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Most high-dimensional datasets are thought to be inherently
low-dimensional—that is, data points are constrained to lie on a
low-dimensional manifold embedded in a high-dimensional ambi-
ent space. Here, we study the viability of two approaches from
differential geometry to estimate the Riemannian curvature of
these low-dimensional manifolds. The intrinsic approach relates
curvature to the Laplace–Beltrami operator using the heat-trace
expansion and is agnostic to how a manifold is embedded in a
high-dimensional space. The extrinsic approach relates the ambi-
ent coordinates of a manifold’s embedding to its curvature using
the Second Fundamental Form and the Gauss–Codazzi equation.
We found that the intrinsic approach fails to accurately estimate
the curvature of even a two-dimensional constant-curvature man-
ifold, whereas the extrinsic approach was able to handle more
complex toy models, even when confounded by practical con-
straints like small sample sizes and measurement noise. To test the
applicability of the extrinsic approach to real-world data, we com-
puted the curvature of a well-studied manifold of image patches
and recapitulated its topological classification as a Klein bottle.
Lastly, we applied the extrinsic approach to study single-cell tran-
scriptomic sequencing (scRNAseq) datasets of blood, gastrulation,
and brain cells to quantify the Riemannian curvature of scRNAseq
manifolds.

differential geometry | Riemannian curvature | data manifold |
Laplace-Beltrami | single-cell transcriptomics

H igh-dimensional biological datasets have become prevalent
in recent decades because of new technologies, such as high-

throughput single-cell transcriptomic sequencing (scRNAseq)
(1–3), mass cytometry (4, 5), and multiplex imaging (6, 7). Inter-
pretation and visualization of such high-dimensional datasets
have been challenging, however, prompting the development of
tools for nonlinear projection of data points onto two or three
dimensions (8). These tools, such as IsoMAP (9), t-SNE (10),
and UMAP (11), appeal to the ansatz that data points in a
high-dimensional ambient space are constrained to lie on a low-
dimensional manifold. Unfortunately, determining the geometry
of a low-dimensional manifold from these visualizations is dif-
ficult, since many geometric properties are lost after projecting
onto two or three dimensions. For example, the cartographic
projections used in an atlas to flatten Earth’s curved surface
tear apart continuous neighborhoods and nonuniformly stretch
distances.

Fortunately, topology and differential geometry provide a
wealth of concepts to characterize a manifold’s shape directly
without confounding projections. In particular, homology (12, 13)
categorizes a manifold according to the number of holes it con-
tains and the dimensionality of each hole (whereas, for example,
the hole in a hollow sphere does not survive projection onto a
two-dimensional plane). Similarly, the metric tensor defined at
each point p on a manifold, gij (p) = 〈vi , vj 〉 for a local basis
{v}, determines the lengths of vectors tangent to the manifold

at p and the angles between them (14). The metric tensor may
either be directly specified for a manifold or implicitly specified
according to the metric tensor of the ambient space (which, in the
case of Rn , is often given by the Euclidean metric, gij (p) = δi,j ).
By using the metric, shortest-distance paths between pairs of
points on a manifold, known as geodesics (9), can be determined
without any distortion from a projection (whereas, for exam-
ple, most atlases exaggerate distances at the poles). Likewise,
the metric can be used to determine the curvature (15), a local
manifold property that quantifies the extent to which a mani-
fold deviates from the tangent plane at each point p. Projecting
a manifold onto a plane for visualization destroys this prop-
erty by definition. Recent methods have emerged for estimating
homology (16, 17), metrics (14), and geodesics (18) from noisy,
sampled data, with accompanying statistical guarantees (18–20).
These methods have been applied to analyze images (21, 22) and
biological datasets (23, 24). However, estimating curvature has
received less attention, although it is fundamental to quantifying
geometry.

Curvature arises from two sources. On the one hand, a man-
ifold itself can be curved, resulting in Riemannian or intrinsic
curvature. A sphere has intrinsic curvature because it cannot
be flattened so that all geodesics on its surface correspond to
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straight lines on a Euclidean plane (Fig. 1A). On the other hand,
the embedding of a manifold in an ambient space can give rise
to extrinsic curvature, a property that is not inherent to the man-
ifold itself. For example, a scroll has extrinsic curvature because
it is formed by rolling a piece of parchment, but the parchment
itself is not inherently curved (Fig. 1B). It is important to note
that both types of curvature scale inversely with the global length
scale (L) associated with a manifold. It is for this reason that a
marble (L≈ 1 cm) is visibly round, but the Earth (L≈ 10, 000
km) is still mistaken by some to be flat. Since intrinsic curvature
is an inherent property of a manifold, while extrinsic curvature is
incidental to an embedding, we will restrict our attention to the
former.

A precise description of intrinsic curvature is provided by the
Riemannian curvature tensor, Rlkij(p). For a given basis {v}, this
tensor quantifies how much a vector initially pointing in direc-

A

B

C

D

Fig. 1. Riemannian curvature is an intrinsic property of a manifold, while
extrinsic curvature depends on the embedding. (A, Left) N = 104 points
uniformly sampled from the two-dimensional hollow unit sphere, S2,
embedded in the three-dimensional ambient space R3, colored according to
the z coordinate. S2 has Riemannian or intrinsic curvature because there is
no projection onto two-dimensional Euclidean space that preserves geodesic
(shortest-path) distances. (A, Right) For example, a stereographic projection
using the point p = (0, 0, 1) and the plane z = 0 introduces distortions since
the geodesic distance between any pair of points in the lower hemisphere
is (nonuniformly) larger than the Euclidean distance in this projection. (B,
Left) N = 104 points uniformly sampled from a scroll, which is also a two-
dimensional manifold embedded in R3. The scroll has extrinsic curvature
because it curls away from the tangent plane at any point. (B, Right) How-
ever, it does not have intrinsic curvature, because it can be projected onto
two-dimensional Euclidean space in a way that preserves geodesic distances,
by unfurling. (C) Intrinsic differential geometry treats manifolds as self-
contained objects that can be described by using only intrinsic coordinates,
which do not depend on any embedding or ambient space. One possible set
of intrinsic coordinates for S2 are polar coordinates, where θ1 and θ2 are
the azimuthal and elevation angles, respectively. While this representation
superficially resembles the unfurled scroll in B, distances in this plane are
non-Euclidean, since the non-Euclidean induced metric is required to pre-
serve the interpretation of distances with respect to R3. Any line segment
along θ2 =±π

2 has zero length, for example. (D) Extrinsic differential geo-
metry defines manifolds in the coordinate system of the ambient space,
which requires a privileged vantage point off the manifold itself. Both
intrinsic and extrinsic differential geometry can be used to compute intrin-
sic curvature, whereas only extrinsic differential geometry can be used to
compute extrinsic curvature (as indicated by the black arrows).

tion vk is displaced in direction vl after parallel transport around
an infinitesimal parallelogram defined by directions vi and vj . If
the manifold has no intrinsic curvature, this displacement is zero.
Conversely, when a vector is moved by parallel transport around
a closed loop on a manifold with intrinsic curvature, its initial and
final orientations may differ, a phenomenon known as holonomy.
For example, if a vector is moved around the closed loop bound-
ing an octant of a sphere, it will rotate by π

2
after one cycle. The

simplest intrinsic curvature descriptor is scalar curvature, S(p),
which is formed by contracting Rlkij(p) to a scalar quantity, as its
name suggests. When S(p) is greater (less) than zero, the sum of
the angles of a triangle formed by connecting three points near
p by geodesics is greater (less) than π. Likewise, when S(p) is
greater (less) than zero, a small ball centered at p has a smaller
(larger) volume than a ball of the same radius in Euclidean
space. We furnish toy examples in the section Curvature Can Be
Computed Accurately by Using the Second Fundamental Form to
provide stronger intuition for this quantity.

