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Abstract

From climatology to biofluidics, the characterization of complex flows relies on computationally expensive kinematic and
kinetic measurements. In addition, such big data are difficult to handle in real time, thereby hampering advancements in the
area of flow control and distributed sensing. Here, we propose a novel framework for unsupervised characterization of flow
patterns through nonlinear manifold learning. Specifically, we apply the isometric feature mapping (Isomap) to
experimental video data of the wake past a circular cylinder from steady to turbulent flows. Without direct velocity
measurements, we show that manifold topology is intrinsically related to flow regime and that Isomap global coordinates
can unravel salient flow features.
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Introduction

The characterization of complex flows is a major challenge in

climatology, biology, and engineering [1,2,3,4]. The detection of

salient flow features is traditionally addressed through the analysis

of velocity fields, obtained from flow visualization, numerical, and

analytical methodologies [5,6,7,8,9,10]. Specifically, flows are

classified by estimating relevant physical parameters [11,12,13],

through pattern tracking procedures [14,15] or flow topology

analysis [16,17,18]. These approaches rely on the availability of

computationally expensive measurements to accurately describe

the flow field. Beyond flow characterization, an even more elusive

problem in fluid mechanics is the real time control of flow

structures in biology, biomedicine, aerodynamics, and environ-

mental science [19,20]. Despite recent technological advances,

such as the use of microelectromechanical systems and the

introduction of feedback control [21,22], flow manipulation is

still affected by limitations in measuring relevant flow parameters,

data storage, and computational time [23]. These drawbacks

hamper real time autonomous flow monitoring of complex

systems.

Here, we propose the implementation of a machine learning

framework for unsupervised characterization of fluid flows.

Different from established flow visualization techniques that

require a-posteriori intensive processing of high resolution images

[24,25], our approach uses raw video data to rapidly disclose and

examine relevant flow phenomena. Moving forward from pattern

tracking, machine learning demonstrates remarkable potential in

identifying features underlying complex phenomena [26,27].

Specifically, manifold learning aims at uncovering the low

dimensional structures ‘‘hidden’’ in high dimensional data. For

instance, the isometric feature mapping (Isomap) embeds large

scale data sets on lower dimensional manifolds approximated by

undirected graphs, whose topology is utilized to compute geodesics

on the true nonlinear manifolds [28]. This machine learning

algorithm focuses on the extraction of relevant features directly

from images without requiring the intermediate phase of

quantitative parameters estimation [29]. In particular, the Isomap

algorithm is effectively applied to the problem of face and human

motion recognition [30] and collective behavior in biological

systems [31,32,33] supporting the feasibility of using Isomap in

fluid dynamics.

To demonstrate our approach, we study the flow past a circular

cylinder by processing flow visualization video data with Isomap

for Reynolds numbers ranging from 50 to 1725. For such range,

the fluid experiences steady separation, the formation of regular

vortex patterns (that is, von Karman vortex streets), and the

initiation of turbulence. We anticipate Isomap to detect flow

regimes through varying dimensionality of the embedding

manifolds, similarly to the problem of collective behavior of

animal groups, where dimensionality is showed to relate with the

degree of coordination between individuals [31,32,33]. The flow

around a circular cylinder is widely studied in the literature

[34,35,36,37,38] for its numerous instances in nature [39] and

engineering [40]. In our study, this phenomenon is instrumental to

experiment with an array of different flow regimes, spanning from

steady to periodic and unsteady. We design an experimental setup

including a hollow circular cylinder of outer diameter D positioned

vertically at the cross-section of a water tunnel. A dye-injection

system is developed for improved visualization of the flow

streaklines around the cylinder through a digital camera (see the
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Methods for further details). We vary the flow regime by changing

the free stream velocity, U.

In the framework of nonlinear machine learning, we regard

experimental video frames as the Isomap ambient space and seek

to characterize the flow by studying the embedding manifolds. We

demonstrate that the topology of the embeddings can be

associated with the flow regime, whereby lack of flow separation

is manifested through one dimensional manifolds and the presence

of coherent structures through higher dimensionality. Further, we

show that manifold inspection can be used to estimate the

frequency of vortex shedding and study flow pattern variations due

to externally-induced perturbations.

