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THEBIGGERPICTURE Over the past decade, billions of dollars have been spent to institute meaningful use
of electronic health record (EHR) systems. For a multitude of reasons, however, EHR data are still complex
and have ample quality issues, which make it difficult to leverage these data to address pressing health is-
sues, especially during pandemics such as COVID-19, when rapid responses are needed. In this paper, we
propose a transitive sequential pattern mining algorithm for exploiting the temporal information in the EHRs
that are distorted by layers of administrative and healthcare system processes. Perhaps more importantly,
we propose a machine learning (ML) pipeline that is capable of engineering predictive features without the
need for expert involvement to model diseases and health outcomes. Together, the temporal sequences
and theML pipeline can be rapidly deployed to develop computational models for identifying and validating
novel disease markers and advancing medical knowledge discovery.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Electronic health records (EHRs) contain important temporal information about the progression of
disease and treatment outcomes. This paper proposes a transitive sequencing approach for con-
structing temporal representations from EHR observations for downstream machine learning. Using
clinical data from a cohort of patients with congestive heart failure, we mined temporal represen-
tations by transitive sequencing of EHR medication and diagnosis records for classification and
prediction tasks. We compared the classification and prediction performances of the transitive
sequential representations (bag-of-sequences approach) with the conventional approach of using
aggregated vectors of EHR data (aggregated vector representation) across different classifiers.
We found that the transitive sequential representations are better phenotype ‘‘differentiators’’
and predictors than the ‘‘atemporal’’ EHR records. Our results also demonstrated that data rep-
resentations obtained from transitive sequencing of EHR observations can present novel insights
about the progression of the disease that are difficult to discern when clinical data are treated
independently of the patient’s history.
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INTRODUCTION

The widespread adoption of electronic health records (EHRs)

has accumulated an unprecedented amount of patient health in-

formation. EHRs contain important temporal information that

provide an opportunity for discovering new insights about dis-

ease progression and treatment trajectories. However, EHR ob-

servations reflect a complex set of processes that thwart their

seamless translation into actionable knowledge. Namely, the

raw EHR records may not be direct indicators of patients’

‘‘true’’ health states at different time points, but rather reflect

the clinical processes (e.g., policies and workflows of the pro-

vider and payor), the patients’ interactions with the system,

and the recording processes.1–3

Biomedical researchers increasingly apply conventional asso-

ciation studies to EHR data, yet the temporality of these data

have not been fully exploited by current methods.1,4 The tempo-

ral properties of EHR data signify the complexities of the health-

care processes. This makes incorporating temporal information

into common temporal analysis techniques challenging.5 The

challenge is twofold. First, EHR observations are recorded asyn-

chronously across time (i.e., measured at different times and

irregularly), which provide foundational challenges for directly

applying common temporal analysis methods.6–9 Second, trans-

lating the temporal nature of discrete EHR data into useful data

representations (or features) for standard machine learning

(ML) algorithms is challenging.10,11 This is a critical gap. This

study aims to address this gap by developing and testing a tem-

poral representation mining algorithm for asynchronously re-

corded discrete EHR data.

We propose a transitive sequencing algorithm for constructing

temporal representations from medications and diagnoses data

from EHR. We conduct this research with the application in clas-

sifying and predicting congestive heart failure (CHF) in patients.

Our results demonstrate that temporal sequences of electronic

medical records improve computational classification of patient

cohorts, and phenotype prediction, when no record of the

phenotype exists in themedical records. The proposed transitive

sequential representations are interpretable and also more pre-

dictive features for standard ML algorithms than ‘‘atemporal’’

representations of discrete EHR data.We found that the sequen-

tial representations improve CHF classification by over 4% and

prediction by over 13%.We also demonstrate that the proposed

transitive sequential representations aremore suited than the se-

quences mined through traditional sequential pattern mining

(SPM) algorithms for ML using clinical data that inherit various

biases due to the recording process.

Background
An extended body of work exists on extracting interval-based

symbolic representations from clinical measurement data (e.g.,

laboratory test results),12,13 often known as the temporal abstrac-

tion (TA) approach.14,15 Although forms of such representations

have been utilized as features in classification/prediction

tasks,16–19 application in ML is not the focus in the TA agenda.

