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Abstract Developing tumor-specific drug delivery systems with minimized off-target cargo leakage re-

mains an enduring challenge. In this study, inspired from the natural cryptobiosis explored by certain or-

ganisms and stimuli-responsive polyphenol‒metal coordination chemistry, doxorubicin (DOX)-

conjugated gelatin nanoparticles with protective shells formed by complex of tannic acid and FeIII

(DG@TA-FeIII NPs) were successfully developed as an “AND” logic gate platform for tumor-targeted

DOX delivery. Moreover, benefiting from the well-reported photothermal conversion ability of TA-FeIII

complex, a synergistic tumor inhibition effect was confirmed by treating 4T1 tumor-bearing mice with

DG@TA-FeIII NPs and localized near-infrared (NIR) laser irradiation. As a proof of concept study, this

work present a simple strategy for developing “AND” logic gate platforms by coating enzyme-degradable

drug conjugates with detachable polyphenol‒metal shells.
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1. Introduction

In the past decades, innovations in the development of targeted
and controlled drug delivery vehicles could always exhilarate
scientists for overcoming the lack of specificity of conventional
chemotherapeutic agents and combating life-threatening diseases1.
Although promising in preclinical animal models, the stochastic
nature of ligandereceptor interactions in vivo and non-specific
Fickian diffusion-governed drug leakage before arriving at path-
ological regions still remain the main barriers for clinical trans-
lation of these reported drug carriers2e5. Recently, due to the
altered metabolic pathways and/or pathological microenviron-
ment, exploiting drug vehicles that are sensitive to disease-
associated biochemical markers (such as dysregulated pH, en-
zymes and redox balance) has been preferred for liberating cargos
in a particular area with efficient spatial, temporal and dosage
control6e8. Frustratingly, it is still a tremendous challenge to
realize accurate drug delivery triggered by a single biomarker
which is rarely unique in the diseased area9. Despite dual/multi-
stimuli responsive systems have been further designed for accel-
erating the offloading of therapeutic drugs, the commonly utilized
“OR” logic gates always lead to adverse off-target drug leakage on
the way activated by each stimulus in complex biological
milieu10e15. For instance, Amir et al.16 reported the application of
the logic gate concept to engineer a two enzymatic reaction-
triggered drug release system. Although the presence of either
of the enzymes would be sufficient to open the switch of the “drug
releasing gate”, but the “OR” logic would also increase the risk of
premature drug release before arriving at disease regions. Inspired
by the Boolean logic idea, “AND” logic gate-based systems are
favored for sequence-activated drug release in pathological sites
with desired specificity17e20. Wei et al.21 developed an “AND”
logic gate drug delivery system with two orthogonal molecular
triggers (acidic pH and reduction) based on dithiodiethanoic acid
crosslinked PEO-b-P(MAA-g-Hyd) block copolymer micelles
conjugated with adriamycin drug through the hydrazone bonds.
Despite promising and effective, subjected to the inherent con-
straints on material composition and vehicle geometry, the
uniqueness of each previously reported “AND” logic gate-based
platform invariably necessitates a brand new material design
that is generally not synthetically tractable22. Therefore, a versa-
tile strategy for the construction of “AND” logic gate-based
platform was highly pursued for programmed disease-specific
drug delivery with minimized off-target effect.

Cryptobiosis, also known as “secret life”, has been developed
in nature by certain bacteria, ciliates and even higher organisms
(e.g., tardigrades) as well as seeds of some plants to withstand
stressful and often lethal environmental conditions23e25. This
cytoprotective strategy commonly involves the formation of tough
biomolecular sheaths on cellular structures to enter a dormant
state for survival from outside threats and subsequent revival to
proliferate by breaking the protective shells apart when the envi-
ronment becomes favorable26,27. Inspired from this fascinating
cryptobiotic mechanism, chemically forming a thin (<100 nm)
but durable shell on living cells (cell-in-shell structures) have been
demonstrated to be effective for enhancing tolerance against
harmful threats as well as controlled cellular metabolism which
are anticipated to find various applications in biomedical areas
including biocatalysis, cytotherapeutics and single-cell bio-
logy28e30. For instance, individual labile mammalian/microbial
yeast cell has been evolved into a micrometer-sized “Iron Man” by
coating with polyphenol‒metal complexes comprised of natural
polyphenol tannic acid (TA) and FeIII for customizable cellular
adherence and proliferation as a consequence of programmed shell
formation and degradation31,32. Yet, in contrast to the flourishing
research situation for cell-in-shell structures, developing crypto-
biotic systems with “AND” logic gate behaviors for sequence-
activated drug delivery have been rarely reported.

