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Animals constantly face the chal-
lenge of extracting important 

information out of their environment, 
and for many animals much of this 
information is chemical in nature. The 
ability to discriminate and generalize 
between chemical stimuli is extremely 
important and is commonly thought to 
depend mostly on the structural simi-
larity between the different stimuli. 
However, we previously provided evi-
dence that in the carpenter ant Cam-
ponotus aethiops, generalization not 
only depends on structural similarity, 
but also on the animal’s previous train-
ing experience. When individual ants 
were conditioned to substance A, they 
generalized toward a mixture of A and 
B. However, when trained to substance 
B, they did not generalize toward this 
mixture, resulting in asymmetrical gen-
eralization. This asymmetry followed 
an inclusion criterion, where the ants 
consistently generalized from a mol-
ecule with a long carbon chain to mol-
ecules with a shorter chain, but not the 
other way around. Here I will review 
the evidence for the inclusion criterion, 
describe possible proximate mecha-
nisms underlying this phenomenon as 
well as discuss its potential adaptive 
significance.

Communication is vital for all types 
of social interaction, and is achieved by 
the interplay of three separate compo-
nents, previously described for recogni-
tion systems:1 the expression, perception 
and action components. The expression 
component occurs when an organism 
produces a signal or cue (e.g., chemi-
cal, visual, acoustic). After expres-
sion, a receiver individual detects this 

product (perception component) and 
could then alter its behavior, based on 
the newly acquired information (action 
component).

Chemical communication is perhaps 
the most widespread means of communi-
cation in the animal world.2 In insects, the 
importance of odour detection is high-
lighted by the fact that olfactory recep-
tor genes are one of the largest families 
of genes, and underwent rapid evolution-
ary change.3 In the olfactory modality of 
insects, the perception component can 
be divided into multiple steps.4,5 First, 
odorant molecules are picked up by sen-
silla present on the antennae. These sen-
silla contain Odorant Binding Proteins 
(OBPs) and Chemosensory Proteins 
(CSPs6,7), both of which can bind spe-
cific odorant molecules and transport it 
through the lymph fluid to the Olfactory 
Receptors (ORs), located on the 
Olfactory Receptor Neurons (ORNs). 
These ORNs then transmit a signal to 
the antennal lobes, the first-order inte-
gration center of the insect central ner-
vous system. The antennal lobe consists 
of many glomeruli, which are synaptic 
aggregations where ORNs are connected 
to local interneurons and projection neu-
rons. These local interneurons modulate 
the response of other glomeruli through 
inhibition or stimulation. Afterwards, 
the projection neurons of the glom-
eruli transfer the modified, integrated 
information to the higher brain centers 
(mushroom bodies and lateral horn). 
These brain centers integrate all received 
information (olfactory, visual etc.), and 
regulate for example motor neurons, 
resulting in a behavioral response (action 
component).
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A particularly fascinating area of study 
is that of olfactory generalization, which 
occurs when an individual treats two 
structurally different odorants as similar. 
Olfactory generalization can arise from 
either the perception or action compo-
nent of communication. If it is due to the 
perception component, the animal can 
simply not distinguish between the two 
stimuli. If it arises from the action com-
ponent, the animal actually does perceive 
a difference between the two stimuli, but 
treats them as being similar.

Asymmetry in Generalization 
and the Inclusion Criterion

We previously studied generaliza-
tion of odorants in the carpenter ant 
Camponotus aethiops.8,9 By using an asso-
ciative learning protocol known as the 
Maxilla-Labium Extension Response 
(MaLER10), we conditioned individual 
ants by training them to for example 
substance A, and afterwards tested their 
response to a mixture of A and a novel 
substance B. Ants trained to substance A 
treated a mixture of A and B as similar, 
but surprisingly individuals trained to B 
did not generalize toward the mixture of 
A and B, indicating that generalization 
between stimuli is not only influenced 
by the similarity of molecular structure 
of the odorants involved, but also by the 
animal’s previous experience.

While asymmetry in generalization 
itself has previously been found in many 
organisms, especially in the olfactory 
modality (e.g.11-15), most of these stud-
ies either used very few substances, or 
substances that greatly differed in their 
molecular structure or function (e.g., f lo-
ral odour vs. alarm pheromone), making 
it impossible to draw conclusions about 
the molecular basis of the asymmetry.

