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Abstract

Knowledge-based potentials are energy functions derived from the analysis of databases of protein structures and
sequences. They can be divided into two classes. Potentials from the first class are based on a direct conversion of the
distributions of some geometric properties observed in native protein structures into energy values, while potentials from
the second class are trained to mimic quantitatively the geometric differences between incorrectly folded models and
native structures. In this paper, we focus on the relationship between energy and geometry when training the second class
of knowledge-based potentials. We assume that the difference in energy between a decoy structure and the corresponding
native structure is linearly related to the distance between the two structures. We trained two distance-based knowledge-
based potentials accordingly, one based on all inter-residue distances (PPD), while the other had the set of all distances
filtered to reflect consistency in an ensemble of decoys (PPE). We tested four types of metric to characterize the distance
between the decoy and the native structure, two based on extrinsic geometry (RMSD and GTD-TS*), and two based on
intrinsic geometry (Q* and MT). The corresponding eight potentials were tested on a large collection of decoy sets. We
found that it is usually better to train a potential using an intrinsic distance measure. We also found that PPE outperforms
PPD, emphasizing the benefits of capturing consistent information in an ensemble. The relevance of these results for the
design of knowledge-based potentials is discussed.
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Introduction

Proteins are the essential macromolecules inside cells that

perform nearly all cellular functions. Just like macroscopic tools,

their shapes is a key feature for defining their functions. Structural

biologists have embarked upon the challenge of finding the

structures of all proteins, in hopes of unraveling this relationship

between geometry and biological activity and learn in the process

how cells function. Determining experimentally the structure of a

protein at the atomic level however is not yet an easy task: this can

be indirectly deduced from the fact that we currently know

millions of protein sequences but less than hundred thousand

protein structures. Predicting the structure of a protein from first

principles is not much easier: direct applications of the ideas that

have been used for modeling small molecules have not yet been

successful on these much larger molecules. Recent reports on the

advancements of ab initio techniques clearly show that the protein

structure prediction community is making progress, but that the

quality of the models they generate do not meet yet the stringent

accuracy requirements to become useful to the biologists [1].

Interestingly, the series of Critical Assessment of protein Structure

Prediction (CASP) meetings have highlighted that while the

methods for generating models of protein structures have

improved significantly [2], identifying the native-like conforma-

tions among the large collections of model structures (also called

decoys) remains a significant challenge [3,4]. In this paper we

focus on this problem.

Anfinsen’s thermodynamics hypothesis states that the native

structure of a protein is determined only by its amino acid

sequence [5]. Structural and computational biologists translate this

postulate into the statement, that under physiological conditions,

the native state of a protein is a unique, stable minimum of the free

energy. The key to solving the protein structure prediction

problem amounts therefore to finding an accurate representation

of this free energy function and several methods have been

proposed to construct reasonable approximations of it. The two

most common approaches rely on semiempirical and statistical

potentials, respectively. Semiempirical methods are derived from

knowledge of the basic physical principles whereas statistical

potentials are based on the nonrandom statistics of known protein

structures [6]. Statistical energy functions are either residue based

or atom based and the most recent statistical potentials include

pairwise interactions, orientations of side-chains [7], secondary

structural preferences, solvent-exposure, and other geometric

properties of proteins [8]. We note that there have been attempts

to combine physics-based and statistics-based potentials to

improve protein structure refinement [9–13].
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Current protein structure prediction methods require potentials

that ideally should assign ‘‘scores’’ to a protein structure model

such that the higher the score, the less native-like the model is,

where native-like is measured in terms of a distance d from the

model to the native structure. If this condition is satisfied then the

potential is expected to detect near native conformations even

when the native conformation is not present; in addition, such an

ideal potential could then be used for model refinement. In

mathematical terms this can be expressed as the score function f
satisfying

f seqi,rizdrð Þ~f seqi,rið Þzd ri,rizdrð Þ, ð1Þ

for any sequence seqi and all deformations dr of its native

structure ri.

Several methods have been developed to optimize potentials

towards this goal [14–17]. The choice of the distance measure d is

critical to the success of these methods. The standard distance

measure when comparing protein structural models is RMSD, i.e.

the root mean square distance between the two models after

optimal translation and rotation. RMSD however has been

replaced in recent CASP experiments by the global distance test

(GDT-TS [18]) due to its undesirable sensitivity towards local

changes in a protein structure; GDT-TS has become one of the

most commonly used distance measures in protein structure

prediction. A less commonly used distance measure is the fraction

of known native contacts, Q. Q quantifies the changes in the

number of ‘‘contacts’’ found in the native structure compared to

the model structure that is evaluated, where a contact corresponds

to two residues being within a given threshold distance from each

other. All the distance measures mentioned above identify

geometric differences between two structural models but do not

attempt to assess if these differences could be assigned to

fluctuations due to the dynamics of the protein. Such differences

would be less of a concern if they were related to geometric

differences that can be explained by dynamics. As an attempt to

identify the role of dynamics, Perez et al. recently introduced

FlexE, a method based on a simple elastic network model that uses

the deformation energy as a measure of the similarity between two

structures [19]. As such, FlexE is expected to distinguish

biologically relevant conformational changes from random

changes.

In this work, we investigate the importance of the distance

function d when optimizing an energy function f towards satisfying

equation 1. We train two new Ca-based pairwise potentials, PPD

and PPE, to mimic the distance between the model structure

considered and its corresponding native structure, using four

different definitions of the distance measure, namely RMSD,

GDT-TS, Q, and MT, where MT is an anharmonic version of

FlexE. These energy functions are trained and tested on sets

extracted from the high resolution decoy dataset Titan-HRD [20],

as well as on well known decoy datasets from DecoysRUs [21] and

Rosetta [22]. We have also analyzed the performance of our

potentials on the server generated Stage_1 and Stage_2 decoy sets

from CASP 10 [48].

The paper is organized as follows. The next section introduces

the different distance measures and describes our procedures for

training and testing the potentials PPD and PPE. The following

section shows the results on different decoy sets as well as a

comparison between PPD, PPE, two statistical knowledge-based

potentials and a semi-empirical physical potential. We conclude

with a discussion of the importance of the choice of the distance

measure and describe potential future work.