As a proof-of-concept study, a cryptobiosis inspired assembly
of pH/ATP “AND” enzyme logic gate platform was successfully
developed here to realize tumor-specific drug delivery. As shown
in Scheme 1A, after conjugating chemotherapeutic doxorubicin
hydrochloride (DOX∙HCl) molecules on the surface of gelatin
nanoparticles (DG NPs) through typical aldimine condensation,
conformal TA-FeIII shell was subsequently deposited on the sur-
face of DG NPs (DG@TA-FeIII NPs) for realizing “AND” logic
gate-controlled drug delivery in tumor regions. By preventing the
contact between DG NPs and enzyme with durable TA-FeIII shells
in healthy tissues, the obtained DG@TA-FeIII NPs were expected
to exhibit a cryptobiotic behavior with negligible premature drug
leakage. Once arrived at tumor regions, the mild acidic pH and/or
upregulated adenosine triphosphate (ATP) in the tumor microen-
vironment would firstly unlock the TA-FeIII shells and then the
subsequently exposed inner DG cores could be hydrolysed by
overexpressed matrix metalloproteinase 2/9 (MMP 2/9, also
known as gelatinase) in solid tumor regions to release cytotoxic
DOX (Scheme 1B). In addition to this “AND” logic gate-
controlled DOX delivery in tumor, the good photothermal con-
version activity of TA-FeIII complex would endow DG@TA-FeIII

NPs with synergistic photothermal‒chemo cell-killing ability
under near-infrared (NIR) light irradiation. Benefiting from the
dynamic nature of polyphenolic-metal coordinative complex, our
study was anticipated to present a versatile strategy for developing
“AND” logic gate-based systems for disease-specific drug
delivery.

2. Materials and methods

2.1. Reagents and chemicals

Gelatin type A (from porcine skin, powder, w300 bloom) were
purchased from SigmaeAldrich (9000-70-8, St. Louis, MO,
USA). Tannin acid (TA, >99%, 1401-55-4) and iron chloride
hexahydrate (FeCl3$6H2O, >99%, 10025-77-1) were obtained
from Aladdin Industrial Corporation (Shanghai, China). Acetone
(67-64-1), absolute ethanol (64-17-5) and glutaraldehyde solution
(GTA, 25%, 111-30-8) were received from Sinopharm Chemical
Reagent Co., Ltd. (Shanghai, China). Doxorubicin hydrochloride
(DOX$HCl, 480453-73-4) was bought from Beijing Huafeng
United Technology Co., Ltd. (Beijing, China). All chemicals were
used as received without additional purification.

2.2. Synthesis of DG NPs

Monodispersed gelatin NPs were firstly developed from a well-
reported two-step desolvation process and subsequently cross-
linked by GTA molecules. After mixing the DOX$HCl aqueous
solution (1 mg/mL, 10 mL) with GTA solution of various feeding
mass ratios (1:1, 1:5, 1:10, 1:50, and 1:100) for 2 h at room
temperature, the gelatin NPs (10 mg/mL, 10 mL) were then
quickly added into the aldehydated DOX suspension and stirred
vigorously for further 2 h. The DG NPs could be successfully
collected through typical centrifugation/washing cycles.



