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Abstract: Mechanical properties of FeCrMn-based steels are of major importance for practical
applications. In this work, we investigate mechanical properties of disordered paramagnetic fcc
FeCr10–16Mn12–32 alloys using density functional theory. The effects of composition and temperature
changes on the magnetic state, elastic properties and stacking fault energies of the alloys are studied.
Calculated dependencies of the lattice and elastic constants are used to evaluate the effect of the solid
solution strengthening by Mn and Cr using a modified Labusch-Nabarro model and a model for
concentrated alloys. The effect of Cr and Mn alloying on the stacking fault energies is calculated and
discussed in connection to possible deformation mechanisms.

Keywords: first principles calculations; austenitic steels; mechanical properties; elastic constants;
disordered alloys; paramagnetism; solid solution strengthening; stacking fault energy

1. Introduction

High strength in steels is typically achieved at the cost of reduced ductility [1]. However, this is
not the case for transformation induced plasticity (TRIP) and twinning induced plasticity (TWIP)
steels [2,3]. These materials achieve high strength levels through enhanced strain hardening which
arises mainly from the interaction of dislocations with stacking faults, twins or ε-martensite [3,4].
In addition, the interaction of dislocations with solute atoms gives rise to solid solution strengthening
(SSS) which is normally difficult to investigate experimentally as its influence on the strength is difficult
to separate from the TWIP and TRIP effects. Therefore, the role of SSS in these classes of steel remains
a largely under-investigated phenomenon.

Manganese and chromium are considered to be the main alloying elements in TWIP and TRIP
steels [5] characterized by high strength and high ductility. Manganese is known as an austenite
stabilizer [6] and is used instead of nickel to lower the costs. Chromium provides corrosion resistance
if used above 12 wt.% [7] and increases the nitrogen solubility [6,8], which in its turn is used together
with carbon to stabilize the austenitic matrix and also the strength of steels [5,8–10]. Presence of C and
N in steel makes experimental investigation of the effect of the key alloying elements Mn and Cr on
the mechanical properties and possible deformation mechanisms in high strength and high ductility
steels a challenging task. The problem arises from the fact that even high purity steels often contain
impurities and other allying elements that may have a sizeable effect on SSS and the stacking fault
energy (SFE) [11] and thus influence the deformation mechanism [4]. Another problem is the phase
stability that is affected by alloying and even small fractions of C and N may change microstructure
and phase composition of an austenitic steel [12]. These problems can be avoided in predictive first
principles calculations where the crystal structure and chemical composition of an alloy of interest is
fully controlled and such properties as SSS and SFE can be investigated rather precisely [13–15].
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In this paper, we use density functional theory (DFT) to estimate the SSS of FeCrMn alloys based
on mechanical models. To this end, we calculate the equilibrium lattice constant and the bulk modulus
as a function of Cr and Mn content which serve as input parameters to the existing SSS-models [15–19].
The FeCrMn alloys are magnetically and chemically disordered which poses special requirements
to the used DFT methodology. To the best of our knowledge, such ab initio informed modeling of
SSS has not been carried out so far. Previous works have relied either on experimental input, see e.g.,
Ref. [20,21] or on semi-empirical potential modeling, see e.g., Ref. [15]. In addition, we investigate the
SFE of FeCrMn alloys, which is a crucial design parameter in austenitic steels [11,22] with regard to
the occurring deformation mechanisms (TRIP, TWIP or dislocation slip).

2. Methodology

2.1. Electronic Structure Calculations

The exact muffin-tin orbital (EMTO) method [23,24] implemented in the Green’s function
formalism and combined with the full charge density (FCD) technique [25] has been used in the
coherent potential approximation (CPA) [26] calculations of disordered alloys. The paramagnetic
state of these alloys has been modeled by the disordered local moment (DLM) model [27,28].
All self-consistent DLM-CPA calculations have been performed using the orbital momentum cut-off
of lmax = 3 for partial waves. The integration over the Brillouin zone has been performed using
37 × 37 × 37 Monkhorst-Pack of k-points grids [29] for the fcc, 37 × 37 × 23 for the hcp and
27× 27× 13 for the double hexagonal close packed (dhcp) structures, respectively. The core states
have been recalculated at each self-consistent iteration. The screening constants for the screened
Coulomb interactions have been obtained by the EMTO-LSGF (locally self-consistent Green function)
method [30].