Materials and Methods

Geometrical distances between two structural models of
the same protein

Let us consider two structural models A and B of the same

protein P with N amino acids. We represent the two models as

discrete sets of N points, A~(a1,a2, . . . ,aN ) and

B~(b1,b2, . . . ,bN ) where the points ai and bi correspond to the

positions of the Ca atoms i in the two structures. We assume that

the correspondence table between A and B is known and set such

that ai corresponds to bi for all i[½1,N�. We measure the distance

between the two models either based on the Euclidean distance

between the two sets of points (RMSD and GDT-TS), on

differences between contact maps within each set (Q), or on an

elastic network (MT).

RMSD, i.e. root mean square deviation, is the Euclidean

distance between the corresponding points ai and bi after one of

the two sets of points (usually set B) has been optimally

transformed by a rigid body transformation G:

RMSD~ min
G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i~1

Eai{G(bi)E2

N

vuuut
: ð2Þ

The rigid body transformation G is a transformation that does

not produce changes in the size, shape, or topology of the protein.

Such transformations are compositions of rotations and transla-

tions. Many closed-form solutions to the problem of finding the

optimal G have been derived [23–25]. We note that RMSD as

defined above is a metric [26].

RMSD is a distance measure based on the L2 norm; as such, it is

highly sensitive to outliers, for example due to the presence of large

albeit local differences between the two structures. The global

distance test (GDT) was developed to decrease this sensitivity [18].

GDT focuses on the regions of the structures that can be correctly

aligned by counting the number of residues that can be

superimposed within a given cutoff distance. GDT-TS (where

TS stands for Total Score), combines this information for multiple

cutoffs:

GDT{TS~
n1zn2zn4zn8

4n
, ð3Þ

where n1, n2, n4, and n8 are the numbers of aligned residues

within 1, 2, 4, and 8 Ångströms, respectively, and n is the total

aligned length. Note that GDT-TS is a quantity between 0 and 1

that represents similarity, with low values corresponding to bad

correspondences, and high values (close to or equal to 1) indicating

that the two models are highly similar. We have converted this

similarity measure into a distance by considering GDT-TS* = 1-

GDT-TS.

RMSD and GDT-TS* are computed after the two model

structures have been optimally superposed. An alternative

approach is to consider the intrinsic geometry of the two

structures, as captured for example by a distance matrix that

contains all Ca{Ca distances internal to one structure. Q and

MT are two examples of distance measures that use this alternate

approach.

The fraction of native contacts, Q, is a distance measure that

quantifies the changes of a contact map between two models for

the same structure. A contact map is usually defined as

Distances for Knowledge-Based Potentials
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Si,j~
1 if residues i and j are in contact

0 otherwise,

�

where two residues are in contact if they are within a given

distance threshold. In this paper, we set this threshold to 9 Å. Q is

then defined by

Q~
sc

sczlc
,

where sc is the number of shared contacts and lc is the number of

lost contacts. Just like GDT-TS, Q is a measure of similarity. We

convert it into a distance measure by defining Q* = 1-Q.

Q* quantifies changes in the contact map of a structure with no

consideration of what could have been the reasons for these

changes. FlexE is a new measure of similarity between protein

structures that was introduced as an attempt to distinguish those

changes that are biologically relevant [19]. It is based on the

concept of elastic network that assigns virtual isotropic springs

between pairs of residues. Elastic network models are used in

normal mode analysis [27,28] for example to reconstruct proteins

[29], to generate decoy sets [30], or to investigate thermal

fluctuations about the native or equilibrium structure [31,32]. In

the formalism introduced by Perez et al [19], the distance measure

FlexE between two structures N and D is assimilated to the

energetic cost of deforming one of the structures into the other:

FlexE(N,D)~
1

Nres

XNres

i,j~1

SN
i,jkij rN

ij {rD
ij

� �2

, ð4Þ

where Nres is the number of residues in N and D, SN
i,j is a contact

map for structure N, rN
ij and rD

ij are the distances between the Ca

atoms of residues i and j in structures N and D, respectively, and

kij is a force constant associated to the link between i and j. In our

implementation of FlexE, we set all force constants to 1. We

modify the quadratic term in equation 4 with a term congruent to

the potential introduced by Toda [33] to study chains of particles

interacting with non-linear forces.

The corresponding variant of FlexE, which we name MT, is

defined as:

MT(N,D)~
1

Nres

XNres

i,j~1

SN
i,j

b2
e
{(rD

ij
{rN

ij
)b
z rD

ij {rN
ij

� �
b{1

� �
, ð5Þ

where b is a parameter which we set to 0.5. We note that MT is

equal to FlexE for small perturbations of the distances between

residues; for large perturbations however, it penalizes compression

more than extension. Finally the use of the fixed native contact

map for all native-decoy comparisons ensures that both Flex-

E(N,D) and MT(N,D) are well-defined.

Two new parametric potentials
A smooth, pairwise potential, PPD. We design a smooth

knowledge based residue pair potential as done in [34]. For each

of the 210 pairs of amino acids types we assume a potential that is

determined by the corresponding Ca-Ca distance. We model the

interaction as a uniform cubic b-spline with compact support

within 1 Å to 12 Å and 8 degrees of freedom, see e.g. [35]. With

this model an interaction tends smoothly to zero energy at

distances greater than 12 Å and is modeled freely within 4 Å–9 Å.

The pair potential has 86210 = 1680 parameters in total. The

corresponding potential, PPD, is defined as

PPD~
X
ivj

X
p

Caa(i)aa(j)
p Bp(ri,j), ð6Þ

where aa(i)[ 1, . . . ,20f g is the amino acid type of the i-th residue

and Bp(ri,j) is the p-th b-spline basis function evaluated on the

distance between the i-th and j-th residues. Caa(i)aa(j)
p are the model

parameters determined by the optimization procedure described

below.

A consensus potential, PPE. We introduce a novel smooth

ensemble based pair potential (PPE) that forms an artificial funnel

relative to a pre-calculated contact map:

PPE~
X
ivj

Si,j

X
p

Caa(i)aa(j)
p Bp(ri,j), ð7Þ

where Si,j is an consensus contact map. The method to calculate

the consensus contact map is described below. It is based on a

similar consensus method that constructs the reference contact

map from an ensemble of decoys [36].