In theory, intrinsic curvature can be equivalently computed by
using tools from either one of the two branches of differential
geometry. Intrinsic differential geometry makes no recourse to an
external vantage point off a manifold, just as the polygonal char-
acters in Edwin Abbot’s classic Flatland (25) were confined to
traversing in R2 and found the notion of R3 unfathomable. In
this branch, a manifold is therefore represented in intrinsic coor-
dinates, which are agnostic to any ambient space or embedding.
A hollow sphere represented in polar coordinates and k-nearest-
neighbor (kNN) graph representations of a dataset, for instance,
are in this spirit (Fig. 1C). Conversely, in extrinsic differential
geometry, a manifold is treated as a surface embedded in an ambi-
ent space and is represented in ambient coordinates (Fig. 1D).
The surface of an organ is parameterized this way, for example,
in a surgical robot suturing an incision.

In this work, we explore two approaches for estimating intrin-
sic curvature based on these twin views, keeping in mind prac-
tical limitations of real-world datasets, which may consist of
a relatively small number of noisy measurements. The first
approach uses the Laplace–Beltrami operator, which is theo-
retically appealing as an intrinsic quantity that is embedding-
invariant and whose application to geometric data analysis is well
studied (14, 26–29). It has been used for dimensionality reduc-
tion, clustering, and classification of high-dimensional point
cloud data (26, 30) and for quantifying geometric features of
two-dimensional surface meshes (31, 32), including scalar curva-
ture (27). However, for the task of computing curvature for point
clouds, we found that the Laplace–Beltrami operator could not
be estimated to sufficient accuracy from small sample sizes (N =
104), suggesting that curvature estimation is especially demand-
ing for point cloud data. Meanwhile, the second approach uses
the Second Fundamental Form and the Gauss–Codazzi equation
(15), identities that rely on information from the ambient space.
We find that this extrinsic approach is not only more robust to
small sample sizes and noise, but permits computation of the full
Riemannian curvature tensor, though we focus on the scalar cur-
vature for simplicity. Using these insights, we developed a soft-
ware package to compute the scalar curvature (and associated
uncertainty) at each sampled point on a manifold and applied
this tool to investigate the curvature of image and scRNAseq
datasets.

Results
Estimators of the Laplace–Beltrami Operator Yield Inaccurate Scalar
Curvatures. Intrinsic differential geometry treats a d -dimensional
manifold, M , as a self-contained object and is agnostic to how M
may be represented in ambient coordinates due to any particu-
lar embedding (Fig. 1C). Conceptually, this is accomplished by
only considering M as a collection of local, overlapping neigh-
borhoods. The geometry of these neighborhoods is encoded by
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using tools such as the Laplace–Beltrami operator, ∆M , which
captures diffusion dynamics across neighborhoods at a time scale
t (see, for example, ref. 33 for a more detailed discussion). For
most practical applications, we do not have direct access to M ,
but instead to a finite number (N ) of points sampled from M .
For these cases, estimators of ∆M are used instead. These esti-
mators are well-studied (14, 26–29), and the convergence rates
of some have been characterized (34).

The scalar curvature averaged across M has a well-known
connection to ∆M via the heat-trace expansion (27, 35), which
relates the eigenvalues, λk , of ∆M to the geometry of M :

Z (t)≡
∞∑
k=1

e−λk t = (4πt)−
d
2

[
n∑

i=0

ci t
i
2 + o

(
t

n+1
2

)]
,λk ≤λk+1.

[1]
The first few coefficients, ci , are given by (27):

c0 =

∫
M

dM ,

c1 =−
√
π

2

∫
∂M

d (∂M ),

c2 =
1

6

∫
M

S dM − 1

6

∫
∂M

J d (∂M ),

[2]

where ∂M is the boundary of the manifold and J is the mean
curvature on ∂M . Recall that S is the point-wise scalar curvature.
By inspection, c0 is the volume, c1 is proportional to the area, and
c2 is directly related to the average scalar curvature.

We reasoned that if the average scalar curvature cannot be
accurately computed for a manifold with constant scalar curva-
ture using these relations, then computing the point-wise scalar
curvature for more complex manifolds is intractable. To investi-
gate this, we considered the two-dimensional hollow unit sphere,
S2, for which the true scalar curvature is S(p) = 2∀p ∈M , and
uniformly sampled N = 104 points to mirror the typical size of
current scRNAseq datasets (Fig. 1A; SI Appendix, Supporting
Methods, section D.1.1).

Since common estimators of ∆M only yield as many eigen-
values as data points (N ), we cannot compute the infinite set
of eigenvalues needed in Eq. 1. Therefore, we introduced a
truncated series with m eigenvalues, zm(x ), where we have sub-
stituted x =

√
t and divided through by the prefactor in the

right-hand side of Eq. 1 to isolate for ci , following the approach
in (27):

zm (x ) = (4π)
d
2 x d

m∑
k=1

e−λk x
2

. [3]

The scalar curvature can then be approximated by fitting the
truncated series, zm(x ), to a second-order polynomial, p2(x ),
over intervals of small x :

zm (x )≈ p2 (x ), where

p2 (x ) = c0 + c1x + c2x
2.

[4]

We estimated ∆M using the N sampled points (SI Appendix,
Supporting Methods, section B.6), substituted the eigenvalues of
the estimate into Eq. 3, and numerically fit zm(x ) to p2(x ) (SI
Appendix, Fig. S1 A–G and Supporting Methods, section B.1).
We obtained the scalar curvature by inspecting the resulting c2
coefficient and compared the result to the true value of two.
We found that the scalar curvature was always overestimated
(S > 3), regardless of m , the number of eigenvalues used in
the truncated series (SI Appendix, Supporting Methods, section
B.3), or the choice of estimator for ∆M (SI Appendix, Supporting
Methods, section B.6). We identified the poor convergence of

the estimated eigenvalues of ∆M as the source of error (SI
Appendix, Supporting Methods, section B.4) and found that at
least N ≈ 107 points are required to reduce the error to ±0.5,
so that S ≈ 2.5 (SI Appendix, Fig. S1H). This is several orders
of magnitude greater than what is typically feasible in current
scRNAseq experiments. Noise and nonuniform sampling
would confound the issue further. Most importantly,
we would eventually like to compute local values of
S(p) ∀p ∈M , but this approach failed to correctly recover
even average scalar curvature, which one might have
expected to be feasible. To find an alternative approach,
we next considered tools from extrinsic differential
geometry.