Furthermore, the development of TA methods has been largely

confined tocontinuousclinicalmeasurementsdata.12,20,21 Inaddi-

tion to continuous data, however, EHRs contain discrete data,

such as records of diagnoses, medications, and procedures.
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For discrete clinical data, SPM22 approaches, such as the

frequent sequential pattern (FSP),22 are promising. The goal in

SPM is to discover relevant subsequences from a large set of se-

quences (of events or items) with time constraints. Several SPM

algorithms have been developed to improve mining efficiency

and address specific domain needs (for recent surveys of SPM

algorithms, refer to the studies by Fournier-Viger et al.23,24 and

Truong-Chi and Fournier-Viger23,24). As a result, SPM algorithms

are fairly mature in computational and data management

schemes. However, as the SPM approaches were primarily

developed for transaction data, the importance of a sequential

pattern for use in downstreamML algorithms is often determined

by an occurrence frequency threshold, known as the minimum

support.25,26 The goal is to cut the number of data representa-

tions by finding the most frequent temporal patterns among all

patterns. This strategy has been used by the majority of the liter-

ature using SPM approaches for clinical data mining.4,7,10,26–29

However, because the temporal patterns are mined based on

frequency, some may not make clinical sense or do not apply

to clinical data that inherit various biases through the recording

process.

A priori-based SPM methods are popular in the healthcare

domain. The a priori property is that if a sequence cannot pass

the minimum support test (i.e., is not assumed frequent), all of

its subsequences will be ignored. Examples of a priori-based al-

gorithms with use cases in clinical data are SPM with regular

expression constraints (SPIRIT),30 sequential pattern discovery

using equivalence classes (SPADE),31 and SPM (SPAM).32

In particular, a couple of studies have applied adjustments to

the SPM’s frequency-based criterion for feature selection using

clinical data. Liu et al.33 proposed a temporal graph approach to

predict the onset of CHF by summarizing multiple sequences of

events recorded for a patient.33 Due to added complexities in the

network of events encapsulated in the temporal graphs, the au-

thors had to work through a specialized generalization method.

Guo et al.34 showed the efficiency of sequential patterns in pre-

dicting the risk of acute ischemic stroke over Framingham and

CHA2DS2-VASc models.34 They applied feature selection pro-

cedures to reduce the dimensionality of the temporal patterns

mined by the popular SPM algorithm (SPAM32).

Considering EHRs as ‘‘indirect’’ reflections of a patient’s true

health state, we propose an algorithm for mining transitive

sequential patterns from discrete EHR data, apply dimension-

ality reduction, and implement the top features in phenotype

classification and prediction. Our approach provides a specifica-

tion for SPM and a formal dimensionality procedure—minimize

sparsity and maximize relevance (MSMR)—that integrates

feature selection into the classification task.

RESULTS

Study design is illustrated in Figure 1. A summary of the patient

characteristics is provided in Table 1. Changes in the number of

unique medication and diagnosis records through feature engi-

neering and initial dimensionality reduction processes are pre-

sented in Table 2. For classification, we began with more than

45,000 unique medication/diagnosis records in the aggregated

vector representation (AVR) approach, from which we mined

over 137 million unique transitive sequence representations.



Figure 1. The Study Design Encompasses

Representation Mining, Dimensionality

Reduction, and ML Experiments
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These numbers were over 25,000 records and 30 million

sequenced representations in the prediction task. Sparsity

screening at the threshold of 1% (68 patients for classification

and 58 patients for prediction) resulted in 6,469 AVR representa-

tions (i.e., unique medication/diagnosis records) and over

1,300,000 sequenced representations in the classification task.

For prediction, the sparsity screening resulted in a reduction in

dimensionality to over 2,500 AVR and 100,000 sequenced

representations.

At the conclusion of the MSMR algorithm, for each approach

the top 200 representations were selected based on their

mean decrease in Gini (MDG) (in tied situations, mutual informa-

tion and prevalence were used). In the next section we compare

the classification results obtained from the four different classi-

fiers using the top 200 features.

Ingeneral,we found that thebag-of-sequences (BOS)approach

outperforms the AVR approach for both classification and predic-

tion tasks. We review the results by hypothesis. Testing median

and best area under the receiver-operating characteristic (ROC)
curve (AUC-ROC) values from each

approach, classifier, and feature set arepro-

vided in Table 3, and performance metrics

from cross-validation are reported in Table

S1. Figure 2 presents the classification (top

plot) and prediction (bottom plot) AUC

values as well as the distribution of those

values across all three approaches (AVR,

BOS, and BOS-AVR), and by classifiers.

Classification
We found that, across the four classifiers,

the BOS representations provided an

improvement in classification performance

over the AVR representations by an

average of 4.1% AUC-ROC (Table 3). The

average median classification AUC-ROC

values were 0.81 (AVR), 0.84 (BOS), and

0.85 (BOS-AVR). The best overall classifi-

cation performances were from model

averaged neural networks (MA Neural

Net.) that resulted in AUC-ROC values of

0.87, 0.88, and 0.92 using the AVR, BOS,

and the BOS-AVR data representations,

respectively. For the purpose of classifica-

tion, combining data representations from

the AVR and BOS approaches resulted in

the best performance (AUC-ROC = 0.92).