A consensus contact map. We introduce an iterative

method to compute a consensus contact map of an ensemble of

decoys. The first step is to construct a contact map from the most

common contacts in the ensemble. Let Mi,j be the fraction of

contacts in the ensemble for the i,j -th residue pair. The contact

map is then calculated as

Si,j~
1 if Mi,jwm

0 otherwise

�
ð8Þ

where m is a cut-off fixed at 0.25. At each step, we select the 25%

closest decoys to this contact map, where ‘‘closest’’ refers to the

Hamming-distance to the contact map. This leads to a reduced

ensemble from which a new contact map is computed, and the

procedure is iterated. The algorithm usually converges in a few

steps.

Optimizing the potentials
We design an energy landscape using a sculpting procedure. We

assume that we possess a set of natives structures fNig and that a

set fDi,jg of decoy structures is known for each of these native

structures. Let DEi,j be the energy difference between the i-th

native structure, Ni, and its j-th decoy, Di,j , and let d(Ni,Di,j) be

the corresponding distance between Ni and Di,j . Our method for

optimizing a statistical potential [34] attempts to establish a

funnel-shaped energy function by calculating the parameters that

minimizes the sum of squared errors between DEi,j and

aNi
d(Ni,Di,j) where aNi

is a constant of proportionality. The

problem can be stated as a quadratic programming (QP) problem

with affine constraints,

Distances for Knowledge-Based Potentials
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minimize
X ,a1...aM

P
i,j

EDEi,j(X){aNi
d(Ni,Di,j)E2zbEXE2

subject to 0:25ƒaNi
ƒ4, for i~1 . . . MP

i

aNi
~M,

ð9Þ

where b is a fixed parameter used for regularization. The variables

in this QP problem are X, i.e. the vector of coefficients Ci,j

introduced above, and the constants of proportionality

aN1
. . . aNM

, where M is the number of proteins in the training

set. The last term bEXE2 is a regularization term that adds a

penalty onto the modulus of X. The preprocessing is trivially

parallelizable since each of the terms, EDEi,j(X){aid(Ni,Di,j)E2,

can be calculated individually. As a consequence, the QP requires

little memory and is fast to compute. We use the optimization

package cplex to solve it.

Training and test sets
It is a nontrivial task to construct a ‘‘good’’ set of decoy

structures. Any such decoy set relies on a sampling of the

conformational space accessible to the protein structure of interest.

The specific techniques used to generate such sampling are prone

to biases [37], leading to poor sampling of the corresponding free

energy surfaces. These approximate energy surfaces may not

adopt a funnel like geometry in the neighborhood of the native

structure and may contain many artificial potential energy

barriers. To avoid the risk of learning from a specific bias

introduced by one sampling technique, we have considered a

variety of test sets to train and measure the performances of our

energy functions. Of particular interest to us are near-native test

sets since we design energy functions to mimic the neighborhoods

of native structures.

We have chosen part of the Titan High Resolution Decoy set

[20] as our training set. The list of proteins included in this set was

originally proposed by Zhou and Skolnik [17]; it was selected on

the basis that it is composed of a representative set of

nonhomologous single domain proteins with maximum pairwise

sequence similarity reported to be 35%. The models included in

the decoy sets were generated using the torsion angle dynamics

program DYANA [38] subject to distance constraints that are set

to preserve the hydrophobic core of a protein. It is assumed that

the hydrophobic core includes all residues within a b strand as well

as all hydrophobic residues within an a-helix. The set includes

1400 proteins in total (compared to 1489 proteins in the original

set of Zhou and Skolnik [17]). We eliminated all short proteins

with a large radius of gyration as these proteins are overfitted by

the optimization and are usually separate stretched secondary

structures. We divided the remaining proteins into a training set of

1155 proteins with an average of 994 decoys per native structure

(Titan-HRD*) and a test set of 142 proteins with an average of 854

decoys per native structure (Titan-HRD). The average GDT-TS

distances between native and decoys over the training and test sets

are 0.75 and 0.76 with a mean absolute deviation of 0.1,

respectively. Note that we will use the mean absolute deviation (the

l1-norm) instead of the standard deviation (the l2-norm) as it puts

less weight on outliers.

Apart from the Titan-HRD set we use 10 freely available decoy

sets that were generated using different procedures. These include

6 sets taken from DecoysRUs [21] (4 state reduced [39], hg

structal [21], fisa [40], fisa casp3 [40], lmds [41] and lattice ssfit

[42,43]). We also included two older versions of the Rosetta decoy

sets (Rosetta-All [44], Rosetta-Tsai [22]), the newest version

Rosetta-Baker available at http://depts.washington.edu/bakerpg/

decoys/ and the I-Tasser Set II [45].

The different CASP meetings have highlighted successes and

failures in generating model structures that resemble the native

structures of proteins. A repository of all models that have been

proposed as answers to the prediction challenges that were part of

these meetings is available on the CASP web page (http://

predictioncenter.org). This repository provides a wealth of

information on protein structure modeling, as well as useful test

cases to assess the quality of new potential energy functions. We

have therefore considered five CASP sets each containing models

predicted by a variety of methods from the different CASP

meetings (302 ensembles in total). We also generated CASP-HRD,

a high resolution decoy subset of CASP 5–9, which includes

models that have a TM score [46] larger than 0.5 and a RMSD

less than 4 Å to the native structures. This cutoff was chosen based

on the observation made by Xu and Zhang, which states that two

decoys belong to the same fold when their TM-score to a native

structure is higher than 0.5 [47]. CASP-HRD is constructed to

have nearly the same average distance measure value as Titan-

HRD but we find smaller variations of the distance measures for

CASP-HRD. In that sense, it does include variations with different

structural characteristics compared to Titan-HRD as it is

generated by many different methods, while Titan-HRD is more

homogeneous.

The total number of ensembles excluding Titan-HRD, Titan-

HRD*, and CASP-HRD is 546 with an average GDT-TS

between its decoys and their corresponding native structures of

0.47 with a average mean absolute deviation of 0.16. We refer to

this set as ‘‘Test Set All’’ (TSA).