Curvature Can Be Computed Accurately by Using the Second Fun-
damental Form. In extrinsic differential geometry, a manifold is
described in the coordinates of the ambient space in which it is
embedded, usually Rn (Fig. 1D). Since the shape of the sphere in
Fig. 1A is visually unambiguous to the eye (thanks to its extrinsic
view from a vantage point off the manifold), we reasoned that an
extrinsic approach would be more fruitful.

A d -dimensional manifold, M , embedded in Rn can be
described at each point p in terms of a d -dimensional tan-
gent space, TM (p), and an (n − d)-dimensional normal space,
NM (p), as shown in Fig. 2A. Given orthonormal bases for TM (p)
and NM (p), points in the neighborhood of p can be expressed as
Y = [t1, . . . , td ,n1, . . . ,nn−d ], where ti is Y ’s coordinate along
the i th basis vector of TM (p) and nk is Y ’s coordinate along the
k th basis vector of NM (p). The nk s can then be locally approxi-
mated as functions of the tis; i.e., nk ≈ fk (t1, . . . , td), as shown in
Fig. 2B.

The Riemannian curvature of M is related to the quadratic
terms in the Taylor expansion of each fk with respect to the tis.
Specifically, the Second Fundamental Form of M , hk

ij , gives the
second-order coefficient relating each fk to the quadratic term
ti tj (36):

hk
ij (p) =

∂2fk
∂ti∂tj

∣∣∣∣
p

. [5]

The Riemannian curvature tensor is related to the Sec-
ond Fundamental Form according to the Gauss–Codazzi
equation (15):

Rijkl =
(
hαjkh

β
il − hβjih

α
kl

)
gαβ , [6]

where gαβ is the metric of the ambient space, which we take to
be the usual Euclidean metric δα,β going forward. The scalar cur-
vature can be obtained by contracting the Riemannian curvature
tensor:

S =
∑
i,j

Rijij. [7]

This suggests a conceptually simple procedure to estimate the
scalar curvature of a data manifold at each point p: 1) Estimate
TM (p) and NM (p); 2) determine hk

ij (p) in local coordinates; and
3) compute S(p) using Eqs. 6 and 7. We developed a compu-
tational tool that provides an implementation of this procedure.
Briefly, given a set of data points {X }∈Rn and manifold dimen-
sion d , a neighborhood around each point p is selected to be
the n-dimensional ball centered on p of radius r encompassing
Np(r) points (SI Appendix, Supporting Methods, section C.2). For
each point p, Principal Component Analysis (PCA) (37) is per-
formed on the Np(r) points in its neighborhood, and the first d
(last n − d) principal components (PCs) accounting for the most
(least) variance are taken as an orthonormal basis for TM (p)
(NM (p)). The normal coordinates, nk , of the Np(r) points in
each neighborhood are fit by regression to a quadratic model
in terms of the tangent coordinates, ti , to obtain hk

ij (p) with
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Fig. 2. Scalar curvature is accurately estimated by using the Second Fundamental Form and the Gauss–Codazzi equation. (A) A hypothetical manifold
(shown in gray) from which data points are sampled (shown as colored dots). The manifold at any given point p (shown in red) can be decomposed into a
tangent space TM(p) (the cyan plane) and a normal space NM(p) (the cyan line). Points in the neighborhood around p (shown in green) can be expressed in
terms of orthonormal bases for TM(p) and NM(p) (see B). (B) The set of points in the neighborhood of p (shown as green dots in A) are represented here in
local tangent (t1, t2) and normal (n1) coordinates, corresponding to orthonormal bases for TM(p) and NM(p), respectively. Coloring corresponds to magnitude
in the normal direction. The normal coordinates (n1) can be locally approximated as a quadratic function (the translucent surface) of the tangent coordinates
(t1, t2), according to the Second Fundamental Form, hk

ij . (C) Scalar curvatures computed by using the extrinsic approach for N = 104 points uniformly sampled

from the two-dimensional hollow unit sphere, S2. The true value is two at all points on the manifold (SI Appendix, Supporting Methods, section D.1.1).
(D) Scalar curvatures (S) computed in C are plotted against their associated SEs (σS). Points enclosed by the red lines have a 95% CI, computed as S± 2σS,
containing the true value of two. (E) As in C, but for N = 104 points uniformly sampled from a one-sheet hyperboloid, H2

2, which is also a two-dimensional
manifold. Due to the radial symmetry of the manifold, scalar curvature only varies only along the z direction (SI Appendix, Supporting Methods, section
D.1.2). (F) Scalar curvatures (black) computed in E with their associated 95% CIs (shown in gray) plotted as a function of the z coordinates of the data
points. The true value is shown as a dashed red line. (G) As in C, but for N = 104 points uniformly sampled from a two-dimensional ring torus, T2. T2 is
constructed by revolving a circle parameterized by θ, oriented perpendicular to the xy plane, through an angle φ around the z axis. The scalar curvature
only depends on the value of θ (SI Appendix, Supporting Methods, section D.1.3). (H) Scalar curvatures computed in G with their associated 95% CIs plotted
as a function of the θ values of the data points. Colors are as in F. (I) Distribution of computed scalar curvatures for N = 104 points uniformly sampled from
the d-dimensional unit hypersphere, Sd , for d = 2, 3, 5, 7. As with S2, these manifolds are isotropic and have constant scalar curvature. The true values are
shown as dashed red lines (SI Appendix, Supporting Methods, section D.1.1).

associated uncertainties (Fig. 2B; SI Appendix, Supporting Meth-
ods, section C.1).

The choice of r(p) is an important one since it sets the length
scale at which curvature is computed for point p (SI Appendix,
Supporting Methods, section C.5). Our tool allows interrogation
of curvature at any length scale of interest by allowing the user to
manually set r(p), a feature we use to inspect real-world datasets
later in the paper. However, since the local geometry of the mani-
fold may be nontrivial and unknown a priori, we also provide the
ability to set r(p) according to statistical, rather than geomet-
ric, principles. Specifically, our tool algorithmically chooses r at
each p so that the uncertainty in hk

ij (p) from regression is less
than a user-specified global parameter, σh (SI Appendix, Sup-
porting Methods, section C.2). Since a larger number of points
reduces the uncertainty in regression, a smaller σh requires a
larger r(p)∀p ∈M . This strategy of setting σh therefore allows
neighborhood sizes to dynamically vary over the manifold based
on the local density of the data, which means that the algorithm
can gracefully handle nonuniform sampling of the manifold. The
choice of σh will depend on the global length scale, L, of the
data points (SI Appendix, Supporting Methods, section C.5), the
average density of sampled points, and, of course, the desired
uncertainty in the estimates of hk

ij . These uncertainties are, in
turn, used to compute an SE, σS , accompanying the scalar cur-
vature estimate at each point, using typical error propagation
formulas (SI Appendix, Supporting Methods, section C.4). We
specify σh instead of σS as the global parameter for choosing

neighborhood sizes, since the latter depends nonlinearly on the
values of hk

ij (p), which makes determining r(p) more difficult.
Our algorithm also computes a goodness-of-fit (GOF) P value

at each p by comparing residuals from regression against a Gaus-
sian distribution to quantify how well the normal coordinates
are fit by a quadratic function (SI Appendix, Supporting Meth-
ods, section C.3). This P value can be tested at significance
level α to declare a fit to be poor when the residuals are sig-
nificantly non-Gaussian. The P value can be disregarded if the
neighborhood size is manually specified to be larger than a
length scale for which a quadratic fit is appropriate. However,
when σh is specified instead, a uniform distribution of these
P values over M indicates that the desired uncertainty results
in neighborhoods that are well approximated using quadratic
regression. We adopted this heuristic when choosing σh for the
datasets studied in this paper (SI Appendix, Supporting Meth-
ods, sections D.3, E.7 and F.6). The software is available at
https://gitlab.com/hormozlab/ManifoldCurvature.