Results

Flow Separation Correlates with Embedding
Dimensionality

We process experimental video data recorded with a commer-

cial camcorder with the Isomap algorithm and study the

relationship between the topological features of the embedding

manifolds and the flow regime, controlled by the Reynolds

number Re (see the Materials and Methods for the full set of Re

adopted in the experiments). The Reynolds number is defined as

Re ~ UD=n, where n is the kinematic viscosity of water (at the

measured fluid temperature of 200C). In line with our expecta-

tions, we find that data relative to steady flow separation, that is,

Re ~ 50, are embedded onto one dimensional manifolds, see

Figure 1(a). Conversely, for 50 Re 550, that is, for flow

regimes characterized by a transition from laminar to turbulent

von Karman vortex streets [34], cylindrical manifolds are

obtained, see Figure 1(b). From Re~642, when turbulent flow

coexists with periodic fluctuations in the cylinder wake [41], larger

amounts of data points are not embedded onto cylindrical surfaces

and rather fall onto irregularly shaped manifolds that are well

approximated by nearly one dimensional structures, see Figure 1(c).

Manifold Global Coordinates Unravel Flow Features of
Von Karman Vortex Streets

Figures 2(a–c) display the cylindrical manifold, residual

variance, and distance matrix obtained by setting Re~191. We

find that data points are arranged onto a thick cylindrical

structure; specifically, 90% of the data set is represented by a

three dimensional manifold (see the residual variance for

dimensionality equal to three). Further, the distance matrix

highlights the periodicity of the flow through the presence of

regular sets of points that are closer to their neighbors (see the

diagonal stripes in Figure 2(c)).

We further find that the topology of the embedding is related to

two major features underlying the experimental data set.

Specifically, in the two dimensional projection in Figure 2(d), all

data points are symmetrically distributed along an annulus,

suggesting a periodic behavior. By counterclockwise inspection

of the annulus, we observe that data are consecutively ordered

along the flow direction. Moreover, data points located at similar

angular positions tend to depict comparable shapes. Variations

along the thickness of the cylinder, corresponding to its radial

coordinate, are related to varying image contrast during the

experiment. Diametrically opposed locations on the annulus show

vortex shedding phases that differ by 1800. Thus, one of the

Isomap global coordinates, corresponding to the angular coordi-

nate along the cylinder mantle, identifies the periodicity of the

observed flow. Projecting the three dimensional embedding on a

plane parallel to its axis, we find that images are horizontally

ordered in the direction of flow, Figure 2(e). Further, variations of

the flow pattern in the data set are arranged along the vertical

direction, corresponding to the axial coordinate of the cylinder,

with images displaying differently shaped vortices arranged far

apart on the manifold.

The Topology of the Embedding Manifolds can be Used
to Estimate Salient Flow Parameters

We quantify the vortex shedding frequency by inspection of the

annular projections recovered for Re from 148 to 388. Specifically,

we manually compute from the video feed the number of vortices,

nmachlearn
v , formed between images laying at comparable angular

positions on the annulus, see Figure 3(a) for the randomly selected

sector between 2100 and 2400. Further, we compare our results to

estimations obtained by counting in the video feed the number of

vortices shed in known time intervals. For the sector of the cylinder

in Figure 3(a), computed values, nmachlearn
v , are consistent with

findings from vortex counting, nvideo
v , see Figure 3(b) (root mean

squared error, RMSE, equal to 0.45 with respect to the bisectrix).

Data Cluster Differently on Manifolds of Varying
Dimensions as a Function of the Flow Parameters

Our analysis of the dimensionality of Isomap embeddings

demonstrates a close correspondence between the algorithm

Figure 1. Enhanced contrast pictures and three dimensional embedding manifolds for three different experimental data sets.
Images are reported for (A) Re  = 50, (B) Re  = 159, and (C) Re  = 1725.=
doi:10.1371/journal.pone.0091131.g001
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outputs and the flow physics. We further elucidate such relations

by studying the residual variances for the first three dimension-

alities of the data sets, which capture the vast majority of the

experiments (more than 75% of the data). In Figure 4(a), we

present residual variances for all the experimental data sets fitted

by functions of the form aRe exp ({bRe), with a and b being

unknown parameters (RMSEf1
~0:12, RMSEf2

~0:13, and

RMSEf3
~0:10), where shaded regions denote the 95% confi-

dence intervals. As expected, we find that at low and high Re, the

flow can be described through nearly one dimensional embed-

dings, which capture the translational motion in the video feed.

