSD and HDD. DHRD is implemented as a general block device, so a DHRD device
can replace the SSD of a flashcache device. By this way, we can make a SSHD that consists of DHRD
and HDD.

PC Matic Research said that the average memory size of desktop computers is 1 GB in 2008,
and 8 GB in 2018 [34]. We can forecast that the average size of PC memory will be 64 GB in 2028.
PC motherboards can support up to 128 GB of memory in 2019. In this experiment, the tiered storage
used 8 GB of memory, which can be used in the mid-sized to high-end desktop computers.

solid state storage

HDD HDD

solid state 
storageRAM

BDR DHRD

DHRD-based SSHDSSHD

Figure 10. A generic SSHD and a DHRD-based SSHD.

The I/O traces used in the experiment were collected from three general users using a personal
computer. One is a system administrator user, two are developers, and their daily I/O traces are
collected and used as experimental I/O traces. In those tiered systems, I/O traces collected from users
were performed and throughput is estimated. During the experiment, it is assumed that 70% and
80% of all I/O traces are allocated to SSD or DHRD, which is considered to be the cache tier in tiered
storage system.

The results are plotted in Figure 11, in that Figure 11a compares three types of tiered storage
devices, SSHD(SSD+HDD), DHRD+HDD, and DBR DHRD+HDD, when the hit rate is 70%. Figure 11b
compares them when the hit rate of the cache tier is 80%. Both the RAM size and the SSD size are
8 GB, which is a typical size of a commercial SSHD. As shown in the figures, throughput of DBR
DHRD+HDD and DHRD+HDD-based tiered storage outperforms SSD+HDD-based tiered storage
about several times for each I/O traces. DBR DHRD scheme also outperforms DHRD only, which is
the advantage of direct byte-level read operations supported by DBR. If we compare hit ratio of the
cache tier in the tiered storage, the higher the cache tier hit ratio, the higher throughput we have when
DBR DHRD is used. From the figure, we identify that the throughput DBR DHRD for 80% cache tier
hit ratio is increased about 14%.
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(a) Tiered storage with 70% hit rate to the cache tier (b) Tiered storage with 80% hit rate to the cache tier

Figure 11. The results of tiered storage in hybrid storage device. It plots I/O throughputs of tiered
storage assuming that SSD, DHRD, and DBR DHRD are used as a cache tiered in a tiered storage.

Lastly, we conducted experiments on reading and rewriting video files, which is a kind of
experiment applicable to multimedia-oriented IoT applications. In this experiment, 1.8 GB sized video
file is read, modified partially, and save it as another file. For each system configuration, i.e., SSD,
DHRD, and DBR DHRD, we did those operations three times and measured overall execution time.
The results are plotted in Figure 12. As shown in the figure, DBR DHRD and DHRD were 2.26 times
faster and 1.74 times faster than SSD, respectively. From the results, we identify that DBR DHRD can
be applied to IoT devices that deal with multimedia data.

Figure 12. A result of reading and writing for video files.

5. Conclusions

RAM disk is a software-based storage device to provide low latency, which is compatible with
legacy file system operations. The traditional RAM disk includes the disk cache; however, the fact
is that it does not require disk cache. Another way for a block device to bypass disk cache, Direct
I/O is used; however, the parameters must be a multiple of the logical block size for Direct I/O, so a
byte-level addressable path from application to storage device does not exist.

This paper introduced the DRB DHRD scheme for hybrid storage systems that is composed
of RAM disk and SSD. The proposed DBR-enabled DHRD provides a byte–range interface. It is
compatible with existing interfaces and can be used with buffered writes. The initialization procedure
of DBR-enabled DHRD can reduce the boot time of the storage device, since it allows general
I/O requests during the initialization process itself, while other RAMDisk-based storage cannot
support general I/Os during the initialization. Experimental evaluation was performed using various
benchmarks that are applicable to various IoT-based systems performing dense I/O operations.
In workloads where reads and writes were mixed, the DHRD performed 15 times better than the SSD.
The DBR also improved the performance of the DHRD by 2.8 times. For the hybrid storage device,
DBR DHRD performed 3 to 5 times faster throughputs than SSHD. Also, DBR DHRD can reduce
execution times of multimedia file’s read and write processing.

As the next step of this study, we are exploring a more advanced version of DRB DHRD for
further features and for performance improvement. A more rigorous comparison of the performance
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of this DRB DHRD scheme versus others could be an important task to improve the completeness of
the proposed system. We set the more rigorous performance evaluations as our further work.
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