Scheme 1 Schematic illustration for (A) the preparation of cryptobiotic DG@TA-FeIII NPs and (B) the underlying mechanism for “AND” logic

gate controlled DOX release performance in tumor region.
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2.3. Fabrication of cryptobiotic DG@TA-FeIII NPs

The cryptobiotic DG@TA-FeIII NPs were developed by subse-
quently depositing TA and FeIII molecules on the surface of DG
NPs to form conformal TA-FeIII shell via polyphenol‒metal co-
ordination chemistry. Typically, 1 mL of TA aqueous solution
(10 mg/mL) was quickly added into DG NPs suspension (100 mg,
99 mL) under vigorous stirring for 30 min. After several centri-
fugation/washing cycles, the collected DG@TA NPs was then
resuspended in DI water (99 mL) and followed addition of
FeCl3$6H2O solution (1 mL, 10 mg/mL). With magnetic stirring
for 30 min at room temperature, the cryptobiotic DG@TA-FeIII

NPs could be obtained by standard purification process.

2.4. Characterization of DG@TA-FeIII NPs

Hydrodynamic diameters and zeta potential of as-prepared NPs
were measured at 25 �C by using a Zetasizer� Nano-Series in-
strument (Nano ZS90, Malvern Instruments Ltd., Worcestershire,
UK). The ultravioletevisibleenear-infrared light (UVeViseNIR)
absorption spectra of NPs were measured by a U-5100 UV spec-
trophotometer (Hitachi, Tokyo, Japan) at room temperature. The
morphologies of NPs were observed by scanning electron micro-
scope (SEM, Hitachi SU8020, Tokyo, Japan) and transmission
electron microscope (TEM, JEM-2100F, JEOL, Tokyo, Japan).

2.5. In vitro iron ion and DOX release performance

A typical 1,10-phenanthroline chromogenic method was utilized
to test the ATP/pH sensitive disassembly of TA-FeIII shell. In
brief, 3 mL of DG@TA-FeIII NPs (1 mg/mL) was packaged in a
dialysis bag with a molecular weight cut-off of 14 kDa. After
immersed in 27 mL PBS with various concentrations of ATP and
pH values, 3 mL of the releasing buffer was taken out and
supplemented with the same volume of fresh PBS at pre-
determined time intervals. After adding hydroxylamine hydro-
chloride to the taken solution and reacting with 1,10-
phenanthroline (1 mg/mL) for 15 min, the released iron ion
could be calculated by measuring the absorbance at 510 nm. The
released amount of DOX was also determined by incubating the
sealed DG@TA-FeIII NPs (1 mg/mL, 3 mL) with different stimuli
(ATP, acidic pH, gelatinase).

2.6. Photothermal conversion effect of DG@TA-FeIII NPs

Gradient concentrations of DG@TA-FeIII NPs (200 mL) were
irradiated for 3 min by a continuous NIR laser (MDLeIIIe808-2,
Changchun New Industries Optoelectronics Technology Co., Ltd.,
Changchun, China). The solution temperature was monitored and
recorded by an IR thermal camera (Ti125, Fluke, Everett, WA,
USA). For the photothermal conversion efficiency test of as-
prepared DG@TA-FeIII NPs, 2 mL of DG@TA-FeIII NPs were
irradiated to reach the plateau of maximum temperature (58 �C),
and finally the photothermal conversion efficiency was calculated
to be around 36.1% according to the method reported elsewhere.

2.7. In vitro biocompatibility evaluation of DG@TA-FeIII NPs

Human Umbilical Vein Endothelial Cells (HUVECs) were used
here as a normal cell line to investigate the cytotoxicity of
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DG@TA-FeIII NPs by a standard MTT assay. For evaluating the
hemocompatibility, gradient concentrations of DG@TA-FeIII

NPs were incubated with diluted healthy rabbit blood at 37 �C
for 3 h. After centrifugation, the absorbance of supernatant at
450 nm was measured to calculate the relative percent hemo-
lysis. The blood mixed with isosmotic normal saline and DI
water was used as the negative and positive controls,
respectively.