2.2. Elastic Constants Calculations

Elastic constants and elastic moduli in this work have been calculated following the methodology
described in Refs. [31–33] in detail. Three independent elastic constants for a cubic system can be
represented by the bulk modulus B, C′=(C11 − C12)/2 and C44 [34]. B has been calculated using the
Birch-Murnaghan fit [35] of the equation of state (EQOS). The EQOS has been calculated using the
Wigner-Seiz radii (RWS) of the fcc alloys from 2.50 to 2.70 a.u. with a step of 0.02 a.u. C′ and C44

have been calculated using volume conserving orthorhombic and monoclinic strains, respectively [31].
The value of distortion x in C′ and C44 calculations has been varied from zero (for the equilibrium
state) to 0.05 with a step size of 0.01, in accordance with Mehl et al.’s prescription [31].

2.3. Solute Solution Strengthening Model

We use two different approaches for the calculation of SSS, the model by Labusch-Nabarro
(LN) [16,20,36–38], which we call the Labusch-Nabarro model in the following, and the model by
Varvenne et al. [15], named as the VC model in the following.

Within the LN model, solid solution strengthening for a multi-component alloy can be calculated
as [20,37,38]

τLN = AG ∑
n
(εn

L
2cn)

2/3, (1)

where cn is the concentration of solute n and G is the isotropic shear modulus which we obtain from the
elastic constants by Voigt averaging. The constant factor A is equal to

(
101/3/2

)
· 120−4/3 assuming

that the parameter w in the LN model is equal to 5b [39] where b is the Burgers vector.
Misfit parameters treat the two main types of interactions between dislocations and solute atoms.

The first misfit parameter (εn
b , Equation (2)) arises due to different sizes of the alloying elements

compared to the matrix elements, which leads to the strain field around solute atoms (lattice misfit).
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The strain field of a dislocation interacts with the strain field of solute atoms, more energy is required
to move the dislocation further (paraelastic interaction) [40,41].

εn
b =

1
b

db
dcn

(2)

The second misfit parameter (εn
G, Equation (3)) arises because solute atoms have a different shear

modulus than the matrix atoms (modulus misfit). Therefore, dislocations containing solute atoms have
a different elastic energy compared to dislocations containing only matrix atoms and more energy is
required for the movement of a dislocation containing solute atoms (dielastic interaction) [40,41].

εn
G =

1
G

dG
dcn

(3)

The two misfit parameters are combined into the single misfit parameter εn
L [17,21]:

εn
L =

√(
εn

G′
)2

+
(
αεn

b
)2, (4)

where α is a constant, with α ≥ 16 in the case of edge dislocations and α ≤ 16 in the case of screw
dislocations [17] and εn

G′ = εn
G/
(
1 + 0.5|εn

G|
)
. In this work, we adopt α=16.

In the VC model [15], SSS is described as

τVC = 0.051α′−1/3G
(

1 + ν

1− ν

)4/3
f1

(
∑n cn∆V2

n
b6

)2/3

(5)

where α′ = 0.123, ν is the Poisson ratio, f1 is a parameter which equals to 0.35 provided the SFE is
below 100 mJ/m2, and ∆Vn is the volume mismatch between the effective medium and element n.
The volume mismatch is the key quantity for strengthening. In the VC model, no distinction between
lattice misfit and modulus misfit is made.

The quantities τLN , τVC correspond to the critical resolved shear stress (CRSS) required to move
dislocations through the solid solution at 0 K. For the VC model we also calculate the temperature
dependence of τVC following the method outlined in Ref. [15].