Prediction
For predicting heart failure, the perfor-

mance improvements provided by the

BOS representations were even more sub-

stantial when using medication and diag-
nosis records from prior to the first diagnosis of the phenotype

in the medical records. On average, the BOS representations

improved median prediction performance from AVR representa-

tions by 13% in AUC-ROC (Table 3). The averagemedian predic-

tion AUC-ROC values were 0.72 (AVR), 0.81 (BOS), and 0.72

(BOS-AVR). For the purpose of prediction, the sequenced data

representations (BOS) provided the best performances (AUC-

ROC = 0.87). When the AVR and BOS representations were

combined, the prediction performance was inferior to BOS-

only representations. Using the data from before the first record

of the CHF, the best overall prediction performances were from

support vector machines with class weights (SVM CW) with

AUC-ROC values of 0.82, 0.87, and 0.83, respectively from the

AVR, BOS, and the BOS-AVR data representations.

Sequential Pattern Mining
As described in Experimental Procedures, we also mined the

traditional sequential patterns and selected the most frequent

to represent the SPM for comparison. We only compared the
Patterns 1, 100051, July 10, 2020 3



Table 1. Summary of Patient Characteristics in the Test and

Training Sets

Test Set (N = 56) Training Set (N = 6,851)

Gender female: 52% female: 42%

male: 48% male: 58%

Race white: 86% white: 86%

black: 9% black: 7%

Asian: �0% Asian: 1%

other/unknown: 5% other/unknown: 6%

Ethnicity Hispanic: �0% Hispanic: 4%

Observation

range

mean: 17 years (SD: 6.5) mean: 16 years (SD: 7.8)

Age mean: 72 years (SD: 14.7)mean: 68 years (SD: 13.8)
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results of the SPM against BOS with regularized logistic regres-

sions as this was not the focus of this study. As illustrated in Fig-

ure 2, in the classification task, the SPM approach’s perfor-

mance was only slightly inferior to that of BOS, but statistically

inferior to the BOS-AVR approach. Similar to the BOS and the

BOS-AVR approaches, the SPM resulted in better classification

performance than the AVR. However, the transitive sequencing

algorithm demonstrated an unparalleled improvement over the

SPM in prediction: median AUC-ROC 0.634 (SPM) versus 0.79

(BOS). Given these results, one can conclude that the transitive

sequencing algorithm is more suited for modeling clinical data in

comparison with the conventional SPM.

Clinical Interpretations
We used the visual dashboard to further explore the top 200 se-

quences for classification and prediction. A snapshot of the visu-

alizations and functionalities of the dashboard is provided in Fig-

ure 3. The landing page in the dashboard provides an interactive

flow diagram (Sankey plots) constructed from the classification/

prediction sequences identified by the MSMR algorithm. The

user has the ability to zoom into specific sequences by either se-

lecting the sequence or specifying the rank threshold. In addi-

tion, the dashboard provides queryable tabular pages that pre-

sent metrics including the prevalence, mutual information, and

MDGs for selected sequences. Additionally, it provides donut

chart visualizations of the likelihood of heart failure given a spe-

cific sequence versus the CHF likelihood for the individual ele-

ments of the sequence (for examples see Figure 4).

The transitive sequences are, in general, better ‘‘differentia-

tors’’ for identifying heart failure than the ‘‘atemporal’’ EHRs.

The signal obtained from individual features as to whether a pa-

tient truly has (or does not have) heart failure often strengthens

when the features are in sequences. In Figure 4, the diagnoses
Table 2. Number of Unique Representation Records through Repre

Task Start Sparsity Sc

AVR classification 45,767 6,469

prediction 25,478 2,552

BOS classification 137,735,403 1,349,704

prediction 30,962,075 107,760

BOS-AVR
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codes for ‘‘heart failure,’’ ‘‘chronic obstructive pulmonary dis-

ease,’’ and ‘‘benzodiazepines’’ give probabilities of CHF at

45%, 47%, and 63%, respectively. However, when these fea-

tures are sequenced with one another, the probability of heart

failure increases. For example, the sequence ‘‘heart failure /

benzodiazepine’’ has a likelihood of 64% for heart failure and

‘‘heart failure / other chronic obstructive pulmonary disease’’

has a likelihood of 78%. The temporal sequences confer a

greater signal that a patient truly has heart failure compared

with the raw elements (i.e., AVR features).