2.8. Enhanced cellular uptake of DOX upon NIR laser
irradiation

Exponentially growing 4T1 cancer cells were seeded in 24-well
culture plates with a density of 1 � 105 cells per well. After
proliferation for 24 h, the culture medium was refreshed with 1 mL
of RPMI 1640 containing DG@TA-FeIII NPs (100 mg/mL) or free
DOX with equivalent concentration of 1.1 mg/mL. The cells were
then irradiated by an NIR laser (808 nm, 2 W/cm2) immediately
for 0, 3 and 5 min. Following a further incubation for 10 min, the
cells were fixed with 4% of paraformaldehyde for 30 min and
treated with 0.1% of Triton X-100/PBS (10 min) for enhanced
permeabilization. After that, a standard nucleus staining assay was
performed by incubating 4T1 cancer cells with 10 mg/mL of 40,6-
diamidino-2-phenylindole (DAPI). Finally, the intracellular uptake
of DOX with various treatments after typical rinsing with PBS
buffer was imaged by inverted fluorescence microscope.

2.9. In vivo tumor inhibition study

All animal experimental protocols were performed in accordance
with the Guidelines for Care and Use of Laboratory Animals of
Hefei University of Technology and approved by the Institutional
Animal Care and Use Committee of Hefei University of Tech-
nology, Hefei, China.

Female BALB/c mice were subcutaneously injected with mu-
rine 4T1 cancer cells (1 � 106 cells per mouse, 100 mL) and
randomly grouped when the tumor volume achieved to w80 mm3.
The dosage of intravenously administered free DOX$HCl was
2 mg/kg. For DG@TA-FeIII NPs-treated mice, the dosage of
DG@TA-FeIII NPs was 50 mg/kg with an equivalent DOX dosage
of 0.5 mg/kg (10 mg/mL, 100 mL). Then, tumors were selectively
illuminated with/without NIR laser (808 nm, 1 W/cm2) for 10 min.
After various treatments, the tumor volume and body weight of
mice were recorded every other day as well as the characteriza-
tions of typical H&E histological and TUNEL immunofluorescent
staining of tumor slices.

2.10. Statistical analysis

The data statistical analysis was carried out by using typical
Student’s t-test model. Data were expressed as mean � SD, nZ 3.
Differences at P < 0.01 and P < 0.001 were considered statisti-
cally significant and highly significant, respectively.

3. Results and discussion

3.1. Characterization of DG@TA-FeIII NPs

After mixing DOX and glutaraldehyde (GTA) molecules with
various feeding ratio at room temperature for 2 h, the mono-
dispersed gelatin NPs which developed from a well-reported two-
step desolvation method were then quickly added into the alde-
hydated DOX solution33,34. Following 2-h intense agitation, the
DG NPs could be collected by a typical centrifugation/rinsing
process. As shown in Supporting Information Table S1 and
Fig. S1, the content of covalently-linked DOX and diameter of
obtained DG NPs were elevated as the feeding amount of GTA
molecules increased, further confirmed by the gradually deepened
pink solution color of DG NPs (inset of Fig. S1). Considering the
delivery advantage of NPs with small size, optimized DG NPs
with a feeding weight ratio of 1:50 of DOX versus GTAwere thus
chosen for further study.

Benefitting from the adhesive catechol chemistry35,36, the
polyphenol TA and FeIII ions could be deposited successfully on
the surface of DG NPs evidenced by the corresponding solution
color change of obtained DG@TA and DG@TA-FeIII NPs
(Fig. 1A). In addition, the characteristic absorption peak at 276 nm
of TA (assigned to the p-system of the benzene ring) was shifted
and splited into two absorption peaks at 235 and 315 nm, further
suggesting the formation of TA-FeIII complex. As seen from
Fig. 1B, the zeta potential of NPs was reversed from positive DG
NPs (þ15.9 mV) to negative DG@TA NPs (�13.7 mV) and
DG@TA-FeIII NPs (�24.8 mV), demonstrating the good pack-
aging effect of TA-FeIII shell with a slight increase in hydrody-
namic diameter distribution (Fig. 1C). As seen from TEM and
SEM images (Fig. 1D), the obtained DG@TA-FeIII NPs exhibited
monodispersed spherical morphologies with rough surfaces con-
sisted of TA-FeIII complex which were confirmed by the element
mapping results (Fig. 1E).