2.4. Stacking Fault Energy Calculations

The intrinsic stacking-fault (SF) is one of the simplest planar defects of the crystal lattice.
It is characterized by a fault in the usual ABC planar stacking sequence of the fcc structure,
...ABCAB|ABC..., which resembles locally the stacking sequence of the hcp structure. In the framework
of the axial Ising model (AIM) [42,43], the SFE γ can be determined in terms of the total energies of the
fcc, hcp, and dhcp structures:

γ(T) = Fhcp(T) + 2Fdhcp(T)− 3Ff cc(T), (6)

where Ff cc, Fhcp and Fdhcp are the free energies of the fcc, hcp and dhcp phases and T is temperature.
This formulation accounts for the interactions between the next nearest neighbor stacking plains and is
knowns as the axial next nearest neighbor Ising model (ANNNI). The ANNNI has been shown to be
a reasonable choice in terms of the accuracy and computational costs of required DFT calculation in
the case of fcc Fe and FeMn alloys [13] and therefore has been selected as the method of choice in our
study.
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2.5. Finite Temperature Calculations

The contributionsfrom electronic excitations [44] and the magnetic entropy [45] have been taken
into account in direct self-consistent DFT calculations. The magnetic entropy contribution due to
longitudinal spin fluctuations [45] has been accounted in the following form [46]

Sls f = log (〈mi〉) , (7)

where 〈mi〉 is the average magnitude of the magnetic moment of the i-th alloy component, which is
the result of the corresponding DFT self-consistent calculations.

The vibrational contribution to the free energy in the SFE calculations (Equation (6)) has been
considered implicitly by employing the thermal lattice expansion taken from the Debye-Grüneisen
model [47,48]. As input parameters for the model, we have used the 0 K equilibrium DFT data
presented in Section 3.

3. Results and Discussion

Paramagnetic (PM) FeMnCr alloys within the compositional range for Mn varying from 12 to
32 at.% and Cr varying from 10 to 16 at.% have been selected for the investigation. This compositional
range is of special interest, because it is not possible to experimentally study the influence of Mn and
Cr on the SSS and SFE in an austenitic steel within this range, since it is experimentally not possible to
obtain a fully austenitic microstructure with just Fe, Mn and Cr in the defined ranges. To experimentally
obtain a fully austenitic microstructure for comparable amounts of Mn and Cr, additional alloying
with C and N is required (see Figure 1). However, alloying with the interstitial elements C and N can
superpose the effect of Mn and Cr. In what follows, all compositions will be given in atomic percent
and all results will refer to these compositional ranges unless specified otherwise.

Figure 1. Experimental alloy compositions and their respective phases. Fe-Mn-Cr alloys (orange) are
only experimentally obtained with a mixture of fcc and martensite [12], whereas Fe-Mn-Cr-C-N alloys
(black) can be experimentally obtained with a fully austenitic microstructure [8,49–53]. For a detailed
listing of the references, the reader is referred to the supplemental material.

3.1. Equation of State

As the first step in our investigation, we have calculated the equilibrium Wigner-Seiz radius
and the bulk modulus B in FeCr10–16Mn12–32 alloys shown in Figure 2a,c. The results on the bulk
modulus at 0 K provide values ranging from 181 GPa for FeCr10Mn12 to 229 GPa for FeCr16Mn32 alloy.
These values overestimate typical experimental B room temperature values for the austenitic Cr- and
Mn-containing steels that vary in the range of 158–167 GPa [54,55].
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However, as our further calculations show, the DFT results substantially change if the effect
of temperature is included in the calculations even at room temperature. The DFT calculations at
300 K including electron and magnetic entropy thermal excitations yield about 0.04 a.u. higher RWS
and lower B in the range from 165 GPa for FeCr10Mn12 to 173 GPa for FeCr16Mn32 alloy. The B
concentration dependence remains the same at both 0 K and 300 K but the results at 300 K provide
much better agreement with the availible experimental data (158–167 GPa [54,55]). The observed trend
that B increases with increasing Mn content, also agrees well with the theoretical results of Ref. [56].
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Figure 2. Equilibrium Wigner-Seitz radii (RWS, in a.u.) at 0 K (a) and at 300 K (c) and the bulk modulus
at 0 K (b) and at 300 K (d) in PM fcc random FeMnCr alloys.