From among the top sequences, clinical experts identified

those sequences that match a common clinical narrative among

patients with heart failure versus those who lack an obvious clin-

ical explanation. Table 4 has specific examples of the two groups

of transitive sequences. For example, the sequence ‘‘abnormal-

ities in breathing / cardiomyopathy’’ matches a common clin-

ical scenario in heart failure patients. One would expect a heart

failure patient to have the symptom of difficulty breathing, and

it is likely for the patient to then be given the diagnosis of cardio-

myopathy based on subsequent imaging studies. Another

sequence that is easy to interpret is ‘‘heart failure / metopro-

lol.’’ Metoprolol is a common medication for heart failure and is

frequently started after a diagnosis of heart failure. A less

obvious sequence is ‘‘topical anti-infectives / unspecified kid-

ney failure.’’ Neither of these two components are clearly related

to heart failure in the sameway that difficult breathing, cardiomy-

opathy, and metoprolol are related to heart failure.
DISCUSSION

Using transitive sequences of EHR observations, we con-

structed data representations that are both predictive and inter-

pretable. In the context of phenotyping CHF patients, our results

demonstrate that harnessing the knowledge of disease progres-

sion through temporal sequencing (the BOS approach) improves

classification and prediction over the conventional approach

(AVR). The classification and prediction performances obtained

in this study are comparable with the state-of-the-art classifica-

tion/prediction models for heart failure. For example, the highest

median AUC-ROC in Wu et al.35 was 0.77. Similarly, Liu et al.33

observed an AUC-ROC of 0.72, and Miotto et al.36 observed

0.87. Our best overall classification AUC-ROC values from the

BOS and BOS-AVR models were 0.88 and 0.92, respectively.

Shah et al.37 found that AUC-ROC values ranged from 0.70 to

0.76 for predicting a combined outcome of death and cardiovas-

cular hospitalization. Our best overall prediction AUC-ROC

values were 0.82, 0.87, and 0.83, respectively from the AVR,

BOS, and the BOS-AVR data representations.
sentation Mining and Dimensionality Reduction Steps

reen Mutual Information Variable Importance (MDG)

3,000 200

2,552

3,000 200

6,000 200



Table 3. Test Set Median and Best Classification and Prediction Performances across Approaches and Classifiers

Classifier AUC-ROC

Classification Prediction

AVR BOS D (%) BOS-AVR D (%) AVR BOS D (%) BOS-AVR D (%)

Bayesian GLMa median 0.83 0.87 4.4% 0.88 4.4% 0.73 0.79 8.4% 0.67 �8.4%

best 0.84 0.88 4.3% 0.89 4.9% 0.73 0.79 8.4% 0.67 �8.4%

L1 Logistic Reg.b median 0.83 0.85 3% 0.88 5.89% 0.67 0.79 16.7% 0.66 �2.4%

best 0.86 0.88 1.8% 0.89 3.3% 0.72 0.79 9.5% 0.67 �7%

MA Neural Net.c median 0.80 0.85 6.9% 0.85 6.9% 0.67 0.81 20.4% 0.75 12.4%

best 0.87 0.88 0.6% 0.92 5.4% 0.77 0.85 10.8% 0.79 2.4%

SVM CWd median 0.79 0.80 2.3% 0.83 5.6% 0.79 0.84 6.7% 0.78 �1.4%

best 0.83 0.83 0% 0.85 2.5% 0.82 0.87 6.2% 0.83 1.3%

Average median 0.81 0.84 4.1% 0.86 6.2% 0.72 0.81 13% 0.72 0.1%

best 0.85 0.86 1.5% 0.89 4% 0.76 0.83 8.7% 0.74 �2.9%

Median and best AUC-ROC values are obtained from ten classification iterations with bootstrap cross-validation.

Best AUC-ROC performances are highlighted by bold font.
aBayesian generalized linear model.
bRegularized logistic regression (L1).
cModel averaged neural network.
dSupport vector machines with class weights.
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The temporal relationships encoded in the BOS approach

capture some of the complexities of the clinical process that

are lost in the conventional approach. Certain sequences in the

BOS model undoubtedly correspond to the clinical narrative

that is common for CHF patients. For example, the sequence

‘‘abnormalities in breathing / captopril’’ in the BOS model is

a better indicator than either feature on its own in the AVRmodel

(65% versus 49% and 57%). This improved accuracy could be

attributable to the sequence’s ability to capture the relative

timing of the two events. Patients who have abnormalities in

breathing may have their symptoms attributable to not just heart

failure but also pneumonia, chronic obstructive pulmonary dis-

ease, or other pulmonary diseases. Similarly, many patients tak-

ing captopril take it for hypertension, chronic kidney disease, or

after amyocardial infarction. However, if a patient has abnormal-

ities of breathing and then goes on to take captopril, there is a

greater chance that the underlying cause of his or her symptoms

and the need for this particular medication is due to CHF. The

disease offers a unified explanation for both the symptoms (ab-

normalities in breathing) and the treatment (captopril). The tran-

sitive sequence is better able to represent the patient’s clinical

experience than either of the individual components on

their own.