Due to the protonated hydroxyl groups of TA molecules in
acidic conditions, the TA and FeIII-coordinated complex would
dynamically transit from tris-, bis-to mono-analogues as evi-
denced by the stability constants of TA-FeIII are 2.8 � 1017,
3.4 � 109 and 1.5 � 105 at pH 8.0, 5.0 and 2.0, respectively37.
This pH-dependent and dynamic binding performance urged us to
investigate the storage stability of as-prepared DG@TA-FeIII NPs.
Due to the hydrophilic and negative charged surface, no signifi-
cant change in hydrodynamic diameter and absorbance (808 nm)
of DG@TA-FeIII NPs could be observed in various mediums
including DI water, PBS and RPMI-1640 cell culture medium
with a pH value of 7.4 (Fig. 2A and B). In contrast, the absorbance
of DG@TA-FeIII NPs solution could be drastically decreased after
incubating in acidic mediums (pH 5.0 and 6.0). The underlying
mechanism was that the hydroxyl groups of TA molecules would
be protonated at acidic conditions and partial of TA-FeIII shells
were then destabilized from the NPs’ surface to not only expose
the inner DG cores but also crosslink the neighboring NPs which
consequently led to rapid aggregation of DG@TA-FeIII NPs
(Fig. 2C). Actually, although the increased diameter of DG@TA-
FeIII NPs may not be useful for promoting intracellular uptake by
tumor cells, this acidic pH-induced unlock and aggregation are
supposed to be beneficial for the long-retention and DOX release
in mild acidic tumor microenvironment.

Next, the long-term storage stability of DG@TA-FeIII NPs at
pH 7.4 motivated us to test their cytotoxicity by standard
methylthiazolyldiphenyl-tetrazolium bromide (MTT) and hemo-
lytic procedures. Despite containing chemotherapeutic DOX
molecules, the as-prepared DG@TA-FeIII NPs still occupied good
biocompatibility to HUVECs (used here as model normal cells) as
the relative viability of HUVECs could reach 83.7 � 3.1% after
24 h incubation with 600 mg/mL of DG@TA-FeIII NPs, suggesting
negligible DOX was released during the incubation (Supporting
Information Fig. S2). In addition, after adding gradient



Figure 1 Characterization of as-prepared DG@TA-FeIII NPs. (A) UVeViseNIR absorbance spectra (inset: photographs of corresponding NPs

aqueous solution); (B) zeta potential and (C) average hydrodynamic diameter of freshly prepared NPs, data are expressed as mean � SD (n Z 3);

(D) typical cartoon analogues, TEM and SEM images; (E) element mapping of DG@TA-FeIII NPs.
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concentrations of DG@TA-FeIII NPs into freshly diluted rabbit
blood for 3 h, all NPs incubated groups exhibited negligible
percent hemolysis (less than 3%) which were comparable to
negative control (isosmotic normal saline, Fig. 2D). Thus, all of
the above data indicated the good biocompatibility of as-prepared
DG@TA-FeIII NPs which was essential for further biomedical
application.