As a more detailed inspection of our DFT results shows, the main reason for the sizeable increase of
RWS and decrease of B is the enhancement of the magnetic moment (MMOM) due to longitudinal spin
fluctuations (LSF) in the 300 K calculations. The evolution of local MMOMs on atoms in FeCr10Mn12–32

paramagnetic alloys as a function of RWS, Mn composition and temperature are shown in Figure 3 as
an example. The results show that there is a so-called magnetic high-spin HS to low-spin LS transition
near the equilibrium-RWS at both Fe and Mn atoms, which may complicate any analytical operations
with the EQOS [57]. Here, we refer to the LS state as the DLM magnetic state with zero local magnetic
moment and to the HS state as the DLM state with a non-zero local magnetic moment. LSF at 300 K
give rise to magnetic moments on all atoms at low RWS and on Cr atoms in general, where MMOMs
are zero at 0 K. LSF enhance also the MMOM at higher RWS for all Fe, Mn and Cr atoms. The high-spin
to low-spin transition also disappears which, along with increased equilibrium-RWS values at 300 K
(Figure 2), leads to the decrease of B with increasing temperature. Our results predict qualitatively the
same picture for all FeCr10–16Mn12–32 alloy compositions.
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Figure 3. Magnetic moments (in µB) in FeCr10Mn12–32 PM alloys as a function of Wigner-Seiz radii
and Mn concentration. (a) Magnetic moments on Fe atoms at 0 K. (b) Magnetic moments on Mn
atoms at 0 K. (c) Magnetic moments on Cr atoms at 0 K. (d) Magnetic moments on Fe atoms at 300 K.
(e) Magnetic moments on Mn atoms at 300 K. (f) Magnetic moments on Cr atoms at 300 K.

3.2. Elastic Constants

The C′ and C44 elastic constants in a cubic system form a full set of independent elastic constants
along with the bulk modulus B calculated in the previous section (Section 2.2). As the next step of
our investigation, we have calculated C′ and C44 in PM FeCr10–16Mn12–32 alloys at 300 K using the
equilibrium-RWS results from Section 3.1.

The calculated elastic constants are shown in Figure 4 as a function of Cr and Mn content.
The dependence on the compositional changes in the selected range is also linear as in the case
of B. C′ increases from 32 (FeCr16Mn32 ) to 39.3 GPa (FeCr10Mn12) as the concentration of Mn and Cr
decreases in the alloy. We see the same behaviour in the case of C44 which increases from 149 to 162 GPa
in the same compositional range. These values agree well with the experimental and theoretical results
on Fe-Mn and Fe-Cr-Mn-Ni alloy systems yielding C44 in a range from 122 to 140 GPa and C′ from 25 to
38 GPa for various alloy compositions [54–56,58]. The elastic constants do not exhibit any peculiarities
and have a virtually linear concentration dependence in the whole explored compositional range
which is very advantageous for analytical modeling of the solid solution strengthening described in
Section 3.4.
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Figure 4. Elastic constants of FeCr10–16Mn12–32 alloys: (a) C′; (b) C44 at 300 K in GPa.

3.3. Stacking Fault Energies

Determination of the exact SFE values and the effects of the alloying elements on the SFE is
a challenging task. Numerous experimental studies of the effect of alloying elements on SFEs in
steels, recently reviewed in Refs. [59,60], provide qualitatively and quantitatively different results.
For instance, in Ref. [61] it was concluded that Cr and Mn reduce the SFE in some austenitic steels.
A neural-network analysis over a large literature database presented in Ref. [60] associates Mn with a
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strong increase of the SFE, whereas Cr has no influence at all. These contradicting results show that all
alloying elements can influence the SFE and further research is required to understand the influence of
individual alloying elements on the SFE.