We first applied our algorithm to compute scalar curvatures
for the same N = 104 points uniformly sampled from S2 for
which the intrinsic approach failed (Fig. 2C; SI Appendix, Sup-
porting Methods, section D.1.1). The algorithm yielded scalar
curvature estimates at each point with mean error −0.17 (com-
puted by averaging the difference between the point-wise scalar
curvature estimates and the ground-truth value of two across
all points) using neighborhoods that only contained Np(r)≈ 102

points. This is already superior to the intrinsic approach, which
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failed to compute even average scalar accurate to ±1 for the
same sample size. The nonzero value of the mean error indi-
cates that our estimator is biased. The values of hk

ij are not biased
because they are obtained by using regression. Even so, the com-
ponents of the Riemannian curvature tensor, Rijkl, may still be
biased because they are nonlinear functions of hk

ij . Note that
for S2, this bias is the same across all data points (because of
the isotropic nature of the manifold) and therefore results in
a systematic underestimation of scalar curvature (Fig. 2C; SI
Appendix, Supporting Methods, section C.4). We also computed
95% CIs for our estimates as S ± 2σS , and, despite the mean
error, 73% of points still reported a 95% CI containing the true
value of two (Fig. 2D).

We next tested our algorithm on a two-dimensional mani-
fold with negative scalar curvature, by uniformly sampling N =
104 points from the one-sheet hyperboloid, H 2

2 (Fig. 2E; SI
Appendix, Supporting Methods, section D.1.2). Here, 71% of
points reported a 95% CI containing the true scalar curvature
(Fig. 2F). Lastly, we considered the two-dimensional ring torus,
T 2 (Fig. 2G; SI Appendix, Supporting Methods, section D.1.3).
As a manifold with regions of positive, zero, and negative scalar
curvature, T 2 is a useful toy model for understanding more
complex two-dimensional manifolds and gaining intuition for
higher-dimensional manifolds. In two dimensions, regions of a
manifold with positive scalar curvature (θ= 0, 2π in Fig. 2H) are
dome-shaped, regions with zero scalar curvature (θ= π

2
, 3π

2
in

Fig. 2H) are planar, and regions with negative scalar curvature
(θ=π in Fig. 2H) are saddle-shaped. We applied our tool to
N = 104 points uniformly sampled from T 2 and found that 88%
of points reported a 95% CI containing the true scalar curvature
(Fig. 2H).

To test the applicability of our algorithm to higher-
dimensional manifolds, we uniformly sampled N = 104 points
from unit hyperspheres, Sd , and found that 90%, 84%, and 78%
of points reported a 95% CI containing the true scalar curvature
for d= 3, 5, and 7, respectively (Fig. 2I; SI Appendix, Supporting
Methods, section D.1.1). The number of terms, hk

ij , in the Second
Fundamental Form grows as d2. For larger d , a greater num-
ber of data points and, hence, larger neighborhoods are needed
for regression, but these are no longer well approximated by
quadratic fits according to our GOF measure. More generally,
higher-dimensional manifolds require a higher density of data to
estimate scalar curvatures accurately.

We additionally characterized how our algorithm performed
when data points were nonuniformly sampled (SI Appendix, Fig.
S2A and Supporting Methods, section D.2.1) or convoluted by
observational noise (SI Appendix, Fig. S2B and Supporting Meth-
ods, section D.2.2), when the dimension of the ambient space
was large (SI Appendix, Fig. S2C and Supporting Methods, sec-
tion D.2.3), and when the specified manifold dimension differed
from the ground truth (SI Appendix, Fig. S2D and Supporting
Methods, section D.2.4). We found that the algorithm is robust
to nonuniform sampling, large ambient dimension, and small
observational noise and provides signatures indicating when the
manifold dimension may be misspecified. However, when the
noise scale is large, the resulting manifold is no longer trivially
related to the noise-free manifold, consistent with existing lit-
erature (38–41), so that scalar curvature cannot be accurately
computed. Lastly, we note that since the full Riemannian curva-
ture tensor is computed as an intermediate step in our algorithm,
more intricate geometric features in the data can also be ana-
lyzed by using our tool, though we defer such investigation to
future studies.

Taken together, these examples demonstrate the utility of the
algorithm in recovering curvature with specified uncertainties for
manifolds with positive and/or negative scalar curvature. Next,
we tested our algorithm on real-world data.

Curvature of Image Patch Manifold Is Consistent with a Noisy Klein
Bottle. Pixel intensity values in images of natural scenes are
not independently or uniformly distributed. Understanding the
statistics of such images is important for designing compression
algorithms (42) and for addressing challenges in the field of com-
puter vision, such as segmentation (43). Lee et al. (44) analyzed
the van Hateren dataset (45) consisting of grayscale images of
natural scenes and discovered that the 3-× 3-pixel patches whose
pixels have high contrast (i.e., the differences between the inten-
sity values of adjacent pixels in a patch are large) are not uni-
formly distributed in R9, but are instead concentrated on a low-
dimensional manifold. This is because high-contrast regions in
a natural scene usually correspond to the edges of objects in the
scene. High-contrast image patches consequently tend to contain
gradients and not simply random speckle. Subsequent work using
topological data analysis revealed that after appropriate normal-
ization (which takes image patches from R9 to S7 ∈R8, so that
the global length scale is L= 1; SI Appendix, Supporting Methods,
section E.2), dense regions of high-contrast image patches have
the same homology as a two-dimensional manifold called a Klein
bottle (21).