Finally, we include decoys from the latest CASP experiment,

CASP10. A critical component of the CASP experiment is the

assessment of the predictions that are submitted as putative models

for the target proteins considered. This assessment is performed by

the CASP assessors but also by the CASP community, with

considerable enthusiasm, as observed in CASP10 [48]. The

procedure for assessing the predictions in CASP10 differed from

that of previous CASPs. The main difference was the introduction

of two stages, labeled Stage_1 and Stage_2. For the former, twenty

of the supposedly best predictions for each CASP target were

released for assessment. Subsequently, hundred and fifty decoys

were released for each target, defining Stage_2. Stage_1 ensembles

are designed to survey single model assessment methods, while

stage_2 allows for the survey of methods that rely on ensembles for

the assessment of models. We have considered 93 targets from

CASP10 for which both Stage_1 and Stage_2 test sets are

available from the CASP web site (http://www.predictioncenter.

org/casp10/). Compared to the other decoy sets described above,

these sets contain longer protein chains. The models they include

are usually as distant from their native counterparts as observed

for the datasets from the previous CASP meetings. These sets

however are more compact, i.e. with less diversity in distances,

especially for the Stage_2 sets that resemble the CASP-HRD sets

in that respect.

In table 1, we report the mean characteristics of these decoy sets

(size, diversity, …) as well as information about their availability.

Preprocessing the decoy sets. To guarantee that the decoys

included in a set are consistent in length with their corresponding

native structure, we performed the following two-step preprocess-

ing. First, we removed all residues in the decoys with missing

backbone atoms (Ca, N, C, and O). Second, we extracted the

sequences from the decoy structure files and aligned these

sequences with the native sequence of the protein of interest
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(where the native sequence is derived from the ATOM record in

the corresponding PDB file). If these alignments include trailing

unmatched residues either in the decoys or in the native structure,

these residues are removed until all sequences are identical. We

found that this procedure was necessary for some of the decoy sets

described above.

Assessing the quality of decoy selection: R-score
Given a distance measure and an energy function, an ensemble

of decoy protein conformations contains a ‘‘best’’ distance model,

i.e. the conformation that is closest geometrically to the native

structure, as well as a ‘‘best’’ energy model, i.e. the model whose

energy is the lowest. Ideally, these two ‘‘best’’ models should be the

same; in practice however, they are different due to shortcomings

of the potential energy function. To quantify this difference we

introduce the R-score as follows. Let D be the ensemble of decoys

and let Xi be one of its elements. The corresponding native

structure is N. We define the mapping Sd from D to R as

Sd (Xi)~d(Xi,N), i.e. the distance between the decoy X and N,

where d can be any of the four distance measures defined above.

We name XE the decoy with the lowest energy, i.e.

E(XE)ƒE(X ) VX[D. In parallel, we name Xd the decoy closest

to N with respect of the distance d , i.e. Sd (Xd )ƒSd (X ) VX[D.

The R score for d and E is defined as:

R(d,E):
Sd (XE ){SSdT
Sd (Xd ){SSdT

if DSd (XE){SSdTDƒDSd (Xd ){SSdTD

{1 otherwise

8<
: , ð10Þ

where SSdT is the average value for Sd over the decoy set D.

R(d,E) is designed to assess how well E mimics S in finding the

best decoy. It takes values between -1 and 1 where 1 indicates that

the energy has picked the best decoy. We fix the lower limit at -1

to avoid having outliers being assigned very low negative values.

Note, that if an ensemble does not contain outliers then 0 is the

random expectation. If we furthermore assume that the distances

Sd (X ) are uniformly distributed then (1{R(d,E))=2 is the

fraction of decoys with a distance to the native structure better

than Sd (XE). The R score can also be seen as the ratio between

the Z-score of the best energy model, (Sd (XE){SSdT)=s(Sd ),
and the Z-score of the best distance model, (SdXd{SSdT)=s(Sd ),
where s(Sd ) is the standard deviation for Sd over the decoy set D.

Assessing how well the energy functions mimic a funnel
in the neighborhood of the native structure

To measure how far the energy E is from the desired linear

funnel shape given by Equation 1 relative to the distance measure

d we report the Pearson’s correlation coefficient Corr(d,E)
between the energy values E(Xi) and distance measures Sd (Xi)
over all decoys Xi in the decoy set:

Corr(d,E)~
1

N{1

XN

i~1

Sd (Xi){SSdT
s(Sd )

E(Xi){SET
s(E)

, ð11Þ

where S:T and s(:) stand for the mean and standard deviation over

the decoy set considered.

Comparing two distance measures d1 and d2

In the two previous subsections, we have defined a R-score

R(d,E) and a correlation coefficient Corr(d,E) to measure how

well an energy function E mimics a distance measure d. Both

quantities can be used as is to compare two distance measures d1

and d2. Indeed, d2 can be assimilated to a pseudo energy function,

akin to the definition of FlexE given in equation 4. The R-score

and correlation coefficient between d1 and d2 are then simply

R(d1,d2) and Corr(d1,d2), respectively. Corr(d1,d2) measures the

dependence between d1 and d2 over a decoy set, while R(d1,d2)
checks the ‘‘quality’’ of the best decoy identified by d2, as

measured by d1. Note that this R-score between distance measures

may not be symmetric.

Results and Discussion

The diversity of the distance measures
There is no unique way to compare three dimensional shapes.

When comparing protein structures, two main classes of distance

measures have been proposed, those based on a Euclidean

distance between the positions of the atoms of the two proteins

(after proper translation and rotation of one of them), and those

based on the intrinsic geometry of the structures. We have

considered two examples in each class, namely RMSD and GDT-

TS* for the former, and MT and Q* for the latter. A full

description of these four distance metrics is given in Material and

Methods. As these measures capture changes of different

geometric properties of the protein structures, there is no reason

to believe that they are equivalent. To test the degrees to which

these distances differ, we have compared them on three different

sets of decoys, namely Titan-HRD, CASP-HRD, and TSA, using

two different report scores, Corr and R, where Corr is the

Pearson’s correlation coefficient that measures how well d1 mimics

d2 over a large range of distance values while R measures how

(metrically) wrong the best candidate of one distance measure (i.e.

the decoy with the smallest distance to its corresponding native

structure) is when measured by another distance (see Materials and

Methods for details). Results for Corr and R are given in tables 2

and 3, respectively.