Following the methodology described in Section 2.4, we have calculated the SFEs in PM
FeCr10–16Mn12–32 alloys. The results, based on DFT calculations with the magnetic entropy contribution
from the LSF and the effect of lattice expansion taken into account via the Debye-Grüneisen model [47],
are shown in Figure 5a. The results of DFT calculations with theoretical lattice constants are known to
underestimate the SFE [13,14,57,62], due to the underestimation of the equilibrium lattice constant of
Fe and its alloys in DFT in general [13,32,63–65]. This problem can be solved by using the experimental
lattice parameters in DFT+LSF calculations of SFEs in paramagnetic Fe-base fcc alloys [13,57]. We have
not found sufficient experimental data on the lattice parameters of the alloys of our interest and
used the Debye-Grüneisen (DG) model data on lattice expansion increased by a constant value of
0.027 Å corresponding to the difference between the DFT+DG and experimental data for the lattice
constants of FeCr18Mn10 steel [66]. The SFE values calculated with the corrected lattice parameters
are presented in Figure 5b. The comparison to theSFEs calculated without the correction (Figure 5a)
reveals an about 25 mJ/m2 increase of the SFEs with respect to uncorrected data, which is in qualitative
agreement with previously reported works on FeMn steels [13,57]. The SFE values presented in
Figure 5b suggest that both Mn and Cr alloying elements reduce the SFE in FeCrMn alloys. The absolute
values of the SFE in our calculations vary from about 30 to 40 mJ/m2 is a typical range for the SFEs in
austenitic steels (Figure 6).
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Figure 5. Intrinsic stacking fault energy of the PM FeCrMn alloys at 300 K. (a) DFT and
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the absolute lattice constant value difference between theoretical results and the experiment [66].

Figure 6. SFE of various austenitic steels. FeMnC: [67–72]; FeMnCrN: [71,73]; FeMnCrCN: [74].
For exact chemical compositions see Table A1 in Appendix A.
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The absolute values of the SFEs are often used to estimate possible deformation modes in austenitic
steels [4,59,75]. A good summary of the SFE-ranges and the related deformation modes is given in
Ref. [4]. According to the present results, the SFEs in FeCr10–16Mn12–32 alloys fall in the range between
30 to 40 mJ/m2, which is related with twinning in literature [4,59].

3.4. Solid Solution Strengthening

The compositional dependencies of the lattice constants and shear modulus obtained in the
previous sections can be directly used for modeling of SSS in FeCrMn alloys using the LN model or
the VC model as described in Section 2.3. For the latter the volumes Vn (where n = Fe, Cr or Mn)
were extracted by fitting the volume of the alloy, V, with V = ΣcnVn, and Vn treated as fit parameters.
The results are VFe = 11.00 Å3, VMn = 11.17 Å3, VCr = 11.67 Å3. Fe, hence, has the smallest volume,
followed by Mn and then Cr, where the difference is strongest for Cr. The ordering is according to the
periodic table and reveals that larger band filling leads to smaller volumes. Please note that the relative
ordering of volumes was different in Ref. [15], where volumes where extracted from experimental data
on austenitic high-entropy alloys. In that work, Mn exhibited a much higher volume compared to Cr.
This could either be related to the Ni content in those materials, or by the specific fitting procedure
used to extract the volumes in Ref. [15]. We leave a more detailed investigations of this subject to
future work.

The concentration dependencies of the lattice parameter and elastic constants were also used to
calculate the lattice (εb) and the shear modulus (εG) mismatch contributions needed for the LN model
as defined by Equations (2) and (3). Due to virtually linear concentration dependence of the lattice
parameter and shear modulus on the concentration (see Figures 2 and 4), εb and εG remain essentially
constant within the whole range of considered alloy compositions (Cr 10 to 16 at.% and Mn 12 to
32 at.%). The obtained results for εb and εG are presented in Table 1.

Table 1. Atomic size misfit εb and the modulus mismatch ε′G for PM FeCr10–16Mn12–32-base alloys.

Element εb εb [21] ε′G |εL|
Cr 0.020 0.031 −0.53 0.63
Mn 0.005 0.073 −0.15 0.17

The DFT data on εb presented in the table can be compared with the analogous data from
Ref. [21]. For Cr, the values are in reasonable agreement while for Mn there exists a rather pronounced
disagreement. We attribute this to the rather crude approximation used in Ref. [21] for evaluation of εb,
where εb was estimated as a difference between the atomic volume of bcc (instead of fcc) iron and the
atomic volume of a solvent in its reference state. In fact, the experimental investigation of the lattice
constants in concentrated Mn-rich austenitic steels [76] has shown that the effect of Mn on the lattice
parameter is non-linear being rather strong at low Mn contents (up to 6 at.% of Mn) but leveling out to
virtually no effect for the compositions with more than 6% Mn. This result agrees well with the results
of our DFT calculations.