The sequences that initially seem less obvious could give

insight into a disease. For example, as mentioned above, the

sequence ‘‘topical anti-infectives / unspecified kidney failure’’

was labeled as difficult to explain. However, an argument could

bemade that this sequence is still clinically interpretable for heart

failure patients. For example, it is likely that patients with heart

failure are chronically ill and therefore more susceptible to

dermatological infections. Their heart failure could lead to and

exacerbate kidney disease. While few physicians would cite

this sequence as obvious among this population, it could still

be a less recognized but common relationship among heart fail-

ure patients. Also, in certain cases such sequences could poten-

tially generate hypotheses for novel clinical relationships not pre-

viously appreciated.
Many of the prediction sequences are risk factors for CHF, the

corresponding symptoms andmedications for those risk factors,

or the symptoms of the disease itself. For example, the sequence

‘‘essential hypertension / type 2 diabetes mellitus’’ was identi-

fied as a significant sequence. Both features are common and

specific risk factors for developing heart failure. It makes sense

that such risk factors would be important clinical sequences

because they have a known pathological process that leads to

the development of heart failure. Moreover, like the classifying

sequences, there are also prediction sequences that are less

obvious. For example, ‘‘gout / encounter for immunization’’

was identified as an important sequence. At first glance, neither

component of this feature seems related to heart failure. Howev-

er, encounters for immunization are often performed in patients

with poorly controlled diabetes mellitus, alcohol use disorder,

or cardiovascular disease; all risk factors for heart failure, while

risk factors for gout include chronic kidney disease, diabetes

mellitus, and cardiovascular disease, all of which are also known

risk factors for heart failure. Despite neither feature itself having

an obvious direct relation to heart failure, on further analysis both

seem likely to have a positive correlation with the disease. The

BOS method has the potential to identify predictive sequences

that the physician may not otherwise appreciate.

Potential Clinical Utilities of Transitive Sequences
One can envision several potential clinical uses for the transitive

sequencing approach. The BOS prediction model can be

applied to compute real-time CHF probabilities for all patients

who do not have a diagnosis of heart failure. A healthcare pro-

vider who is caring for these patients could be given a probability

of the patient having the disease based on the available se-

quences in the chart. This could be of particular value for prac-

ticing medicine in under-resourced settings where patients

may see healthcare providers less frequently. This tool could

help identify patients in a community at risk of developing a

particular disease and recommend their evaluation by a health-

care provider. Such predictive algorithms could also assist the
Patterns 1, 100051, July 10, 2020 5



Figure 2. Comparing the AUC-ROC Metrics for Classification and Prediction Tasks by Data Representation

Bayesian GLM, Bayesian generalized linear model; L1 Logistic Reg., regularized logistic regression (L1); MA Neural Net., model averaged neural network; SVM

CW, support vector machines with class weights. Median AUC values are identified by red dots, and top values are printed.
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provider to consider other diagnoses. There is the potential to

use this tool for a variety of different diseases.

Although this is a generic potential use case for any ML algo-

rithms at the point of care, we showed that classification and

prediction using transitive sequences have higher accuracy in

computing CHF probabilities than what can be computed from

raw features.

Sequences from the BOS model can be used as a medication

recommender system for patients who have a history of heart

failure. Themodel can provide real-time probabilities for different

sequences of diagnoses/medications based on trajectories

learned from a large cohort of heart failure patients. For example,

our model identified ‘‘heart failure / metoprolol’’ as an impor-

tant sequence marker for patients with heart failure. Beta-

blockers, such as metoprolol, are a standard treatment and

have been proved to reduce mortality in CHF patients with a

reduced ejection fraction. The BOS model could use these

particular sequences as a clinical decision support tool to sug-
6 Patterns 1, 100051, July 10, 2020
gest to providers that they should consider prescribing themedi-

cation to their heart failure patients.

Another example is the sequence ‘‘atrial fibrillation and flutter

/ coumarins and indandiones.’’ If a patient with atrial fibrillation

has an elevated CHA2DS2-VASc score (a standardized score for

assessing stroke risk) above a certain threshold, he or she should

take an anti-coagulation agent. The score depends on various

pre-existing conditions, one of which is CHF. The sequencing

approach would recommend anti-coagulation after atrial fibrilla-

tion if the patient has a CHF record in his or her medical history.

Such a clinical decision support tool could be especially useful

for generating recommendations for patients with complex his-

tories, multiple providers, and health records that span

many years.

Finally, the use of classification sequences in cohort identifica-

tion can have utility in large patient cohorts. They canmore accu-

rately identify appropriate patients for clinical trials, quality

assessment, and biomedical research. For example, if a



Figure 3. A Snapshot of the Developed Graphical Dashboard for Further Exploration of the Sequences
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researcher wanted to rapidly select all patients with heart failure

in a given population, this could be done with greater accuracy

using transitive sequences and the BOS model.