On the other hand, as coherent structures are shed by the cylinder,

data points are fit on higher dimensionality manifolds, which also

account for the shape of the vortices. We observe that increasing

the degree of turbulence of the flow corresponds to ‘‘hiding’’

periodic fluctuations in the flow. Indeed, Isomap captures the

prevalently translational nature of the data.

Discussion

In this study, we present an unsupervised approach for

characterizing flow patterns based on isometric feature mapping.

The methodology does not rely on computationally expensive

Figure 2. Manifold global coordinates for Re  = . (A) Three dimensional representation of the embedding manifold. (B) Residual variance of the

dimensional projection on the yz-plane of (A); images 1 to 6 correspond to selected data points on the annulus. (E) Two dimensional projection on the

doi:10.1371/journal.pone.0091131.g002
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data set against dimensionality; values are reported up to dimensionality equal to 10. (C) Distance matrix for the data set as computed by Isomap. (D) Two

xy-plane of (A); images 7 to 11 correspond to selected data points on the embedding (Contrast and brightness in video frames are enhanced
for          readability).



pattern tracking procedures or on the analysis of flow velocity

fields [14,15,18]. Rather, it requires minimal preprocessing of

experimental video frames (see the Materials and Methods for

details).

Our results show that the dimensionality of the embedding

manifold and its topology are landmarks of the flow regime,

whereby smooth one dimensional manifolds are constructed from

steady flows, cylindrical embeddings from von Karman vortex

streets, and irregular structures from turbulent flows. With respect

to von Karman vortex streets, our results are in agreement with

the analysis presented in [17], where proper orthogonal decom-

position is conducted on particle image velocimetry (PIV) and

analytical velocity fields for flow characterization. In fact, we

obtain striped distance matrices and two dimensional annular

embedding projections for vortex shedding similar to [17]. This is

achieved by directly processing video images through Isomap

rather than performing computationally expensive PIV. Notably,

we recover such annular projection also when the Isomap input

space is constituted of unordered sets of experimental video

frames, suggesting that our procedure can be successfully used to

independently sort the ambient space in time.

In line with our expectations, we also find that Isomap global

coordinates of the embedding manifolds relate with relevant

features of the flow. For example, the axial coordinate of the

cylinder in Figure 2(e) captures variations in vortex shape and

provides a measure of the wake regularity. These variations in the

geometry of the shed vortices are well studied in fluid dynamics

[42] and can be related to flow-induced vibrations of the cylinder,

boundary-layer effects, and inhomogeneities in the free stream

velocity field. Although speculative, our findings also suggest that

the method can be used to estimate pertinent flow parameters by

exploiting the nonlinear dependence of the residual variance on

the flow parameters. Specifically, the analysis of the residual

variances associated with the first few embedding dimensionalities

can be leveraged to extract usable information for the identifica-

tion of flow parameters.

Raw video feed is also considered in [43] to study flow

kinematics. Therein, images are obtained from a PIV study and

the optical flow technique is utilized to reconstruct the velocity

field. Here, we rely on standard video feed for rapid unsupervised

characterization of flow phenomena through global features.

While the accuracy of optical flow techniques is highly dependent

on image quality and tracer seeding uniformity in the field of view,

Isomap emphasizes underlying flow characteristics through

relative topological distance among video data points, thus

reducing the effect of fixed pattern noise in the images.

In contrast to canonical vortex detection methodologies

[6,8,12,14], no preprocessing in terms of scaling, compression,

or filtering is performed on images before nonlinear embedding

through Isomap. Nonetheless, the performance of the methodol-

ogy relies on the visibility of the flow structures and, therefore, low

contrast, poor resolution, and highly nonuniform background

noise may require image enhancement before feature extraction.

While not explored in this study, such image enhancement can be

achieved through computationally inexpensive and automated

procedures that are commonly executed in flow visualization

applications [25]. Ultimately, we emphasize that increasing the

size of the dataset is expected to improve on the estimations of

Isomap geodesic distances (see the Methods for details), and,

therefore, aid the identification of embedding manifolds.