The correlations between the distance measures are high on the

Titan-HRD set of decoys, with values above 0.87 for the

correlation coefficients. The corresponding R-scores are above

0.76. If we assume uniform distributions of the native-decoy

distances over a decoy set, the best decoy by one distance measure

on average is ranked within the top 5% and within the top 12% by

another distance measure for R scores of 0.9 and 0.76,

respectively. These high scores are expected, as the Titan-HRD

decoys are high resolution, usually very close to their native

structure counterparts (see Table 1). It is interesting however that

the R score between RMSD and Q* is relatively low (0.76), even

on this high resolution data set. This low value indicates that a

‘‘good’’ decoy defined by Q* may explore a range of RMSD

values. In contrast, a decoy that is close to the native structure with

respect to RMSD usually has a high percentage of native contacts,

as highlighted by the R score between Q* and RMSD of 0.87. In

fact, we observe that the best RMSD decoy is generally scored

better by the three other distance measures.

While CASP-HRD also contains high resolution decoys that are

close to their corresponding native structures (with RMSD ,4 Å

and TM scores above 0.5), the four distance measures we tested

are less dependent on this dataset than on Titan-HRD, both

globally as scored by correlation coefficients and locally (i.e. in

picking a ‘‘best’’ decoy), as highlighted by the R scores. We see two

possible reasons for these differences between the two groups of

decoy sets. First, the decoys in Titan-HRD are homogeneous, as

they all contain the same hydrophobic cores as the native

structures. In contrast, the CASP decoys were derived with many

different methods, leading to heterogeneity in their geometry.

Distances for Knowledge-Based Potentials
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Second, we cannot exclude an effect of sample size, as on average

the sets included in Titan-HRD contain four times more decoys

and larger average mean absolute deviation of distance measures

than the sets included in CASP-HRD (see Table 1).

TSA, which stands for ‘‘Test Sets All’’ is a large heterogeneous

collection of decoy sets that were generated by many different

techniques (see Materials and methods for details). Some of these

decoy sets are high-resolution, i.e. contains mostly native-like

structures, while others are more diverse, containing decoys that

are very different from their corresponding native structures, both

in terms of secondary structure content and three-dimensional

organization. To assess the importance of this diversity, we

selected within the TSA group of decoy sets two subgroups, those

for which the decoys have average TM score larger than 0.5, and

those with average TM score smaller than 0.5. This 0.5 cutoff was

again chosen based on the observation made by Xu and Zhang

that two decoys belong to the same fold when their TM-scores to a

native structure is higher than 0.5 [47]. Table 1 shows that TSA

TM-score. 0.5 generally contain longer chains with fewer decoys

when compared to the TSA TM-score ,0.5 set. The two sets are

fully listed in File S1 and File S2. Tables 2 and 3 show that the

distance measures behave on the high-resolution subgroup (TM.

0.5) as on the Titan-HRD test set, i.e. with high correlations and

high R scores, meaning that they are very similar to each other.

On the low-resolution subgroup (TM ,0.5) however, the distance

measures are poorly correlated with each other, with most

correlation coefficients in the range 0.5 to 0.7. Both results

confirm that when two structures are very close to each other,

different distance measures quantify their differences in a similar

manner. When the two structures however are very different,

different distance measures will focus on different geometric

differences, leading to differences in their behaviors. We observe

however one exception in Table 2, in that RMSD and MT clearly

remains correlated (0.80) even for the diverse subgroup of TSA

with TM ,0.5. The reason for this exception is unclear.

The CASP 10 Stage_1 and Stage_2 test sets usually include

longer proteins than the other sets considered here, with decoys

that are far from their native counterparts. In the Stage_1 sets

there are very few decoys per target (by construction, see Methods

above) and relatively large average mean deviations of the distance

measures. For the Stage_2 test sets there are more decoys per

target; these decoys however are usually very similar to each other,

leading to very low mean absolute deviations for the GDT-TS*

and Q* distance measures, and consequently to low correlations

and R scores between the measures. As an example, the

correlation between RMSD and GDT-TS* for the Stage_2 decoy

sets is only 0.51 and their non symmetric R scores are

R(RMSD,GDT-TS*) = 0.71 and R(GDT-TS*,RMSD) = 0.73, re-

spectively. These low values are good indicators of significant

Table 2. Correlations between the four distance measures.

Distance d2

Test set Distance d1 RMSD MT GDT-TS* Q*

Titan-HRD RMSD 1a 0.92 (0.06) 0.92 (0.04) 0.87 (0.08)

MT 0.92 (0.06) 1 0.92 (0.03) 0.94 (0.03)

GDT-TS* 0.92 (0.04) 0.92 (0.03) 1 0.95 (0.03)

Q* 0.87 (0.08) 0.94 (0.03) 0.95 (0.03) 1

CASP-HRD RMSD 1 0.74 (0.16) 0.73 (0.14) 0.6 (0.19)

MT 0.74 (0.16) 1 0.72 (0.13) 0.83 (0.07)

GDT-TS* 0.73 (0.14) 0.72 (0.13) 1 0.74 (0.13)

Q* 0.6 (0.19) 0.83 (0.07) 0.74 (0.13) 1

CASP10-stage1 RMSD 1 0.83 (0.16) 0.71 (0.24) 0.68 (0.24)

MT 0.83 (0.16) 1 0.73 (0.2) 0.82 (0.14)

GDT-TS* 0.71 (0.24) 0.73 (0.2) 1 0.86 (0.12)

Q* 0.68 (0.24) 0.82 (0.14) 0.86 (0.12) 1

CASP10-stage2 RMSD 1 0.78 (0.16) 0.51 (0.22) 0.49 (0.19)

MT 0.78 (0.16) 1 0.52 (0.2) 0.69 (0.14)

GDT-TS* 0.51 (0.22) 0.52 (0.2) 1 0.64 (0.17)

Q* 0.49 (0.19) 0.69 (0.14) 0.64 (0.17) 1

TSA RMSD 1 0.92 (0.06) 0.8 (0.15) 0.82 (0.11)

MT 0.92 (0.06) 1 0.78 (0.14) 0.85(0.08)

TM-score. 0.5 GDT-TS* 0.8 (0.15) 0.78 (0.14) 1 0.89 (0.12)

Q* 0.82 (0.11) 0.85 (0.08) 0.89 (0.12) 1

TSA RMSD 1 0.8 (0.12) 0.59 (0.24) 0.56 (0.18)

MT 0.8 (0.12) 1 0.54 (0.2) 0.68(0.14)

TM-score ,0.5 GDT-TS* 0.59 (0.24) 0.54 (0.2) 1 0.67 (0.22)

Q* 0.56 (0.18) 0.68 (0.14) 0.67 (0.22) 1

aPearson’s correlation coefficient Corr(d1,d2) between the two distance measures d1 and d2. We provide both the average value and the mean absolute deviation (in
parenthesis) over the data set considered.
doi:10.1371/journal.pone.0109335.t002
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differences between their ranking of the decoys included in

CASP10 Stage_2 test sets.