Relationship to Recurrent Neural Networks
To some extent, this study can be a simplified reverse engineer-

ing of recurrent neural networks (RNNs).38 Instead of searching

for n-deep sequences, we use the shortest sequences and

perform dimensionality reduction. RNNs and RNN-based

models such as long short-term memory (LSTM)39 and gated

recurrent unit (GRU)40 have been recently applied to clinical

questions to account for time.41–44 However, the challenge of

applying RNN-based algorithms to EHR data is twofold. On the

one hand, there is a tradeoff between accuracy and interpret-

ability that needs to be carefully considered.More complex algo-

rithms often result in highly accurate models but are difficult to
understand.45 Although ways for making sense of RNN-based

models are being explored, real application in clinical care,

whereby both accuracy and interpretability are critical, is still a

long way away. On the other hand, discrete healthcare records

in EHRs often do not precisely reflect the true health status of

a patient. Expecting a set of recurrent layers to somehow

make sense of the data points that may or may not be reliable

is naive.

Limitations and Future Work
A limitation of this work is that we did not filter disease obser-

vations by their phenotypic expression patterns. Patients’

health states evolve over diverse time scales. Acute diseases

such as pneumonia are more isolated spontaneous occur-

rences, while chronic conditions such as diabetes develop

and progress over years. Acute conditions tend to have lower
Figure 4. Phenotype Probability by Data Rep-

resentation

The donut charts illustrate the probability of

phenotype for patients who have at least one record

of the feature. AVR data representations are com-

mon medication or diagnosis codes in EHRs. The

BOS data representations are sequenced features

mined in this research.
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Table 4. Illustrative Examples of Expected and Obscure

Transitive Sequences

Easy to Explain Difficult to Explain

Classification

d abnormalities of breathing

/ cardiomyopathy

d abnormalities of breathing

/ captopril

d magnesium gluconate /

cardiomyopathy

d heart failure / pleural

effusion

d heart failure / metoprolol

d topical anti-infectives /

unspecified kidney failure

d dorsalgia / cardiomy-

opathy

d GERD / pacemaker

d metoprolol / levofloxacin

d nail disorders/ furosemide

Prediction

d essential hypertension /

lisinopril

d chronic ischemic heart dis-

ease / angina pectoris

d essential hypertension /

type 2 diabetes mellitus

d cardiomyopathy / platelet

aggregation inhibitors

d cardiac murmur / compli-

cations of heart disease

d docusate / SSRI anti-de-

pressants

d docusate / propofol

d ondansetron / glucose

d fever of unknown origins /

vancomycin

d vancomycin / fentanyl

GERD, gastroesophageal reflux disease; SSRI, selective serotonin reup-

take inhibitor.
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entropies, indicating an inherent link between the predictabil-

ity of disease and their phenotypic expression pattern.46 Scat-

tered in EHRs are records of acute conditions, which often do

not exhibit long-range patterns. Therefore, filtering acute con-

ditions out may improve the temporally correlated predic-

tive power.

Also, visual dashboard development was not a primary objec-

tive of this study. While our preliminary findings suggest that a vi-

sual dashboard can be useful in explaining the complex relation-

ships to clinicians, a formal user study and further evaluations

are needed to develop an interactive visual interface.

Finally, our modeling primarily focused on CHF. Further

research is needed to evaluate the performance of transitive se-

quences for classifying/predicting other diseases and to further

explore the possibilities of incorporating the sequencing

approach into decision support tools at the point of care.

Conclusion
Innovative methods that enable us to properly incorporate time

and understand the complexities involved in the healthcare pro-

cess can yield interpretable findings from large-scale clinical da-

tabases. We found that data representations mined from se-

quences of EHR events are better phenotype ‘‘differentiators’’

and predictors than the ‘‘atemporal’’ EHRs that are widely

used as the primary data representations in ML.

Given the rapidly increasing prevalence of EHR systems in to-

day’s practice, exploiting the temporal information in EHRs can

advancemedical knowledge discovery andmeaningfully change

clinical care by identifying and validating novel disease markers.

The transitive sequencing approach presented here allows for

limited expert involvement in feature engineering. However, the

graphical experiment was helpful in that it resulted in refining
8 Patterns 1, 100051, July 10, 2020
the important sequences. Much like the genomics community,

the identified sequences of medical records can be cataloged

and shared on an accessible platform that would allow for the

collaborative clinical use of the sequences as risk factors for dis-

eases in many domains.

EXPERIMENTAL PROCEDURES

Resource Availability

Lead Contact

Hossein Estiri, PhD. hestiri@mgh.harvard.edu.

Materials Availability

This study did not generate any new unique reagents or materials.

Data and Code Availability

Protected Health Information restrictions apply to the availability of the clinical

data here, which were used under Institutional Review Board approval for use

only in the current study. As a result, these datasets are not publicly available.

All code used for modeling and dimensionality reduction in this study uses

open-source R packages. The transitive sequencing code is available on

https://github.com/hestiri/TSPM under Mozilla Public License 2.0.