A Klein bottle, K 2, is a canonical manifold typically intro-
duced in the context of orientability, where it is often visualized
in R3 (as shown in Fig. 3A) to highlight that it is nonorientable.
From a topological perspective, K 2 is a manifold parameter-
ized by θ,φ∈ [0, 2π], as shown in Fig. 3B, in which vertical
edges are defined to be θ= 0 and θ=π, and horizontal edges
are defined to be φ= 0 and φ= 2π. To make a closed surface,
the vertical (horizontal) edges are glued together according to
the red (blue) arrows in Fig. 3B. K 2 is therefore 2π-periodic
in φ, since a point corresponding to θ on the bottom horizon-
tal edge (φ= 0) is the same as the point corresponding to θ
on the top horizontal edge (φ= 2π). Similarly, a point corre-
sponding to φ on the left vertical edge (θ= 0) is the same as
the point corresponding to 2π−φ on the right vertical edge
(θ=π). In short, points on K 2 obey the similarity relation
(θ,φ)∼ (θ+π, 2π−φ). K 2 captures the dominant features in
high-contrast image patches because θ can be treated as a
parameter controlling rotation and φ as a parameter control-
ling the relative contribution of linear vs. quadratic gradients
(Fig. 3B).

An embedding of K 2 into R9 with an analytical form, k0,
was proposed by Carlsson et al. (21) to model image patches
(SI Appendix, Supporting Methods, section E.3, Eq. 24). This
embedding takes points from (θ,φ) into image patches in R9,
as shown in Fig. 3B. For example, θ= 0 (θ= π

2
) corresponds

to patches with vertical (horizontal) stripes and φ= π
2

, 3π
2

(φ=
0,π) corresponds to patches with linear (quadratic) gradients.
As θ increases, stripes in the image patches are rotated clock-
wise. As φ increases, image patches oscillate between having
quadratic and linear gradients. Importantly, the image patches
constructed by this embedding obey the same similarity relation
(θ,φ)∼ (θ+π, 2π−φ) topologically required of a Klein bot-
tle. Whereas Carlsson et al. (21) studied the global topology of
image patches using this embedding, here, we study their local
geometry instead.

First, we analytically calculated the scalar curvature of k0 as
a function of (θ,φ), as shown in Fig. 3C (SI Appendix, Support-
ing Methods, section A). Next, we used our algorithm to compute
the scalar curvature on a data manifold of N ≈ 4.2× 105 high-
contrast 3- × 3-pixel image patches randomly sampled from the
same van Hateren dataset used to propose k0 (SI Appendix,
Supporting Methods, section E.2). We picked σh so that the dis-
tribution of GOF P values was flat and fixed this value for all
subsequent simulations (SI Appendix, Supporting Methods, sec-
tion E.7). To visualize the results, we associated each image
patch to its closest point on k0 (SI Appendix, Supporting Methods,
section E.4) and plotted the scalar curvatures on the resulting
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Fig. 3. Scalar curvature computed for image patches is consistent with that of a Klein bottle with added isotropic Gaussian noise. (A) The Klein bottle, K2,
is a two-dimensional manifold shown here in R3. (B) k0 is an analytical embedding given by Carlsson et al. (21) relating parameter values θ,φ∈ [0, 2π] to
3-× 3-pixel patches of grayscale images (SI Appendix, Supporting Methods, section E.3, Eq. 24). θ controls the rotation of stripes in the image patches and φ
determines the relative contribution of linear vs. quadratic gradients. Importantly, as shown in the figure, this embedding has boundary conditions consistent
with the topology of a Klein bottle (depicted by the blue/red arrows). In particular, the embedding produces image patches that obey the similarity relation
(θ,φ)∼ (θ+π, 2π−φ). Adapted by permission from ref. 21: Springer Nature, International Journal of Computer Vision, copyright 2007. (C) The analytical
scalar curvature of k0 (derived as described in SI Appendix, Supporting Methods, section A). (D) Scalar curvatures computed for N≈ 4.2× 105 high-contrast
3- × 3-pixel patches sampled from the grayscale images in the van Hateren dataset (45) are plotted here as a function of (θ0,φ0), the parameter values of
the closest point on k0 associated with each image patch (SI Appendix, Supporting Methods, sections E.2 and E.4). (E) Scalar curvatures computed for the
set of N≈ 4.2× 105 closest points on k0 associated with the image patches. Note the close correspondence with C, indicating that our algorithm correctly
recapitulates the analytical scalar curvature. (F) As in E, but after adding isotropic Gaussian noise in R9 to the set of closest points on k0 (SI Appendix,
Supporting Methods, section E.6). Left to right corresponds to increasing levels of noise, σ= 0.007, 0.01, 0.03. (G) The distribution of Euclidean distances in
R8 between each image patch and its closest point on k0 is shown in blue. The distribution of distances to k0 after adding Gaussian noise to these closest
points on k0 is also shown. (H) k1 is the analytical embedding from θ,φ∈ [0, 2π] to R9 that minimizes the sum of Euclidean distances from the image patches
to the closest point on the embedding (SI Appendix, Supporting Methods, section E.5). Each of the N≈ 4.2× 105 image patches was associated to its closest
point on k1, given by parameter values (θ1,φ1) (SI Appendix, Supporting Methods, section E.4). Scalar curvatures computed on this set of N≈ 4.2× 105

points on k1 are shown. (I) The same scalar curvatures computed for the image patches and visualized on (θ0,φ0) coordinates in D are shown here plotted
on (θ1,φ1) coordinates. (J) Scalar curvatures computed for a densely sampled manifold consisting of the full set of N≈ 1.3× 108 high-contrast 3- × 3-pixel
image patches in the van Hateren image dataset (SI Appendix, Supporting Methods, section E.2), visualized on (θ1,φ1) coordinates.

(θ0,φ0) coordinates (Fig. 3D). Most image patches map to
φ= π

2
, 3π

2
or θ= 0, π

2
because linear gradients (of any orienta-

tion) and quadratic gradients that are vertically or horizontally
oriented are the dominant features in the data, as reported
(21, 44).

The scalar curvatures computed for the image patches did
not match the analytical scalar curvature of k0 (cf. Fig. 3 C
and D). To identify the cause of this discrepancy, we first vali-
dated our algorithm by computing scalar curvatures on the set
of N ≈ 4.2× 105 (θ0,φ0) points on k0 associated with the image
patches (Fig. 3E); we found close agreement with the analyti-
cal calculation (75% of points reported a 95% CI containing the
true scalar curvature). Next, observing that the neighborhood
sizes used for computing the scalar curvature of image patches
were larger than those used for computing the scalar curvature
of the associated (θ0,φ0) points (cf. SI Appendix, Fig. S3 A and
B), we recomputed the scalar curvatures of these (θ0,φ0) points,
but now with the same neighborhood sizes used for the image
patches. The results agreed with the analytical calculation, but

still did not match the scalar curvatures computed for the image
patches (SI Appendix, Fig. S3C).