The modulus mismatch ε′G of both Cr and Mn atoms shown in Table 1 is 1–2 orders of magnitude
larger than that of the lattice (εb) . Therefore, also εL is dominated by this contribution in agreement
with the conclusion drawn in Ref. [17] for substitutional fcc Cu alloys.

Based on the misfit quantities τLN and τVC can be calculated. Here, we would like to remind
that the quantities τLN , τVC correspond to the CRSS required to move dislocations through the solid
solution. In Figure 7 the results are shown for both models for the binaries. For clarity, the concentration
range is extended to cn = 0, i.e., outside of the concentration regime covered by the DFT calculations.
The figure shows that addition of both Cr and Mn alloying elements increases CRSS throughout the
whole compositional range. We can see that the models largely agree with each other, with the VC
model yielding slightly smaller values. In view of the substantial difference in the derivation of the
models, the agreement is rather satisfying and gives confidence about their reliability.
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The overall SSS effect in FeCrMn alloys is shown in Figure 8. We can see that within the
compositional range of interest, the SSS is maximal for cCr = 16 at.% where τVC = 28 MPa and
minimal for cMn = 12 at.% where τVC = 21 MPa. Surprisingly, raising the Mn content reduces τVC in
the compositional range of interest of the ternary in contrast to the behavior of the binary. This can
be explained by the fact that the volume of Mn is intermediate to Fe and Cr and, hence, closest to the
effective medium. Replacing an Fe- or Cr-atom by Mn, therefore, leads to a more homogeneous alloy
with a smaller SSS contribution. As a result, the highest strength can be achieved by maximizing the
Cr content and minimizing the Mn content.

Figure 7. Solid solution strengthening in Fe for separate Cr and Mn alloying.

Figure 8. Solid solution strengthening in FeCrMn alloys with the VC model.

The temperature dependence of the SSS of polycrystalline austenitic FeMnCr, σalloy, is shown in
Figure 9 for the strongest and softest alloy composition. At 0 K, σalloy corresponds to τVC multiplied
by the Taylor factor of 3.06, therefore, strengthening amounts between 87 and 65 MPa. At room
temperature, the strengthening contribution is reduced to about 1/3 of this value, i.e., 18 and 29 GPa.

Thus, SSS is relatively moderate for the concentration range of interest. In other ternary alloys,
the equivalent SSS was found to be sizably higher, around 75–100 MPa [15]. This difference is explained
by the relatively low lattice mismatch between Fe and Mn in our case. Cr, which would be a more
effective strengthener, is added at relatively small concentrations because Cr is a ferrite-stabilizing
element and thus more likely than Mn (austenite-stabilizer) to induce a phase transformation [77].
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Figure 9. Yield stress versus temperature for cCr = 16 at.% (orange, strongest alloy) and cMn = 12 at.%
(blue, softest alloy).

4. Conclusions

First principles calculations of the equilibrium elastic properties of paramagnetic FeCr10–16Mn12–32

alloys suggest that the lattice constants and the elastic constants change linearly with composition
within the considered compositional range. The lattice constants and the bulk modulus linearly
increase with increasing Cr and Mn content while the shear elastic constants C′ and C44 decrease
linearly. In terms of SSS, Cr additions are much more effective than Mn additions due to the much
higher volume of the former compared to the latter. The absolute value of the SSS at room temperature
for polycrystalline austenite, σalloy, ranges from 18 (low Cr and high Mn content) to 29 MPa (high Cr
and low Mn content).