Study Design

Modeling the temporal information in clinical data can uncover other dimen-

sions of healthcare delivery that generate signals for disease classification or

prediction.3 Thus, we hypothesize that temporal sequences of electronic med-

ical records will improve (1) computational classification of patient cohorts and

(2) phenotype prediction. To test these hypotheses, we construct a set of

baseline models applying the conventional approach of aggregating the fre-

quency of medical events as features for downstream ML algorithms. We

also mine a set of representations by transitive sequencing of the medication

and diagnosis events in electronic medical records. We call this proposed

approach the BOS approach. The study design can be characterized under

representation mining, dimensionality reduction, and ML experiments, and is

illustrated in Figure 1.

Data

To test the study hypotheses, we used EHR data from the Mass General Brig-

ham Biobank. Data from all Biobank patients with at least an International

Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM)

code for CHF (428.0) were included in this study. This cohort consisted of

6,857 patients consented into the Partners Biobank. To create a gold-standard

dataset, a board-certified nurse reviewed the clinical notes of a random sam-

ple of these patients. The review resulted in 56 patients with gold-standard

CHF labels. Specifically, for each of these patients in the gold-standard data-

set we had curated labels that determined whether the patient truly had (or did

not have) heart failure. We used data from the 56 patients for testing. For

training, we used the data from the remaining cohort of 6,851 Biobank pa-

tients. Table 1 provides summary information about the testing and training

data. The training data included approximate training labels (i.e., silver-stan-

dard labels) curated by validated algorithms,47,48 which use the distributional

properties of a small number of representative features in the gold-standard

population to estimate disease probabilities for all patients. The silver-stan-

dard labels were not verified by human experts but are crucial for scaling up

ML training on large-scale clinical data. The use of data for this study was

approved by the Mass General Brigham Institutional Review Board

(2017P000282).

We only used the medications and diagnoses records data. For the diag-

nosis records, we used the ICD-9/10-CM. For medications, we used RxNorm

codes.

For classification, we utilized the entire data available for patients in the cohort;

therefore, data from potentially before and after CHF diagnoses codes are used.

The prediction data is a subset of the classification data, in which we only ex-

tracted medication and diagnosis records from before the first time a record of

heart failurewasobserved inapatient’smedical records.Foranumberofpatients,

the medical records began with a CHF diagnosis. Hence, the cohort size in the

prediction dataset is slightly smaller. As a result of the way we defined the data-

sets, none of the patients remaining in the data for training prediction classifiers

mailto:hestiri@mgh.harvard.edu
https://github.com/hestiri/TSPM
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had a record of CHF elsewhere in their medical records. There is no specific time

frame for prediction. In the prediction dataset, the next encounter recorded in the

electronic medical records for a patient will include a CHF diagnosis.

Representation Mining

To test the study hypotheses that transitive sequences of electronic medical

records can improve computational classification of patient cohorts and

phenotype prediction, we mined two vectors of data representations. The

study design is illustrated in Figure 1. We first constructed a baseline method

that applies the conventional approach for using EHR observations as features

for phenotype classification and prediction. We henceforth call this the AVR

approach. The frequency of all medical events is counted for each patient in

the EHR data, and the patient is represented by a vector of the length equal

to the number of unique events in her or his medical records.

Given a list O1; O2; .; On of diagnosis or medication observations, for

each patient p, we have recorded the times tpi1 % tpi2 %. %tp
ikp
i

at which the

observation Oi was recorded (we allow kpi = 0, in which case observation Oi

was yet to be recorded for patient p).

AVR Representations

In the AVR approach, our features are the possible observations, and for each

patient, say patient p, we record only the numbers kp1 ; k
p
2 ; .; kpn of records of

each observation. For each i, we think of the kp1 ’s as samples of a random var-

iable Xi . Our goal is then to predict the class label Y , given X1;X2;.; Xn.

Wealsomineda set of representationsby transitive sequencing of themedica-

tion and diagnosis events in electronicmedical records. In this approach, the pa-

tient is represented by a vector of the length equal to the number of sequences in

her/his medical records. We call this proposed approach the BOS approach.

BOS Representations

In the BOS approach, the features are all possible pairs of distinct observations

ðOi ; OjÞ; isj. For a fixed patient p, and isj %n, we set rijp to be 1 if kpi R 1;

kpj R1; and tpi1%tpj1, and 0 otherwise. In words, rijp is 1 if and only if both Oi

and Oj were recorded for the patient, and the first record of observation i

was before, or at the same time as, the first record of observation j. Again,

for each fixed isj, we think of the rijps as samples of a random variable Xij .

Our goal is then to predict the class label Y given. ðXijÞisj.