Having ruled out these two possibilities, we hypothesized that
the discrepancy was caused by fluctuations in the positions of
the image patches with respect to the (θ0,φ0) points on the
k0 manifold (real image patches are noisy, and the Klein bot-
tle embedding is only an idealization). We found that adding
isotropic Gaussian noise of increasing magnitude in R9 to the set
of (θ0,φ0) points on k0 indeed resulted in scalar curvatures that
resembled the data (Fig. 3F; SI Appendix, Supporting Methods,
section E.6). The best agreement between the scalar curvatures
of the image patches and the noisy (θ0,φ0) points was achieved
when the magnitude of noise was σ= 0.03. Notably, in this case,
the median Euclidean distance of the noisy (θ0,φ0) points to k0

was 0.132, which is comparable to 0.148, the median Euclidean
distance of the image patches to k0 (Fig. 3G). Furthermore, the
neighborhood sizes chosen by our algorithm when σ= 0.03 (SI
Appendix, Fig. S3A) matched those chosen for the image patches
(SI Appendix, Fig. S3B).
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To find an embedding of the Klein bottle that might bet-
ter explain the scalar curvature of the image patches without
needing to add noise, we incorporated higher-order terms to
k0 (SI Appendix, Supporting Methods, section E.3). The coef-
ficients for the higher-order terms were determined by fitting
the data, resulting in a new embedding, which we refer to as
k1 (SI Appendix, Supporting Methods, section E.5). The median
Euclidean distance of the image patches to k1 was 0.115 vs.
0.148 to k0. As was done for k0, we associated each image
patch to its closest point (θ1,φ1) on k1 and used our algorithm
to compute the scalar curvature of these (θ1,φ1) points (Fig.
3H). Despite the reduction in the median Euclidean distance of
images patches to the embedding, the scalar curvature of k1 was
even less similar to that of the image patches (visualized in Fig. 3I
on these new (θ1,φ1) coordinates for k1) than was the scalar cur-
vature of k0; the range of scalar curvature values for k1 was much
larger than for either the image patches or k0, and the scalar
curvature fluctuates on smaller length scales.

Lastly, we reasoned that there might be fine-scale scalar cur-
vature fluctuations in the image patches that are masked by the
larger neighborhood sizes used to compute scalar curvature for
the image patches (SI Appendix, Fig. S3B) relative to k1 (SI
Appendix, Fig. S3D). To decrease the neighborhood sizes chosen
by the algorithm for the same σh , we augmented the image patch
dataset using the full set of N ≈ 1.3× 108 high-contrast 3- × 3-
pixel image patches from the van Hateren dataset (SI Appendix,
Supporting Methods, section E.2). This resulted in neighborhood
sizes comparable to those determined for k1 (cf. SI Appendix,
Fig. S3 D and E), but failed to recapitulate the fine-scale scalar
curvature fluctuations observed in k1 (Fig. 3J). As a sanity check,
we confirmed that the scalar curvature of the augmented image
patch dataset matched that of the original image patch dataset,
when computed using the same neighborhood sizes as the lat-
ter (SI Appendix, Fig. S3F). Therefore, including higher-order
terms in the embedding does not yield scalar curvatures that bet-
ter agree with the data. Taken together, our analysis of curvature
suggests that the image patch dataset can be best modeled by
adding noise to the simplest embedding, k0.

Having applied our algorithm on real-world manifold-valued
data that are well modeled by an analytical embedding, we next
turned our attention to scRNAseq datasets, which are gener-
ally regarded as low-dimensional manifolds and have no known
analytical form.

scRNAseq Datasets Have Nontrivial Intrinsic Curvature. In
scRNAseq datasets, each data point corresponds to a cell
and each coordinate to the abundance of a different gene.
Here, we consider the data manifold after basic preprocessing
and linear dimensionality reduction using PCA (SI Appendix,
Supporting Methods, section F.1). Since many common analyses
in the field, such as clustering, visualization, and inference of
cell-differentiation trajectories, are performed in this reduced
space, it is natural to compute curvature in this space as well.
We set the ambient dimension, n , to be the number of PCs
needed to explain 80% of the variance. The manifold dimension,
d , for scRNAseq datasets is not well defined and needs to be
chosen heuristically. As a simple heuristic, we specified d as
the number of PCs needed to explain 80% of the variance in
the ambient space; i.e., 64% of the original variance (we show
later that our computations are relatively insensitive to the
choice of d).

We considered three datasets. The first consists of N ≈ 104

peripheral blood mononuclear cells (PBMCs) collected from a
healthy human donor (46). The second is a gastrulation dataset
containing N ≈ 1.2× 105 cells pooled from nine embryonic mice
sacked at 6-h intervals from embryonic day (E)6.5 to E8.5 (47).
The final dataset is a benchmark in the field consisting of N ≈
1.3× 106 brain cells pooled from two embryonic mice sacked

at E18 (48). Refer to SI Appendix, Figs. S4A, S5A, and S6A for
cell-type annotations for the three datasets.

The PBMC dataset is characteristic of the sample size of
current scRNAseq data. The other two are larger than most
scRNAseq datasets, and we included these to verify if geo-
metric features seen in the first dataset can be reproduced
for more densely sampled manifolds. For the PBMC, gastru-
lation, and brain datasets, the ambient (manifold) dimensions
were determined to be 8, 11, and 9 (3, 3, and 5), respec-
tively, according to the aforementioned heuristic (SI Appendix,
Supporting Methods, section F.6). For all three datasets, the
global length scale happened to be L≈ 20 (SI Appendix, Sup-
porting Methods, section C.5). As before, we picked σh for
each dataset according to the distribution of GOF P values
(SI Appendix, Figs. S4B, S5B, and S6B and Supporting Methods,
section F.6).

We visualized the computed scalar curvatures on standard
plots employed in the field (UMAP and t-SNE; shown in Fig. 4 A,
D, and G) and observed nontrivial scalar curvature for all three
datasets. We found statistically significant correlations between
the scalar curvature reported by each point and its kNN for
k ≤ 250 (ρPearson = 0.58, 0.18 and 0.38 for the PBMC, gastrula-
tion, and brain datasets, respectively, at k = 250, P < 10−6; SI
Appendix, Figs. S4C, S5C, and S6C), indicating that our algo-
rithm yields scalar curvatures that vary continuously over the
data manifolds. By plotting scalar curvatures against their SEs,
σS , we verified that regions with nonzero scalar curvature are sta-
tistically significant (Fig. 4 B, E, and H). As a consistency check,
we confirmed that the percentage of points with 95% CIs con-
taining the scalar curvatures reported by their respective kNNs
1) decayed with increasing k for k ≤ 250; and 2) was significantly
larger than expected by chance (67%, 72%, and 61% for the
PBMC, gastrulation, and brain datasets, respectively, at k = 250,
P < 0.001; SI Appendix, Figs. S4D, S5D, and S6D and Supporting
Methods, section F.3.1).

To rule out the possibility that localization of nonzero scalar
curvature in certain regions of the UMAP/t-SNE plots is an arti-
fact caused by other properties of the data that are also localized,
we considered several factors. First, we plotted the GOF P value
at each point on UMAP/t-SNE coordinates and noted that poor
GOFs were not localized on the data manifolds, let alone to
regions of nonzero scalar curvature (SI Appendix, Figs. S4B, S5B,
and S6B). Therefore, the computed scalar curvatures are not due
to poor fits.