Training knowledge-based potentials with different
distance measures

We have derived two new smooth knowledge-based residue pair

potentials, PPD and PPE. Both potentials are based on distances

between the Ca atoms of the protein structure of interest. For each

of the 210 types of amino acid pairs, the two potentials are written

as a weighted sum of smooth spline functions, whose weights are

optimized so that the total energy of a protein model resembles the

distance between the model and a reference structure (usually

taken to be the native structure), as described by equation 1. The

two potentials differ however on which pairs of residues are taken

into account. While PPD includes all pairs of residues from the

protein structure P considered, PPE only include those pairs

whose inter Ca distance is consistently below a cutoff value in an

ensemble of protein models similar to P. The idea behind PPE,

derived from Eickholt et al. [36], is that the various models in the

ensemble contain complementary information which can be

pooled together to build a contact map of consistent residue-

residue contacts that are more likely to be informative. Our

interest here is to assess the influence of the distance measure used

to train the two potentials. We have trained PPD and PPE on the

Titan-HRD* training set with the four distance measures

introduced above separately, and tested the corresponding four

versions of the potentials against the Titan-HRD, CASP-HRD,

and TSA test sets in their abilities to mimic any of the four distance

measures. All parameters describing the amino acid pair spline

potentials are listed in the file Force Field S1. The encoding used

and the spline basis used is described in Readme Force Field S1.

Both files are in the supporting information.

Figure 1 shows some examples of the b-spline expanded pair

potentials. As expected, the pair potentials are repulsive for short

inter-residue distances and have a first minimum between 4 Å and

6 Å and this preferred distance relatively independent of the

training metric. For longer pair distances it is seen that most PPD

pair potentials have a local minimum around 10 Å whereas the

PPE pair potentials tend to have a local maximum at this distance.

One plausible explanation is that as PPE does not identify new

contacts for these large distances; it may then set higher energy

values for remote decoys. The exact placement of the minimum as

well as the depth of the potential differs for the different pair

potentials. While these differences may seem small, they add up

when we sum over all the interactions.

We computed both the correlations between energy and the

distance measure, and the R scores that compare the best decoys

picked based on energy with the decoys closest to their

corresponding native structures. Results are given in Table 4 for

the correlation coefficients, Table 5 for the R scores, and in

Table 3. Comparing the best models picked by different distance measures.

Distance d2

Test set Distance d1 RMSD MT GDT-TS* Q*

Titan-HRD RMSD 1a 0.88 (0.12) 0.91 (0.09) 0.76 (0.17)

MT 0.94 (0.06) 1 0.92 (0.08) 0.91 (0.07)

GDT-TS* 0.96 (0.04) 0.94 (0.07) 1 0.91 (0.08)

Q* 0.87 (0.09) 0.92 (0.07) 0.89 (0.09) 1

CASP-HRD RMSD 1 0.71 (0.26) 0.79 (0.22) 0.49 (0.38)

MT 0.76 (0.22) 1 0.76 (0.22) 0.76 (0.23)

GDT-TS* 0.8 (0.22) 0.68 (0.27) 1 0.48 (0.39)

Q* 0.57 (0.33) 0.81 (0.16) 0.66 (0.24) 1

CASP10-stage1 RMSD 1 0.81 (0.24) 0.75 (0.31) 0.79 (0.23)

MT 0.9 (0.13) 1 0.85 (0.19) 0.94 (0.09)

GDT-TS* 0.79 (0.24) 0.78 (0.24) 1 0.82 (0.2)

Q* 0.78 (0.22) 0.88 (0.14) 0.8 (0.23) 1

CASP10-stage2 RMSD 1 0.76 (0.22) 0.71 (0.3) 0.63 (0.29)

MT 0.83 (0.18) 1 0.73 (0.24) 0.83 (0.19)

GDT-TS* 0.73 (0.26) 0.65 (0.24) 1 0.59 (0.29)

Q* 0.62 (0.29) 0.82 (0.18) 0.62 (0.23) 1

TSA RMSD 1 0.9 (0.11) 0.84 (0.19) 0.81 (0.18)

MT 0.94 (0.07) 1 0.88 (0.14) 0.92 (0.09)

TM-score. 0.5 GDT-TS* 0.85 (0.16) 0.79 (0.21) 1 0.73 (0.24)

Q* 0.79 (0.18) 0.89 (0.11) 0.81 (0.16) 1

TSA RMSD 1 0.83 (0.19) 0.73 (0.27) 0.71 (0.27)

MT 0.87 (0.14) 1 0.74 (0.27) 0.88 (0.14)

TM-score ,0.5 GDT-TS* 0.74 (0.27) 0.7 (0.27) 1 0.67 (0.27)

Q* 0.68 (0.27) 0.85 (0.16) 0.68 (0.27) 1

aR-score R(d1,d2) between the two distance measures d1 and d1. We provide both the average value and the mean absolute deviation (in parenthesis) over the data set
considered.
doi:10.1371/journal.pone.0109335.t003
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Figures 2 and 3 for a comparison of these scores. We draw from

these tables and figures the four main conclusions described below.

First, we find that both potentials PPD and PPE perform very

well on the Titan-HRD test set, for all distance measures used for

training and testing the potential. The corresponding mean

correlation coefficients (averaged over all decoys sets in Titan-

HRD) are usually above 0.8, indicating that the energy functions

order the decoys in the same manner as the distance measures. In

parallel, the R scores are also high, with most values well above

0.65, indicating that the decoys with the lowest energies are usually

among the decoys that are close to the corresponding native

structures. We should note however that PPD and PPE were

trained on Titan-HRD*. While Titan-HRD and Titan-HRD* are

different (see Methods), they both contain decoys that were

generated with the same principles, with the significant constraint

that they maintain the hydrophobic cores of the corresponding

native structures. The exceptional performance of PPD and PPE

may therefore not be surprising in light of this comment. Indeed,

as we test these potentials on different decoy sets with more diverse

populations of decoys, we observe a decrease in performance that

follows the increase in diversity (in the order Titan-HRD - TSA

(TM w0:5) - CASP-HRD - TSA (TM v0:5). This decrease in

performance is illustrated in Figure 2.