In order to address this question, our 
experimental setup allowed us to describe 
how molecular structure systematically 
plays a role in predicting whether the 
ants would generalize or not. The ants 
consistently generalized from molecules 
with a long carbon chain to mixtures 
containing this trained substance and a 
molecule with a shorter chain. However, 
when trained to a molecule with a short 
chain, no generalization to a mixture 

containing this trained substance and a 
molecule with a longer chain was found. 
Additionally, we elucidated a hierarchy 
of stimuli regarding functional groups, 
where ants trained to alcohols general-
ized to aldehydes and ketones of similar 
or shorter length. When trained to alde-
hydes, ants would generalize to ketones 
of similar or shorter length, but not to 
alcohols. Lastly, when trained to ketones 
ants would not generalize to molecules 
with other functional groups at all. This 
asymmetry thus follows an inclusion cri-
terion (a term adapted from Guerrieri 
et al.16), where substances with shorter 
chain lengths or certain functional 
groups are treated as if similar to the 
trained substance.

This raises the question about 
whether the inclusion criterion is a gen-
eral phenomenon in the animal world, or 
whether it is exclusive to ants. Two pio-
neering studies by Smith and Menzel11 
and Guerrieri et al.15 in honeybees 
allowed for extensive analysis of asym-
metry in generalization with regards to 
molecular structure, as both studies used 
different volatile f loral odours varying in 
either chain length or functional group. 
Although asymmetry in generalization 
was found in these studies, it could not 
systematically be predicted by molecular 
structure, thus not supporting the inclu-
sion criterion. However, in these studies 
the test stimulus was always a single sub-
stance instead of a mixture of the condi-
tioned stimulus and the test stimulus. In 
these conditions, ants also show no evi-
dence of the inclusion criterion.9 As gen-
eralization to a mixture after training to 
a single substance has, to my knowledge, 
not been studied in a systematic way in 
other animals, it is currently impossible 
to draw conclusions on how widespread 
the inclusion criterion is.

In ants, a similar phenomenon of 
inclusion appears to come into play in 
nestmate recognition, where non-nest-
mates (enemies) are aggressed only if 
their cuticular chemical profile contains 
additional substances in comparison to 
the profile of the discriminating indi-
vidual, but are not recognized when they 
have less substances.16,17 Indeed, some 
social parasites use this to their advan-
tage, and are known to be chemically 

insignificant, having only a very small 
amount of substances on their cuticle, 
which ensures that they are not recog-
nized by the host colony.18 This implies 
that the inclusion criterion might be a 
general phenomenon, at least in ants.

Does it Arise from the 
Perception or Action 

Component?

Now that we established that, at least 
in the carpenter ant C. aethiops, asym-
metry in generalisation follows an inclu-
sion criterion, the question remains about 
whether it arises from the perception or 
action component of communication.

If inclusion arises at the perception 
component, the receiving individual 
does not notice the difference between 
the trained odorant and the substance 
or mixture that it generalizes toward. 
However, this does not necessarily mean 
the odour is not detected by the sensilla, 
as inclusion could potentially result from 
processes at different levels of the percep-
tion component.

The first level is that of the OBPs 
and CSPs in the sensilla. These sensory 
proteins are normally tuned to specific 
substances. Intuitively, one could pre-
dict that these proteins might also bind 
smaller substances due to the size of their 
binding pocket (while not binding larger 
molecules than the one they are tuned 
to). In turn, generalization toward a mol-
ecule smaller than the conditioned stim-
ulus might be expected, as these proteins 
would bind to both to the trained sub-
stance, as well as smaller ones. However, 
evidence points in the other direction, 
where sensory proteins tuned to a cer-
tain substance bind, next to the molecule 
they are tuned to, larger molecules bet-
ter than smaller ones.19,20,but see 21 If larger 
molecules indeed activate proteins tuned 
to smaller molecules but not the other 
way around, a binary mixture containing 
a large and small molecule could activate 
the same sensory proteins as the large 
molecule alone, potentially explaining 
our results. Alternatively, not the bind-
ing pocket, but the chemical attributes of 
the odorants might cause asymmetry in 
generalization. Nearly all ligand interac-
tions rely, to some extent, on hydrogen 
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bonding. For example, there is a differ-
ence in the capability of alcohols and 
aldehydes/ketones to form hydrogen 
bonds. The oxygen in all of these classes 
of molecules can build a hydrogen bond 
with the hydrogen atoms of the sensory 
protein, but only alcohols can also build a 
hydrogen bond with the protein’s oxygen 
through the hydrogen in the alcohol’s 
-OH group.22 This might cause alco-
hols to bind better than aldehydes and 
ketones, possibly explaining the hierar-
chy of stimuli found in our study, where 
generalization occurred from alcohols to 
aldehydes and ketones, but not the other 
way around.