The use of first record (rather than all records) is amajor difference in theway

we mined sequences when compared with SPM routines in the general data

mining community. We felt this choice better reflects the actual patient state

to handle the repeated problem list entries for two reasons. First, diagnosis re-

cords are generally carried forward in patients’ medical records (often known

as problem list entries) through all succeeding encounters, making the first

occurrence the true start of a sequential pattern. Second, relying on the

high-resolution timing data of repeated diagnosis records is an implementa-

tion detail of the clinical system rather than clinically meaningful evidence of

the patient’s medical history.

It is important to emphasize that we call the sequential pairs in the BOS

approach transitive sequences, as they embody distinctive modifications to

the conventional SPM. Imagine a sequential pattern where observation A

happened directly before B, and B happened directly before C (A/B/C).

SPM mines subsequences A/ B and B/ C. To account for the potential

biases in EHRs, the transitive sequencing algorithm mines subsequences

A0/B0, B0/C0, but also A0/C0 from the sequence A0/B0/C0, where A0,
B0, and C0 are the first records of A, B, C in the medical records. To evaluate

the performance difference between the BOS approach and the SPM, we also

mined the SPM sequences and used the most frequent sequences for

classification.

Dimensionality Reduction

We apply a form of entropy-based temporal representation mining of discrete

events from clinical data, which deviates from the traditional SPM and TA ap-

proaches that use frequency-based criteria for selecting subsequences. If all

pairs of sequences in the BOS approach exist, there will be exactly nðn�1Þ
2 pairs

ði; jÞ with isj and i; j%n. Thus, the number of sequential features is roughly

quadratic in the number of observations. As demonstrated in Results, the

sequence mining resulted in the explosion of sequences and therefore left

us with a highly dimensional vector of representations. To both the BOS and

AVR representations, we applied the MSMR formal dimensionality reduction

procedure.
To minimize sparsity, we removed any feature that has prevalence smaller

than 1%. On the remaining features, we compute the empirical mutual infor-

mation using an estimation of the entropy of the empirical probability distribu-

tion.49,50 Mutual information provides a measurement of the mutual depen-

dence between two random variables, which unlike most correlation

measures can capture non-linear relationships.50,51 We ranked the data repre-

sentations based on their mutual information with the labeled outcome (in ties,

we used prevalence to determine the ranking) and conventionally selected the

top 3,000 representations from the AVR and BOS approaches.

We further scrutinized the relevance through random forests (RF)52 using

the MDG—also known as Gini importance—for variable importance. The

Gini importance measures the node purity gain by splitting a variable.53 A

variable’s MDG is a forest-wide weighted average of the decrease in the

Gini Impurity metric resulting from splitting on the variable across all of the

individual trees that make up the forest.54 A higher MDG indicates higher var-

iable importance. At the end of this step, using the median MDGs we ranked

features and conveniently curated feature sets for each approach containing

the top 200 features. We also combined the two feature vectors prior to the

MDG computation step and computed MDGs for the combined data repre-

sentations as a hybrid approach (AVR-BOS). At the conclusion of the MSMR

procedure, we had curated three feature sets through the MSMR procedure

containing the top 200 AVR, BOS, and BOS-AVR representations. We also

added the top-200 frequent sequences to represent the conventional

frequent SPM approach.
Training Classification and Prediction Classifiers

We trained four different classifier algorithms on each vector of data represen-

tations using bootstrap cross-validation: (1) logistic regression with L1 regula-

rization; (2) Bayesian generalized linear model; (3) model averaged neural

network; and (4) support vector machines with class weights.55 For SPM we

only trained the regularized logistic regression (L1) classifier. All variables

were scaled and centered. All classifiers were trained and tested on the

6,851-patient data. All performance metrics were computed using the 56-pa-

tient test set. Furthermore, we iterated the training process ten times with

bootstrap sampling and used the median performance metrics for comparing

the approaches. Overall, for each of the approaches, we trained 40 classifiers

(4 algorithms 3 10 bootstrap sampling iterations).
Evaluation

To evaluate our two hypotheses, we compared classifier performances using

the AUC-ROC curve. We applied non-parametric and post hoc tests for

comparing and ranking the classification performances across the 120 classi-

fiers (40 classifiers 3 3 approaches). The goal was to evaluate whether the

AUC-ROC values would provide enough statistical evidence that the classi-

fiers have different performances.

Finally, we developed an interactive graphical dashboard to evaluate the

important sequential patterns discovered through the dimensionality reduction

process. The dashboard provided different visualization and table views of the

top 200 transitive sequences using the RStudio Shiny platform. The dashboard

design involved an iterative process with a small number of physicians in our

group to adjust the visualizations/tables and add new one for facilitating their

interpretation of the sequences. Using the graphical dashboard, the top 200

BOS transitive sequences were evaluated by the physicians for their clinical

significance. Specific sequences that were identified as having clinical mean-

ing were evaluated further based on their accuracy for identifying patients with

heart failure.
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