Second, the ensemble potential PPE performs better than the

single structure potential PPD, again for all the distance measures

used to train and test the potentials. The differences between the

two potentials are large for the high resolution decoys sets in

Titan-HRD and TSA (TM.0.5), but become statistically insig-

nificant for very diverse decoy sets such as those in TSA (TM ,

0.5). We believe that these differences illustrate the power of

generating consensus information from an ensemble. In PPE, we

only consider those contacts there are consistently below a given

distance cutoff in the whole decoy set to which the protein of

interest belongs. This initial filtering is clearly an advantage for

Titan-HRD, as it will select the contacts in the hydrophobic cores

which are native, and will ignore the contacts that fluctuate

significantly due to the sampling procedure used to generate the

decoys. It remains an advantage for high quality decoy but

becomes less pertinent for highly diverse decoys.

Third, the performances of the two potentials PPD and PPE

depend on the choice of the distance used in the training step. For

example, the correlations between PPE and any of the four

distance measures increase on average by 0.09 when it is trained

on MT instead of RMSD (Table 4). Similar differences are

observed for the R scores between PPE and the four distance

measures (Table 5). More generally, it is best to train the potentials

on a distance measure that is directly based on intrinsic inter-

residue distances, such as MT that follows the elastic network of

the protein of interest, or Q* that counts the number of contacts

that fall below a given distance cutoff, than on a distance measure

based on extrinsic Euclidean distances, such as RMSD. Interest-

ingly, we find that GDT-TS* behaves more like the intrinsic

distance measures MT and Q* than RMSD, even though it is also

based on extrinsic distances. The reason for this discrepancy is

unclear.

Figure 1. Showing nine different types of residue pair interactions for our single model method PPD (continuous lines) and our
consensus method PPE (dotted lines) when trained on RMSD (blue), MT(red), GDT-TS(green) and Q(black).
doi:10.1371/journal.pone.0109335.g001
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Finally, we observe that the ability of an energy function to pick

a ‘‘good’’ decoy (i.e. with native-like characteristics) is contingent

to how well this energy function correlates with a distance measure

between decoys and native structure. This is illustrated in

Figure 2. This observation validates the approach of sculpting

(training) a potential to mimic a distance measure.

Comparison with other energy functions
We have compared the two energy functions PPD and PPE with

two well established all-atom statistical potentials RAPDF [49] and

GOAP [7] and with a semi-empirical physical potential,

AMBER99SB-ILDN [50], for all decoy sets in Titan-HRD,

CASP-HRD, and TSA. Results for correlations between energy

and distance measures and for R scores are given in Tables 4 and

5, respectively.

As intuitively expected, the performances of AMBER99SB-

ILDN are very poor. This is most likely an artifact due to the

presence of a few steric clashes in the decoys, and not a reflection

of the quality of this potential. While it would be possible to

improve this performance by applying an initial energy minimi-

zation on all decoys, this result by itself highlights that such a

physical potential cannot be used directly to order a set of decoys,

unless some pre-processing is applied.

RAPDF is a knowledge-based statistical potential that is based

on a direct conversion of the distributions of inter-atomic distances

observed in native protein structures into energy values that are

then used to assess how native-like a model is [49]. It is not based

on any information from existing decoy sets, and it is not trained to

mimic some differences between decoys and native structures. It is

therefore not surprising that it does not perform as well as PPD

and PPE, especially on the Titan-HRD as both PPD and PPE

were trained on decoys resembling those included in this data set.

GOAP is an all-atom orientation-dependent knowledge-based

statistical potential that includes a distance-based term and an

angle-dependent contribution [7]. The distance-based term is an

all-atom statistical potential that is based on the reference state

that was introduced with the DFIRE potential [51]. The angle

dependent component of GOAP is based on the geometric

orientation of local planes. GOAP is found to perform significantly

better than RAPDF on all datasets tested in this study. This is not a

surprise, as GOAP includes much more information than RAPDF

due to its angle term. We find however that GOAP performs only

marginally better than PPD and worse than PPE. This illustrates

the benefit of training a potential on a decoy set. PPD and PPE are

only Ca based potentials; they have been trained however to

mimic distances between non-native models and native structures

of proteins.

The performances of RAPDF and GOAP depend on the

distance measure used for testing. We observe that they are

particularly good when the statistical potentials are tested on

Figure 2. Energy-distance correlations as a function of the quality of the decoy set. For each decoy set in Titan-HRD, CASP-HRD, and TSA (a
total of 797 sets), we plot the correlation Corr(E, d1) as a function of the mean value of d1 over the decoy set, where E is either the PPD energy (red,
plus sign +) or the PPE energy (black, cross sign x) trained on the set Titan-HRD with the distance measure d1, and d1 is one of the fourth distance
measures considered, namely RMSD (panel A), MT (panel B), GDT-TS* (panel C), and Q* (panel D). The corresponding running means computed over
20 equidistant intervals for PPD (red, solid line) and PPE (black, dashed line) are shown. Clearly, the quality of the correlation energy-distance
decreases as the diversity of the decoy set increases.
doi:10.1371/journal.pone.0109335.g002
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GDT-TS*, reflecting the differences between these distance

measures (see Table 2 and 3).