Next, we plotted the neighborhood size, r(p), used for fitting
and observed that in some regions, nonzero scalar curvatures
seemed to correspond to small r (SI Appendix, Figs. S4E, S5E,
and S6E). Since σh is fixed, these regions necessarily have a
larger number of neighbors Np(r) and are, hence, more dense
(SI Appendix, Fig. S4F, S5F, and S6F). To rule out the pos-
sibility that the nonzero scalar curvatures were an artifact of
smaller neighborhood size, we recomputed the scalar curvature
at three fixed neighborhood sizes (Fig. 4 C, F, and I), correspond-
ing to the 25th, 50th, and 75th percentile values of r(p), which
arose from setting σh (SI Appendix, Figs. S4E, S5E, and S6E).
In general, the scalar curvatures decreased in magnitude when
neighborhood sizes increased. However, regions that had statis-
tically significant nonzero scalar curvatures (zero falls outside of
the 95% CI) using variable neighborhood sizes also had nonzero
scalar curvatures for all three fixed neighborhood sizes. Addi-
tionally, statistically significant nonzero scalar curvature also
emerged on other parts of the manifolds when using small fixed
neighborhood sizes. These regions are therefore curved at small
length scales, but do not have a sufficient density of points to
resolve curvature to the desired uncertainty σh (SI Appendix,
Supporting Methods, section C.5). This is analogous to the image
patch dataset for which we could resolve scalar curvatures of
larger magnitude at a smaller length scale when the dataset was
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Fig. 4. scRNAseq datasets have localized regions of nonzero scalar curvature. (A) Scalar curvatures were computed for a scRNAseq dataset with N≈ 104

PBMCs collected from a healthy human donor. The ambient (n) and manifold (d) dimensions were specified to be eight and three, respectively, and variable
neighborhood sizes were chosen by setting σh (SI Appendix, Supporting Methods, section F.6). The scalar curvatures are shown here overlaid onto UMAP
coordinates, after smoothing the values over k = 250 nearest neighbors in the ambient space. (B) Scatter plot of (unsmoothed) scalar curvatures, S, and
associated SEs, σS, for each data point in the PBMC dataset. Points enclosed by the red lines reported a 95% CI (S± 2σS) including zero. (C) As in A, but with
scalar curvatures computed by using a fixed neighborhood size, r, for all data points. The value of r was set to be the 25th, 50th, and 75th percentile values
(left to right) of the neighborhood sizes used in A (SI Appendix, Fig. S4E). Points for which a neighborhood of size r does not include enough neighbors for
regression are not shown. (D–F) As in A–C for a mouse gastrulation dataset with N≈ 1.2× 105, d = 3, and n = 11. (G–I) As in A–C for a mouse brain dataset
with N≈ 1.3× 106, d = 5, and n = 9, plotted on t-SNE coordinates.

augmented with enough points to attain smaller neighborhood
sizes for a fixed σh .

We also checked how computed scalar curvatures changed
with density in a toy model with zero scalar curvature. Impor-
tantly, we did not observe the artifactual appearance of statis-
tically significant nonzero scalar curvature, for either variable
neighborhood sizes chosen by the algorithm to achieve σh or for
fixed neighborhood sizes (SI Appendix, Fig. S2A and Supporting
Methods, section D.2.1). Taken together, although higher density
allows us to resolve statistically significant nonzero scalar curva-
tures in scRNAseq data, these computed scalar curvatures are
not an artifact of the smaller neighborhood sizes used in regions
with higher density.

To ensure that the computed scalar curvatures were not sensi-
tively dependent on the heuristically chosen manifold dimension,
d , we also recomputed scalar curvatures for d − 1 and d + 1 and
observed similar qualitative results (SI Appendix, Figs. S4G, S5G,
and S6G). Lastly, we verified that the computed scalar curvatures
were not correlated with the number of transcripts in each cell
(SI Appendix, Figs. S4H, S5H, and S6H).

To confirm the robustness of our results to sampling, we ran-
domly discarded f % of points in the ambient space determined
for each dataset and recomputed scalar curvatures using the
same values of n , d , and r(p) used for the original dataset. We

found that a statistically significant percentage of downsampled
points (82% for the PBMC dataset with f = 75, 78% for the
gastrulation dataset with f = 75, and 76% for the brain dataset
with f = 50; P < 0.001) had a 95% CI containing the scalar cur-
vature reported by the same point for the original dataset (SI
Appendix, Figs. S4I, S5I, and S6I and Supporting Methods, section
F.3.2). This suggests that if the datasets were more highly sam-
pled, and scalar curvatures were recomputed by using the same
neighborhood sizes, they would be reliably contained within the
currently reported 95% CIs. Unlike the two other datasets, the
brain dataset could not be downsampled to f = 75 while still
having at least 75% of points report 95% CIs containing the orig-
inally reported scalar curvatures, despite having the most points.
This might be because the brain dataset has a larger manifold
dimension according to our heuristic and, therefore, requires
a greater number of terms, hk

ij , to be estimated in the Second
Fundamental Form.

For the PBMC dataset, we additionally downsampled the
single-cell count matrix by discarding f % of transcripts at ran-
dom and preprocessing the same way. We recomputed scalar
curvatures for this downsampled dataset with the same n , d , and
r(p) values used for the original dataset. Here, too, we found that
when f = 50 (f = 75), 70% (65%) of the downsampled points
had a 95% CI containing the originally reported scalar curvature
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(P < 0.001; SI Appendix, Fig. S4J and Supporting Methods, sec-
tion F.3.3). Therefore, the computed scalar curvature is robust
to changes in capture efficiency and sequencing depth. Taken
together, our computational analysis reveals nontrivial intrinsic
geometry in scRNAseq data.

Finally, we explored whether the computed scalar curvatures
could be directly related to biological features. First, building
on our observation that regions of nonzero scalar curvature are
spatially localized, we considered the distribution of scalar cur-
vatures for each cell type (Fig. 5 A–C). We found that for the
PBMC dataset, there was a statistically significant difference
in the mean scalar curvature between CD14+ monocytes and
CD4+ T cells (false discovery rate [FDR] = 0.05; SI Appendix,
Fig. S8A and Supporting Methods, section F.3.4). Likewise, for
the gastrulation dataset, there were statistically significant dif-
ferences in the average scalar curvature of the epiblast relative
to the mesenchyme, surface ectoderm, and hemato-endothelial
progenitors (SI Appendix, Fig. S8B). For the brain dataset,
which had more data points by one to two orders of mag-
nitude, we had enough statistical power to detect significant
differences between 74 of the 171 pairs of cell populations, e.g.,
pyramidal cells and almost all other cell types (SI Appendix,
Fig. S8C).

Next, in the PBMC dataset, we explored whether the expres-
sion levels of particular genes were correlated with the scalar cur-
vature. We fit the scalar curvature to a linear regression model of
gene expression and found nine significant genes (FDR = 0.05;
SI Appendix, Supporting Methods, section F.4). These included
genes with known differential expression between immune cell
types [MNDA (49), LILRA2 (50), BHLHE41 (51), ACKR4 (52),
ACOT7 (53), CYTOR (54), and ST8SIA6 (55)].