3.2. “AND” logic gate-controlled DOX release

According to our hypothesis, the cryptobiotic DG@TA-FeIII NPs
was expected to show negligible premature DOX leakage before
arriving at tumor sites and “AND” logic gate-controlled DOX
delivery by sequential disassembly of TA-FeIII protective shell and
enzymolysis of inner DG cores (Fig. 3A). To approve this “AND”
logic gate performance, the pH and ATP-responsive disassembly
behaviors of TA-FeIII shell were firstly verified in vitro. By
packaging DG@TA-FeIII NPs which were dispersed in PBS with
various pH or gradient concentrations of ATP in dialysis bags
(MW Z 14,000 Da), the concentrations of released iron were
determined by a typical 1,10-phenanthroline chromogenic
method38. As expected, as the stability constants of TA-FeIII

decreased when the solution became more acidic, nearly 47.8%
and 84.3% of iron could be disassembled from protective TA-FeIII
shells for 12 h when DG@TA-FeIII NPs were incubated in acidic
PBS with a pH value of 6.0 and 5.0, respectively. In sharp contrast,
only 9.8% of iron was released at pH 7.4 (Fig. 3B). Moreover,
inspired by the upregulated level of ATP in cancerous tissues and
stronger binding affinity of ATP-FeIII than polyphenol-FeIII

coordination39e41, the ATP-triggered disassembly of TA-FeIII

shell from DG@TA-FeIII NPs was also investigated. As shown in
Fig. 3C, the amount of iron released from DG@TA-FeIII NPs was
almost negligible in the absence of ATP, while it increased as not
only the prolonged time but also elevated ATP dosage. Particu-
larly, nearly 68.4% and 75.6% of iron could be destabilized from
TA-FeIII shells when mixing with 1.0 mg/mL of ATP for 4 and
12 h, respectively. Therefore, the specific and sensitive pH/ATP
dependent TA-FeIII shells disassembly was attractive for realizing
minimized premature DOX leakage at circulated body fluids and
potential burst DOX release at acidic and ATP-upregulated tumor
microenvironment.

Motivated by the sensitive pH/ATP responsive disassembly of
TA-FeIII shells, DOX release profiles of totally naked DG NPs with
or without gelatinase was evaluated subsequently in vitro (Fig. 3D).
Upon addition of gelatinase (mimic MMP 2/9 in tumor region) for
12 h, around 82.1% of conjugated DOX could be quickly liberated
from DG NPs which is over 6-fold increase versus the system
without enzyme, suggesting the efficient enzymolysis of DG NPs



Figure 2 Stability and biocompatibility evaluation of DG@TA-FeIII NPs. (A) Average hydrodynamic diameter and (B) relative absorbance at

808 nm of NPs in various medium for different days; (C) photographs and typical TEM images of aqueous NPs solutions with different pH; (D)

hemolysis assay. Data are expressed as mean � SD (n Z 3).

Figure 3 In vitro “AND” logic gate controlled DOX delivery performance. (A) Schematic illustration of sequential disassembly and enzy-

molysis process of DG@TA-FeIII NPs; time-dependent release of FeIII from DG@TA-FeIII NPs at various (B) pH and (C) ATP concentration; (D)

DOX release performance of DG NPs (3.0 mg/mL, 3.0 mL) with the enzymolysis of gelatinase; cumulative DOX release profiles from DG@TA-

FeIII NPs (1 mg/mL, 3.0 mL) under the assistance of various (E) pH and (F) ATP concentration; (G) cumulative DOX release profiles under

various conditions. Data are expressed as mean � SD (n Z 3), **P < 0.01, ***P < 0.001.
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could be realized by gelatinase. Hence, the sequential “AND” logic
gate-controlled DOX release from cryptobiotic DG@TA-FeIII NPs
was then further tested by synergistic TA-FeIII shell disassembly
(triggered by acidic pH or ATP) and DG core enzymolysis (sensi-
tive to MMP 2/9). From Fig. 3E and F, although either acidic pH or
ATP could unlock the TA-FeIII shells, nearly no conjugated DOX
molecules would be released without the assistance of gelatinase.
Equally, it seems also impossible for gelatinase to directly cut off
DOX molecules from DG@TA-FeIII NPs due to the hinder effect of
intact TA-FeIII shells, indicating a significant sequential “AND”
logic gate-based drug release profile. Moreover, to mimic the
coexistence of acidic pH and upregulated ATP level, the simulta-
neous disassembly of TA-FeIII shells by ATP and acidic pH would
provide more chances for gelatinase to hydrolyze inner DG cores
(Fig. 3G), consequently resulting in facilitated cytotoxic DOX
release which is beneficial for tumor-targeted drug delivery with
minimized adverse effects.
Figure 4 (A) UVeViseNIR absorption spectra and photograph (inset

photothermal conversion effect which depended on (B) NPs dosage and (C

cancer cells with various treatments.
3.3. Enhanced cellular uptake of DOX under NIR light
irradiation