DFT calculations predict that alloying with both Mn and Cr should reduce the SFE in
FeCr10–16Mn12–32 alloys. The absolute values of the SFE in our calculations varying from about
30 to 40 mJ/m2 suggest that these materials are a subject to the TWIP deformation mechanism.
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Abbreviations

The following abbreviations are used in this manuscript:

ANNNI axial next nearest neighbor Ising model
CPA coherent potential approximation
CRSS critical resolved shear stress
DFT density functional theory
DG Debye-Grüneisen
dhcp double hexagonal close packed
DLM disordered local moment
EMTO exact muffin-tin orbital
EQOS equation of state
FCD full charge density
LN Labusch-Nabarro model
LSF longitudinal spin fluctuations
LSGF locally self-consistent Green function method
MMOM magnetic moment
PM paramagnetic
PN Peierls-Nabarro model
RWS Wigner-Seiz radius
SFE stacking fault energy
SSS solid solution strengthening
TRIP transformation induced plasticity
TWIP twinning induced plasticity
VC Varvenne-Curtin model

Appendix A. Literature Data for SFE

The exact chemical compositions related to the data points of Figures 6 and 5 are given in Tables A1
and A2.

Table A1. Austenitic steels, their chemical composition and respective SFE, data belong to Figure 6.

Concept Mn [wt.%] Cr [wt.%] C [wt.%] N [wt.%] Si [wt.%] SFE [mJ/m2] Methode Ref.

FeMnC 22 0 0.60 0 0 22 Graph [67]
FeMnC 22 0 0.60 0 0 37 Calculation [68]
FeMnC 17 0 0.95 0 0 42 Calculation [68]
FeMnC 30 0 0.50 0 0 42 Calculation [68]
FeMnC 17 0 0.81 0 0 25 Calculation [69]
FeMnC 22 0 0.60 0 0 27 Calculation [70]
FeMnC 28 0 0.30 0 0 27 Calculation [70]
FeMnC 24 0 0.70 0 0 35 Calculation [70]
FeMnC 24 0 0.60 0 0 31 Calculation [70]
FeMnC 12 0 1.20 0 0 35 Calculation [70]
FeMnC 22 0 0.03 0 0 29 Calculation [71]
FeMnC 22 0 0.33 0 0 25 Calculation [71]
FeMnC 22 0 0.69 0 0 28 Calculation [71]
FeMnC 13 0 1.30 0 0 30 Literature [72]

FeMnCrN 17 15 0 0.80 0 41 Calculation [71]
FeMnCrN 17 15 0 0.23 0 26 Measurement [73]
FeMnCrN 17 15 0 0.80 0 41 Measurement [73]

FeMnCrCN 18 7 0.59 0.29 0.56 33 Calculation [74]
FeMnCrCN 18 7 0.78 0.17 0.47 41 Calculation [74]
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Table A2. Austenitic steels, their chemical composition and respective SFE obtained in DFT calculations
at 300 K, data belong to Figure 5b.

Cr [at.%] Mn [at.%] SFE [mJ/m2]

10 12 40.3
10 16 38.5
10 20 36.9
10 24 35.2
10 28 34.1
10 32 32.6
12 12 38.4
12 16 36.7
12 20 35.4
12 24 34.3
12 28 33.0
12 32 31.9
14 12 36.8
14 16 35.8
14 20 34.6
14 24 33.4
14 28 32.6
14 32 31.7
16 12 36.0
16 16 35.0
16 20 33.9
16 24 33.1
16 28 32.5
16 32 32.1

Appendix B. Fit Parameters

The lattice constants (in Å), the bulk modulus (in GPa), the elastic constants C44 (in GPa) and C′

(in GPa) as a function of atomic fraction of Mn (cMn) and Cr (cCr) have been fitted with an analytical
function of a form

z = AcCr + BcMn + C. (A1)

The fit parameters for each of the aforementioned quantities are listed in Table A3 below.

Table A3. Fit parameters A, B and C for the lattice constants (alat), the bulk modulus (B), the elastic
constants C44 (in GPa) and C′ (in GPa) as they appear in Equation (A1).

Quantity A B C

alat 1.8019 6.9418 3.5306
B 0.0969 1.1234 152.4966

C44 −0.3023 −1.0925 177.4827
C′ −0.1534 −0.7025 48.8365
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