The second level is that of the olfactory 
receptors and the antennal lobe. Every 
odour elicits a unique pattern (much like 
a barcode) in the antennal lobe by acti-
vating a specific subset of glomeruli.23,24 
If higher chain length molecules elicit the 
same pattern as their lower chain length 
counterparts, but activate some addi-
tional glomeruli in the process, this could 
give rise to asymmetry in generalisation, 
as the activation of additional compounds 
seems to enable discrimination, whereas 
the deactivation of many glomeruli does 
not.25 However, smaller molecules do not 
necessarily activate less glomeruli, at least 
in the honey bee.24,26 Furthermore, mix-
tures are not always represented in the 
antennal lobe as the sum of their parts 
due to mixture interactions. Because of 
this, odour blends can acquire a unique 
quality, where sometimes not all informa-
tion about the individual components is 
perceptually available anymore.27 A map 
of the antennal lobe, including activation 
patterns of many different odorants and 
their mixtures would be required to test 
this hypothesis in ants. Unfortunately, 
due to the complex morphology of the 
ant antennal lobe, full mapping remains 
extremely challenging.28,29

Another potential cause for the inclu-
sion criterion arising at the perception 
component could be inhibition due to 
overshadowing. Overshadowing occurs 
when an individual encounters a mix-
ture, but only perceives a subset of that 

mixture.30 For example, if ants trained to 
e.g., 2-hexanone are tested with a mix-
ture of 2-hexanone and octanol, reaction 
might be inhibited if octanol overshad-
ows 2-hexanone (i.e., the ant mainly per-
ceives octanol, even though 2-hexanone 
is also present in the mixture). However, 
this seems to be an unlikely cause of our 
results, as we also conducted an over-
shadowing experiment by training ants 
to a mixture and afterwards testing their 
reaction to the individual components, 
which suggested that overshadowing is 
rare in C. aethiops.9

Instead of the perception component, 
the inclusion criterion could arise at the 
action component. This would imply 
that the animal receives all the infor-
mation needed in order to discriminate 
between different substances, but follows 
certain decision rules resulting in asym-
metrical generalisation. Our experiment 
showed that ants could perceive each 
tested substance,9 making it likely that 
the action component is the cause for the 
inclusion criterion. However, as previ-
ous experience to a single substance can 
adjust processes in the perception com-
ponent (through for example sensory 
adaptation31), more experimental data 
are needed in order to tease apart the two 
components from each other.

Conclusions

The question remains on how wide-
spread the inclusion criterion is. More 
species should be studied in order to 
find out whether our study species 
(Camponotus aethiops) is unique with 
respect to the inclusion criterion or not. 
As learning paradigms are well estab-
lished for many different animals,12,32-35 a 
systematic investigation, including many 
substances of different chain-lengths and 
functional groups, of the reaction of indi-
viduals to a mixture of the conditioned 
stimulus and a novel odorant would elu-
cidate whether the inclusion criterion is 
widespread or not. If the ant is indeed the 
exception and one of the only groups of 
animals that uses the inclusion criterion, 

this would suggest (but not prove) that it 
arises from the action component, as the 
olfactory pathway (which is part of the 
perception component) is well preserved 
between different groups of animals.36

Whether the inclusion criterion is 
adaptive or not is not clear. One potential 
benefit for ants could be during recogni-
tion of nestmates vs. non-nestmates. As 
their cuticular chemical profile consists 
of many different substances, the inclu-
sion criterion could ‘compact’ this pro-
file into something simpler to interpret 
by treating multiple different substances 
as similar. This hypothesis is supported 
by recent evidence in the Argentine 
ant (Linipithema humile).37 Ants were 
exposed to a filter paper containing their 
own nestmate odour, to which they were 
not aggressive. When one of eight syn-
thetic hydrocarbons (differing in branch 
position, chain length, or both) was 
added to this filter paper, the ants started 
to be aggressive. The ants displayed dif-
ferent levels of aggression depending 
on which hydrocarbon was added. The 
authors found functional homologs, 
where hydrocarbons differing in chain 
length (but not in the position of the 
functional group) received equal levels 
aggression, whereas this was not the case 
when comparing aggression levels against 
hydrocarbons differing in the position of 
the functional group. This could indicate 
that these functional homologs are ‘com-
pacted’ into a single peak during the per-
ception component.
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