In light of the well-reported phenomenon that hyperthermia would
promote cellular uptake of chemotherapeutic drug by accelerated
cell metabolism and membrane fluidity42, the concentration-
dependent broad UVeViseNIR absorption spectra of DG@TA-
FeIII NPs solution which dispersed either in DI water or RPMI-
1640 cell culture medium not only suggested its good dispersity
but also encouraged us to evaluate the photothermal conversion
efficiency (Fig. 4A and Supporting Information S3). As expected,
DG@TA-FeIII NPs possessed good photothermal conversion ca-
pacity derived from their photosensitive TA-FeIII shells with both
NPs’ dosage and power density of incident NIR light dependent
manners (Fig. 4B and C). For instance, exposing DG@TA-FeIII

NPs solution (200 mL) with gradient concentrations of 50, 100,
150, 200, 300 and 400 mg/mL to NIR light (808 nm, 2.0 W/cm2)
) of gradient concentrations of DG@TA-FeIII NPs aqueous solution;

) power density of incident NIR light; (D) fluorescent images of 4T1



Figure 5 Characterization of synergistic tumor inhibition in vivo from DG@TA-FeIII NPs under the assistance of NIR laser irradiation. (A) IR

thermal images and (B) quantized tumor temperature changes; (C) relative tumor volume and (D) photograph of dissected tumor samples as well

as tumor weight at 16th day after various treatments as indicated, data are expressed as mean � SD (nZ 5); (E) H&E histological analysis and (F)

TUNEL immunofluorescence characterizations of dissected tumor samples with various treatments; *P < 0.05, **P < 0.01.
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for 3 min would elevated the solution temperature from 25 to 31.4,
36.2, 39.6, 46.1, 51.4 and 58 �C, respectively, while only 0.8 �C
temperature rise was observed for DI water. In addition, the
considerable photothermal stability and conversion efficiency
(around 36.1%) suggested that DG@TA-FeIII NPs could act as an
efficient photothermal agent (Supporting Information Fig. S4).

Chemocytotoxic DOX molecules were covalently conjugated
to the gelatin NPs through typical aldimine condensation without
forming any thermo-sensitive bonds which led to the non-thermo
responsive DOX release performance from DG NPs (Supporting
Information Fig. S5). Nevertheless, the well-known heat-pro-
moted cellular uptake of drug inspired us to investigate the
possibility of accelerated DOX internalization induced by
DG@TA-FeIII NPs under NIR laser illumination. As shown in
Fig. 4D and Supporting Information Fig. S6, no significant dif-
ference on cellular uptake of free DOX (1.1 mg/mL) could be
observed with NIR laser irradiation (808 nm, 2.0 W/cm2) for 0, 3
and 5 min. In contrast, a steady increase of DOX fluorescence
was found in 4T1 cells treated with 100 mg/mL of DG@TA-FeIII

NPs and NIR light illumination. Thus, benefiting from the
controlled tumor-targeted NIR laser irradiation, DG@TA-FeIII

NPs would be anticipated to exhibit a noteworthy synergistic
cancer cell killing effect.