Lastly, we investigated whether scalar curvature was related to
transcriptional dynamics, by repeating our analysis on a dataset
of N ≈ 2× 104 cells from the dentate gyrus of mice (Fig. 5 D
and E and SI Appendix, Fig. S7), for which counts of spliced vs.
unspliced transcripts in each gene of a cell was available (56). La
Manno et al. (57) showed that this information can be used to
reconstruct an RNA velocity vector for each cell, from which its
transcriptional trajectory can be inferred over short time scales.
We reconstructed the RNA velocity vector field over all cells
(Fig. 5F; SI Appendix, Supporting Methods, section F.5) using the
dynamo software package (58) and found that the scalar cur-
vature for this dataset was anticorrelated with both the speed
(ρPearson =−0.23, P < 10−6; Fig. 5F) and divergence of the vector
field (ρPearson =−0.26, P< 10−6; Fig. 5G). Additionally, we found
that five genes were significantly correlated with the scalar cur-
vature (FDR = 0.05; SI Appendix, Supporting Methods, section
F.4), including genes with known differential expression between
cell types in the brain or regions of the dentate gyrus [ID2 (59),
S100A10 (60), PRMT1 (61), and CRMP1 (62)]. This preliminary
exploration suggests that manifold curvature and transcriptional
dynamics are closely connected.

Discussion
In this study, we explored two approaches to computing the
curvature of data manifolds using tools from twin branches of dif-
ferential geometry. An intrinsic approach relying on estimating
the Laplace–Beltrami operator’s eigenvalues from point cloud
data was determined to be infeasible for sample sizes of N ≈ 104

typical of current scRNAseq datasets, since curvature is sen-
sitive to higher-order eigenvalues of the operator. Although
methods such as MAGIC (63) and diffusion pseudotime

Fig. 5. Scalar curvature is correlated with cell type and RNA velocity vector field speed and divergence. (A) Boxplot of the distribution of scalar curvatures
for each annotated cell type in the PBMC dataset. The median is marked by the bullseye and the interquartile range by the thick blue bar. The whiskers
extend up to 1.5 times the interquartile range in each direction. (B) As in A, but for the gastrulation dataset. (C) As in A, but for the brain dataset. (D and
E) As in Fig. 4 A and B for a mouse dentate gyrus dataset with N≈ 2× 104, d = 2, and n = 6. (F) Flow lines (shown as black arrows) and speed (colors) of
the inferred RNA velocity vector field (SI Appendix, Supporting Methods, section F.5). (G) Divergence of the inferred RNA velocity vector field (SI Appendix,
Supporting Methods, section F.5).
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(64) apply analogs of the Laplace–Beltrami operator to smooth
scRNAseq data and infer cell-differentiation trajectories, respec-
tively, using information intrinsic to the manifold, our results
suggest that the embedding of the manifold in the ambient
space provides valuable information necessary for estimating the
intrinsic curvature. This observation is perhaps implicit in recent
tools for estimating the Laplace–Beltrami operator, which first
use moving local least squares to approximate a surface, thereby
incorporating information from the ambient space (29).

Certainly, we found that an extrinsic approach in which the
embedding is retained and curvature is determined by local
quadratic fitting of data points in ambient coordinates is fea-
sible given the sample size and degree of noise in real-world
datasets. To obtain the scalar curvature of data manifolds, our
algorithm first computes the full Riemannian curvature ten-
sor. For other applications, this tensor can be used to compute
other geometric quantities, such as Ricci curvature, or may
itself be of interest. More generally, we focused on intrinsic
curvature because we were interested in geometric proper-
ties of the manifolds independent of their embeddings. How-
ever, the Second Fundamental Form used in our approach to
compute the intrinsic curvature can be used to obtain all of
the information about the extrinsic curvature as well. Indeed,
hk
ij (p) exactly quantifies the extent to which the manifold devi-

ates in the k th normal direction from the ij -tangent plane
at point p.

A key limitation of our algorithm is that the manifold dimen-
sion must be specified by the user. We also assumed that the
manifold dimension is the same at every point in a dataset.
Extending the algorithm to determine the manifold dimension
from the data itself, potentially in a position-dependent man-
ner, may prove useful. In addition, there is no inherently correct
length scale over which curvature should be computed for a data
manifold. Our algorithm chooses a length scale that varies from
one part of the data manifold to another, according to the density
of points, and is tuned to achieve a user-specified level of uncer-
tainty in the computed curvature. For some applications, it might
be more sensible to fix a desired length scale for computing the
curvature.

As a demonstration of our algorithm, we computed the scalar
curvature of image patches and found that it was consistent with
that of a Klein bottle. This observation further validates the claim
by Carlsson et al. (21), who showed that image patches have the
topology of a Klein bottle. Unlike the Klein bottle parameteri-
zation of image patches, however, no definitive analytical form
has been established for scRNAseq datasets. Recent work has
suggested the use of hyperbolic geometry to model branching
cell-differentiation trajectories (65, 66), and specific manifolds

have been proposed to model reaction networks (67), which may
be applicable to scRNAseq data. These proposed manifolds can
be validated or improved by using knowledge of the intrinsic
geometry of scRNAseq datasets. Finally, incorporating informa-
tion about curvature may provide a more principled approach
for developing dimensionality reduction and visualization tools.
For example, recent work has developed variants of t-SNE and
UMAP that additionally preserve local volumes in the embed-
ding (68). Since scalar curvature directly affects volumes, angles,
and other geometric quantities, the work presented here could
aid such efforts.

Materials and Methods
SI Appendix, Supporting Methods, section A describes how to compute the
scalar curvature of, and sample from, theoretical manifolds. Details of the
intrinsic approach to curvature estimation are provided in SI Appendix, Sup-
porting Methods, section B. Refer to SI Appendix, Supporting Methods,
section C for a detailed exposition of the extrinsic approach to curvature
estimation used in our algorithm. SI Appendix, Supporting Methods, sec-
tion D describes the performance of our algorithm when challenged by
real-world confounders in the data. Additional details pertaining to the
toy models in Fig. 2, image patch/Klein bottle data in Fig. 3, and scRNAseq
datasets in Figs. 4 and 5 can be found in SI Appendix, Supporting Methods,
sections D–F, respectively.

Data and Code Availability. The van Hateren IML dataset (45) is avail-
able at http://bethgelab.org/datasets/vanhateren/ and was loaded
according to the instructions there. The PBMC dataset (46) is avail-
able at https://support.10xgenomics.com/single-cell-gene-expression/
datasets/4.0.0/Parent NGSC3 DI PBMC. The gastrulation dataset (47)
can be retrieved by using instructions found at https://github.com/
MarioniLab/EmbryoTimecourse2018. The brain dataset (48) is avail-
able at https://support.10xgenomics.com/single-cell-gene-expression/
datasets/1.3.0/1M neurons. A Python notebook with the dentate gyrus
dataset (57) can be retrieved at https://github.com/velocyto-team/velocyto-
notebooks/blob/master/python/DentateGyrus.ipynb. The software package
described here to compute scalar curvature is available at https://gitlab.
com/hormozlab/ManifoldCurvature. All code and instructions to reproduce
the numerics and figures in this study can be found at https://gitlab.
com/hormozlab/PNAS 2021 Curvature.
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