Performance in the CASP 10 quality assessment category
As part of the CASP experiment, state-of-the-art methods for

protein structure assessment are judged on their ability to evaluate

the quality of the predictions submitted as models for the targets

considered in that specific experiment: this is the quality

assessment category (QA). In 2012 as part of CASP10, 37 groups

participated [48]. They were asked to evaluate the quality of sets of

predictions (decoys) in two rounds designated as Stage_1 (20

decoys with a large variation in quality as measured by GDT-TS)

and Stage_2 (150 decoys with homogeneous quality as measured

by GDT-TS). The main reason for providing a small number of

decoys in Stage_1 was to allow for judging assessment methods

that rely on a single model independently from methods that rely

on an ensemble of decoys (consensus methods), that would be

tested extensively with the Stage_2 decoy sets. The three main

conclusions drawn from these experiments were [48]: 1) The

performances of the single model methods are usually worse than

the the performances of consensus methods, 2) The Stage_2 sets

are usually more difficult to rank than the Stage_1 sets, and 3) No

methods were able to consistently pick the best decoy in an

ensemble. The results for the participating groups can be seen in

Figure 2 (average correlation) and Figure 3 (ability to pick the best

decoy) in [48]. We note that the single model method GOAP used

in this study differs from the quasi-single model method GOAPQA

used in CASP10QA. For the latter, the TM-score [46] to the top 5

ranked models is used as a measure of model quality.

The CASP 10 datasets have average native-decoy RMSDs of

11–13 Å. These differences are significantly larger than the 2.4 Å

RMSD found in our training sets (see Table 1). Our analyses of

the performances of PPD (single model) and PPE (ensemble of

decoys) on the other datasets considered in this study have shown

that for decoys that are far from their native counterparts, the two

methods perform similarly, and in fact poorly (see top left panel of

Figure 2 and Table Table 4). We observe the same behavior when

PPD and PPE are applied on the CASP10 datasets (Tables 4 and

5). Similarly we expect and indeed find that the ensemble method

PPE is ineffective in ranking the decoys of the CASP10 datasets

when its performance is measured against the MT distance

measure, and shows some prospects when its performance is

measured against the GDT-TS* and Q* distance measures. The

energy-GDT-TS correlations of 0.51(0.63) and 0.29(0.44) for

PPD(resp. PPE) on Stage_1 and Stage_2 respectively are amongst

the lowest reported for single model(resp. ensemble) methods in

CASP10QA [48]. The low energy-distance correlations reported

usually leads to a bad pick for the best decoy, see Figure 3. It is

therefore surprising that the average DGDT-TS* of 0.07 between

the GDT-TS*-closest decoy and the lowest energy decoy picked

Figure 3. R scores versus Energy-distance correlations. For each decoy set in Titan-HRD, CASP-HRD, and TSA, we plot the R score R(d1,E) as a
function of the correlation coefficient Corr(d1,E), where E is either the PPD energy (red, plus sign +) or the PPE energy (black, cross sign x) trained on
the set Titan-HRD with the distance measure d1, and d1 is one of the fourth distance measures considered, namely RMSD (panel A), MT (panel B), GDT-
TS* (panel C), and Q* (panel D). The corresponding running means computed over 20 equidistant intervals for PPD (red, solid line) and PPE (black,
dashed line) are shown. Note that R(d1,E) compares the best decoy picked based on the energy value E with the decoy closest to the native
structure according to the distance measure d1. There is a clear correlation between these two values for all four distance measures.
doi:10.1371/journal.pone.0109335.g003
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by PPE on the CASP10 Stage_2 data sets places PPE in the middle

of the CASP10 participating methods (see [48] Figure 2(A)).

The results for PPD, PPE, AMBER99SB-ILDN, RAPDF and

GOAP on CASP 10 stages 1 and 2 are given in Tables 4 - 6 where

PPD and PPE were trained and tested on the same distance

measure. Clearly, GOAP has a better performance than PPD

when GDT-TS* is chosen as a measure of distance. It is however

noteworthy that PPD performs better than GOAP when measured

by RMSD and MT instead. It is encouraging that the distance

dependent C-alpha potential, PPD, as a single model method has a

performance that is comparable to the state-of-the-art orientation-

dependent all-atom potential, GOAP. We find that PPD is good at

selecting a decoy that is close to the native structure (Table 6).

Concluding Remarks

The recent literature on generating knowledge-based potentials

for protein structure modeling makes no secrets of their limitations

and problems. Knowledge-based potentials are energy functions

derived primarily from databases of protein structures and

sequences. They can be divided into two classes. Potentials from

the first class are based on a direct conversion of the distributions

of some geometric properties observed in native protein structures

into energy values, while potentials from the second class are

trained to mimic quantitatively the geometric differences between

incorrectly folded models (also called decoys) and native structures.

Both potentials are designed to assess how native-like a model

structure is. There is no consensus however on which geometric

property should be considered, on how to convert a statistical

distribution into an energy for the first class, and on how energy

and geometry should be related in the second class.

In this paper, we focused on the relationship between energy

and geometry when training knowledge-based potentials from the

second class. We assumed that the difference between the energy

of a decoy and the energy of its corresponding native structure

must be linearly related to the distance between the decoy and the

native structure. We trained two distance-based Ca potentials

accordingly, one based on all inter-residue distances (PPD), while

the other had the set of all these distances filtered to reflect

consistency in an ensemble of decoys (PPE). Compared to other

methods that follow the same approach however, we did not

assume that the distance between a decoy and the native structure

is the traditional RMSD. Instead, we tested four different distance

measures, two based on extrinsic geometry (RMSD and GTD-

TS*), and two based on intrinsic geometry (Q* and MT). We

found that it is usually better to train the potentials using the latter

type of distances.

We have found that both PPD and PPE perform extremely well

on the high resolution decoy set Titan-HRD, with correlation

coefficients between energy and distance usually well above 0.8.

PPE always performs better than PPD on this set, emphasizing the

benefits of capturing consistent information in an ensemble. While

we trust the general trends highlighted by these results, we tone

down the importance of In extensive testing on available decoy sets

and models from the Critical Assessment of protheir exceptional

character as they may only reflect the specificity of the Titan-HRD

data set. tein Structure Prediction (CASP) experiments we find

that PPD yields better energy-distance correlations than one of the

state of the art single model potentials, GOAP [7]. We note

however that the sophisticated distance-based and orientation-

based statistical potential GOAP is better at picking the best

decoys and has a better though comparable performance for fixed

energy-distance correlation. It should be noted that PPD and PPE

are Ca-based, while GOAP is an all-atom potential. We believe
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that this demonstrates that a very efficient training of a simple

distance-based pair potential can generate a very effective measure

for assessing protein structure models.

There is still room for improvement in training knowledge-

based potentials. We limited our study to pairwise potentials; we

will test different geometric properties of protein structures in

future studies. We plan to include the potentials described here

into a structure minimization package, to assess their performanc-

es in improving non-native protein structure models.
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