Our results indicate that unsupervised nonlinear machine

learning through the Isomap algorithm can be successfully used

to rapidly unravel salient flow features. Real time flow monitoring

is a major challenge when image-based methodologies are needed

rather than invasive sensors and probes. For instance, we expect

this methodology to find application in biofluidics, where flow

characterization can aid in monitoring hemodynamics, oxygen

transport, intravascular blood pressure, and blood vessel obstruc-

tions [44,45,46,47,48]. Further, unsupervised flow characteriza-

tion is anticipated to provide insight in environmental sensing,

where noninvasive methodologies are increasingly needed for

monitoring the evolution of large scale natural systems [39,49,50].

In addition, the approach may find application in autonomous

robotics for rapid environmental mapping of unknown areas [51].

Figure 3. Vortex shedding frequency estimation for Re~191. (A)
Two dimensional projection on the yz-plane of the embedding
manifold (blue dots correspond to experimental data points and red
circled markers are video frames laying at a comparable angular
position on the annulus. Images 1 to 3 are selected video frames used
for vortex shedding frequency estimation. All of them depict similar
vortex patterns. Shedding frequency is computed by dividing the
number of coherent structures shed from image 1 to 2 (and 2 to 3) by
the respective time interval. Contrast and brightness in video frames are
enhanced for readability). (B) Comparison of vortex shedding frequency
obtained from the procedure illustrated in (A), nmachlearn

v , to values

computed from vortex counting, nvideo
v (the solid line is the bisectrix).

doi:10.1371/journal.pone.0091131.g003

Figure 4. Residual variance against different flow regimes.
Markers correspond to residual variances for the first three embedding
dimensionalities (f1 , f2 , and f3 for dimensionality 1, 2, and 3,
respectively). Blue, black, and red solid lines are best-fit curves
(aRe exp ({bRe)) for dimensionality equal to one, two, and three,
respectively. Shaded areas correspond to 95% confidence intervals).
doi:10.1371/journal.pone.0091131.g004
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Materials and Methods

Experimental Setup
Experiments are conducted in an open-test section water tunnel

(Engineering Laboratory Design 502S). The tunnel cross-section is

15 cm|15 cm. Along the water flume, a working cross-section is

selected at approximately 50 cm in between two honeycomb grids

for improved uniformity of the velocity profile. A hollow copper

cylinder of outer diameter equal to 5 mm is positioned vertically in

the center of the working cross-section. Two 0:4 mm injection

ports located at the mid-span of the cylinder at an angle of 900

from the front stagnation point allow for homogeneous and

continuous rhodamine WT injection in the flow through a syringe

system. Dye streaklines are captured by a Canon Vixia HG20

digital video camera, located 22 cm underneath the water tunnel

and 10:4 cm downstream the working cross-section, with its axis

perpendicular to the plane of vortex shedding. The camcorder

acquires a field of view equal to 31:5 cm|18 cm; its resolution is

set to Full HD (1920|1080 pixels); and its acquisition frequency

is kept at 30 Hz. Experiments are performed for Reynolds

numbers equal to 50; 148; 159; 191; 245; 330; 388; 501; 543;

642; 813; 1037; 1173; 1286; 1455; 1591; 1725. Different flow

regimes are generated by varying the free stream velocity in the

tunnel. This is achieved by adjusting the flume motor frequency

from 1 to 14 Hz, corresponding to an average flow velocity varying

from approximately 0:010 to 0:346 m=s at the mid-span of the

working cross-section as per an independent PIV analysis.

Isomap Algorithm
The Isomap algorithm is a nonlinear manifold learning

methodology for dimensionality reduction problems [27]. Differ-

ently from the classical multidimensional scaling method (MDS),

Isomap uses geodesic rather than Euclidean manifold distances

between data points. The algorithm objectives are: i) embedding a

data set of n d-dimensional data points on a manifold, ii) defining

the manifold dimensionality, and iii) finding such dimension to be

much less than d . In particular, for the data set Z~fzign
i~15Rd ,

Isomap constructs a corresponding data set Y~fyign
i~15R

�dd and

assesses if �dd%d . The �dd-dimensional embedding is represented

through the parametrization m : Y?Z, where each j-th coordi-

nate of the i-th data point is parameterized as zij~mj(yi1,:::,yi�dd ),

for j~1,:::,d , and for each data point i~1,:::,n. The second

subscript is used to identify vector components. The algorithm

follows these steps [28,31,32,33]:

1. Construction of the neighbor graph G~fV,Eg to approximate
the manifold. The elements of the set of vertices V~fv ig n

i~1

match the data points Z~fzign
i~1 and the elements of the set

of edges E are unordered pairs of vertices in G. Edges connect

k-nearest neighbors vertices. Specifically, edges fvi,vjg corre-

spond to the k-closest data points zj to zi, for each i~1,:::,n,

with respect to the Euclidean distance in the ambient space (the

pixels space), denoted by dZ(zi,zj). The matrix Mn [ Rn|n,

encoding the weighted graph of intrinsic manifold distances

corresponding to G, is computed. For each fvi,vjg [ E, the

distance equals the ij-th entry of Mn, that is, Mn(i,j)~
dZ(zi,zj). For all fvi,vjg 6[ E, Mn(i,j) is set equal to ? to

prevent jumps between branches of the underlying embedding.

2. Computation of the graph geodesic matrix DM to approximate
the geodesic of the manifold. Floyd’s algorithm [52] is utilized

to compute shortest paths. From Mn, an approximate geodesic

distance matrix DM [ Rn|n is computed, whose ij-th entry is

the shortest path length from vi to vj , being an approximation

of manifold geodesic distances.

3. Approximation of the manifold distance by k-nearest neighbor
distance. The matrix DM computed in the previous step is used

to approximate the geodesic distances of the manifold between

zi and zj by the graph distance between vi and vj . If the data

density is too low, a poor representation of the manifold could

be obtained with some neighbors lying on separate manifold

branches.

4. Computation of the projective variables Y applying the
classical MDS on the matrix DM . Classical MDS [53] is

performed on a matrix of dissimilarities between pairs of input

and candidate embeddings, which minimize the distance in the

embedded manifold. For a survey on MDS, see [31].

The outputs of Isomap are the transformed data points on an

embedding manifold for the input data set Z and the vector f of

residual variances, which represents the fraction of data points not

embedded on the manifold for different dimensions.

Video Data
Experimental videos are decompressed into ‘‘.jpg’’ image files

and sequences of 500 consecutive frames are selected for manifold

learning. Such sequences are retained by performing a preliminary

test where the homogeneity in image intensity is assayed and sets

of images with marked differences in coloration discarded. This

test is conducted to prevent the algorithm from relating data

dimensionality to nonhomogeneities in dye injection. Before

processing, images are cropped around the plane of vortex

shedding to display a field of view of 11:5 cm|4:3 cm corre-

sponding to 700|260 pixels. Only the red channel (where pixel

intensity varies from 0 to 255) is extracted for Isomap processing.

For each flow regime, Isomap is applied to data sets comprising

n~500 arrays of d~182000 dimensional data points, where each

array corresponds to a reshaped raw image. The nearest neighbors

parameter is set to k~20 based on similarity among consecutive

images. To test the stability of the methodology, the Isomap

algorithm is rerun on subsets of subsampled images and varying

the value of k. We find that embedding manifold topologies are

consistently recovered for values of k ranging from 15 to 25 for the

same data set.

Residual Variances Fitting
The vectors of the residual variances for the first three

embedding dimensionalities are plotted against the respective Re
for each experimental video. Such data points are fitted through

the nonlinear least squares method with functions of the type

aRe exp ({bRe), where a and b are fitting parameters. The 95%
confidence intervals are estimated based on the fitting model

coefficient covariance matrix.

Vortex Shedding Frequency
Vortex shedding frequency is evaluated for experiments

conducted at Re~148; 159; 191; 245; 330; and 388. For such

data sets, the frequency obtained from images located at

comparable angular positions on the annular embedding projec-

tion is compared to vortex shedding frequencies estimated through

the analysis of randomly selected sets of 10 to 40 consecutive

images of the same videos. Similar to [54], frequencies are found

by counting the number of vortices convected past a selected

reference point in consecutive pictures in known time intervals.

The duration of the time intervals is computed from the camera

acquisition frequency.
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