3.4. In vivo synergistic tumor inhibition

After evaluating the localized photothermal ablative capacity of
DG@TA-FeIII NPs by a well-reported Live/Dead cell staining
assay (Supporting Information Fig. S7), the synergistic PTT-
chemo cancer cell killing efficiency resulted from DG@TA-FeIII

NPs plus NIR light illumination was further evaluated in vivo by
using 4T1 tumor xenograft in BALB/c female mice. Randomly
grouped mice (n Z 8) with average tumor volume of w80 mm3

were treated with PBS þ NIR laser, Gelatin@TA-FeIII NPs, free
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DOX, DG@TA-FeIII NPs, Gelatin@TA-FeIII NPs þ NIR laser and
DG@TA-FeIII NPs þ NIR laser, respectively. Upon 10 min of
tumor-targeted NIR laser irradiation (808 nm, 1.0 W/cm2), the
localized tumor temperature of PBS treated group was only
slightly increased to 38.9 �C, demonstrating the safety of incident
light. In contrast, owing to the good photothermal conversion
ability of TA-FeIII shells, the temperature of tumor treated with
Gelatin@TA-FeIII NPs and DG@TA-FeIII NPs could locally
achieved to around 50.2 and 50.4 �C, respectively (Fig. 5A and B).

The tumor volume of mice was monitored every other day to
evaluate the therapeutic efficiency. As shown in Fig. 5C, the tu-
mors treated with PBS þ NIR laser and Gelatin@TA-FeIII NPs
showed fast proliferating behaviors within 16 days, while
quadruple free DOX (2.0 mg/kg) was also shown slight tumor
inhibition effect due to poor tumor accumulation and the low
dosage used here. For the mice treated with Gelatin@TA-FeIII

NPs þ NIR laser and DG@TA-FeIII NPs, notable tumor inhibition
but subsequent recurrence occurred due to insufficient generated
heat and dosage of released DOX in this study. Satisfactorily,
nearly completely tumor inhibition and no recurrence occurred in
the following 16 days were achieved in DG@TA-FeIII NPs þ NIR
laser group, indicating a synergistic cancer cell killing effect by
combined photothermal‒chemo therapy (Fig. 5D and Supporting
Information Fig. S8).

Typical H&E histological (Fig. 5E) and TUNEL immunoflu-
orescent staining (Fig. 5F) of tumor slices in various treated
groups were further carried out. No significant morphological
changes and TUNEL signals (green fluorescence) were observed
in PBS þ NIR laser and Gelatin@TA-FeIII NPs groups. In com-
parison to free DOX-treated tumors, more cytoplasm shrinking
and TUNEL signals could be found in DG@TA-FeIII NPs group
due to the tumor targeted burst release of cytotoxic DOX mole-
cules. As expected, DG@TA-FeIII NPs þ NIR laser group present
the most serious cell destruction and TUNEL signals in tumor
cells owing to the synergistic photothermal‒chemo effect. More-
over, the characterizations of body weight (Supporting Informa-
tion Fig. S9) and major organ histological analysis (Supporting
Information Fig. S10) suggested that no significant side effects
would be induced by DG@TA-FeIII NPs as well as NIR laser
illumination. Therefore, cryptobiotic DG@TA-FeIII NPs would
occupy promising tumor-preferred cytotoxicity due to “AND”
logic gate-controlled DOX delivery as well as synergistic photo-
thermal‒chemo effect with the assistance of NIR laser irradiation.
4. Conclusions

Inspired by the natural cryptobiosis with environment sensitive
shells and polyphenol‒metal coordination chemistry, DG@TA-
FeIII NPs were successfully developed here as a “AND” logic gate
nanoplatform for controlled DOX delivery. Benefiting from the
altered tumor microenvironment, DG@TA-FeIII NPs would go
through a TA-FeIII shells disassembly by acidic pH/ATP and
subsequent enzymolysis of inner DOX-conjugated DG cores to
realize tumor-specific DOX release with minimized premature
drug leakage in surrounding healthy tissues. Moreover, the pho-
tothermal conversion ability of TA-FeIII complex also endowed
DG@TA-FeIII NPs good potential for synergistic photothermal‒
chemo tumor inhibition. Therefore, our study presented a simple
strategy for developing crytobiotic “AND” logic gate nanoplat-
form with tumor-specific drug delivery by forming polyphenol‒
metal complexes on enzyme degradable drug conjugates.
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