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Abstract: Spinal cord injury (SCI) constitutes an inestimable public health issue. The most crucial
phase in the pathophysiological process of SCI concerns the well-known secondary injury, which is the
uncontrolled and destructive cascade occurring later with aberrant molecular signaling, inflammation,
vascular changes, and secondary cellular dysfunctions. The use of mesenchymal stem cells (MSCs)
represents one of the most important and promising tested strategies. Their appeal, among the other
sources and types of stem cells, increased because of their ease of isolation/preservation and their
properties. Nevertheless, encouraging promise from preclinical studies was followed by weak and
conflicting results in clinical trials. In this review, the therapeutic role of MSCs is discussed, together
with their properties, application, limitations, and future perspectives.
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1. Introduction

Spinal cord injury (SCI) constitutes an inestimable public health issue, with an incidence of
40–80 per million people per year [1]. Generally, young adults are involved, where the burden of
permanent neurological damage is unbearable for patients, for their caregivers, and for the health
system. Prevention plays of course a key role, such as in cases of road accidents, criminal acts, or
secondary causes (tumors, degenerative diseases); however, the real challenge involving scientists is
about therapy, given the absence of a gold standard or effective treatment. Most of the post-traumatic
degeneration of the nervous system is caused by multifactorial secondary damage including different
molecular processes such as inflammation, neuronal death, ionic dysregulation, free radicals and lipid
peroxidation, disconnection of normal nerve pathways, blood–brain barrier dysfunction, apoptosis,
and necrosis, followed by cavitation processes and retrograde degeneration. In traumatic SCI, an early
surgical decompression seems to be important in preventing secondary damage, in the range between
8 and 24 h after injury [2–5], together with spinal fixation to allow correct nursing and rehabilitation.

One of the most important and promising tested strategies involves the use of stem cells. Among
them, mesenchymal stem cells (MSCs) are particularly appealing and showed hopeful promise in
preclinical research, followed by weak and conflicting results in clinical trials. In this review, the
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therapeutic role of MSCs is discussed, together with their properties, application, limitations, and
future perspectives.

2. Spinal Cord Injury

The spinal cord of mammals is organized in ten laminae of neurons, named dorsoventrally,
according to the Rexed description (1952 and 1954) [6,7]. The neurons are mostly multipolar and vary
in size. In the dorsal laminae, sensory neurons are found which receive inputs from the dorsal root
ganglion cells and project to other spinal levels or to the upper centers of the sensory pathways. In the
ventral laminae, cholinergic large motoneurons are devoted to the control of muscle contraction with
motor axons. Somewhat in between, interneurons of different morphologies receive the descending
projections and recurrent axonal fibers from spinal motoneurons, and influence motoneuron activity
(Mai and Paxinos, 2011) [8]. Spinal cord neurons form intraspinal circuits which are controlled by
descending pathways. The reflex arc is the most elementary intraspinal circuit.

The acute phase of SCI depends on the mechanism of trauma, which could be caused by contusion,
laceration, stretch, compression, or direct massive destruction. The events related to the trauma
constitute the primary injury, with disruption of neuronal pathways [9]. During the immediate phase
(occurring within the first two hours) (Rowland et al., 2008) [10], neurons and glial cells at the lesion
site die either by necrosis or by apoptosis (Zhang et al., 2012) [11]. Therefore, spinal cord repair should
aim first to restore intraspinal circuits, and then to obtain regrowth of descending pathways to regain
voluntary control of these intraspinal circuits.

It is well known that the most crucial phase in the pathophysiological process of SCI concerns
the secondary injury, which is the uncontrolled and destructive cascade occurring later with aberrant
molecular signaling, inflammation, vascular changes, and secondary cellular dysfunctions [12–15].

2.1. Secondary Injury

In the injured spinal cord, to a greater or lesser extent depending on the primary injury, a
large amount of destructive processes upset the environment. Taking into account the vascular
scenario, a global reduction of blood flow is observed, as a result of vasospasm, together with focal
microhemorrhages or thrombosis, causing a global disfunction of the blood–spinal cord barrier [15,16].
The cascade of events also affects electrolytic homeostasis around cellular membranes and their ion
pumps/transporters. Potassium (K+) increases its extracellular concentration, while sodium (Na+)
and calcium (Ca2+) concentrations increase intracellularly [17,18]. This leads to the blockage of
neuronal transmission. The influx of water caused by acidosis promotes cytotoxic edema followed by
cellular death [18–20]. Many molecules are released, such as free radicals and neurotransmitters. The
inflammatory process involves an immune response mediated by cellular invasion after disruption of
the blood–spinal cord barrier. T cells, macrophages, microglia, and neutrophils infiltrate the neuronal
tissue, acquiring a proinflammatory phenotype. The environment develops with the production of
cytokines such as interleukin-1 beta (IL-1β), interleukin-1 alpha (IL-1α), tumor necrosis factor alpha
(TNF-α), and interleukin-6 (IL-6), recruiting more cells in loco promoting neurodegeneration [21–24].

2.2. Chronic Phase and Neurodegeneration

The chronic phase is characterized by scar formation after gliosis and deposit of the extracellular matrix.
Molecules with growth-inhibitory effects are released and target neuronal receptors. Oligodendrocyte
death in the primary injury seems to be a crucial point in the SCI, because myelin debris contains inhibitory
molecules preventing axonal growth in animal models, such as Nogo-A protein or myelin associated
glycoprotein (MAG) [25–28]. Proteoglycans are also involved in the chronic phase and show a different
pattern of functions in the pathophysiological process; while most of them constitute a limitation for
axonal regrowth with their inhibitory features, others seem to border and limit the scar, preventing further
amplification of tissue damage [29,30].
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In this scenario, the removal of cellular debris and the cell environment is a key point for
neuroregeneration; the modulation of macrophages, with their different phenotypes (M1 and M2) and
effects in supporting neuroprotection or boosting inflammation, is then a multifactorial and crucial
step in determining final outcomes [21–24].

Noteworthy, the regeneration of neurons within the injured spinal cord seems a pipe dream in
mammals, but it is innate in the axolotl (salamander) where specific molecules may regulate glial
reaction after SCI and promote the proliferation and migration of glial cells to replace the missing neural
tube and stimulate axonal growth [31]. The identification of the cellular mechanisms which control
neural regeneration is fundamental to promoting spinal cord repair after injury. The modulation
of intraneuronal signaling networks and of the extracellular milieu is pivotal to enhance axonal
regeneration, thus stimulating the regrowth of intraspinal circuits and of the descending and ascending
pathways of the spinal cord [32]. The modulation of glial scar formation and of the alterations in the
perineuronal nets, and the control of neuroinflammation following SCI are mandatory for spinal cord
repair, even though far from being achieved [33]. Finally, axonal sprouting, synapse plasticity, and
remodeling, in part cell-autonomous, may be differently regulated by many cells and molecules in the
different compartments of the lesioned spinal cord [34].

3. Stem Cell Therapy and Appeal of MSCs

Stem cell division gives birth to an asymmetrical offspring with an additional progenitor cell and
a daughter stem cell. A stem cell is able to differentiate into different phenotypes, thereby determining
its potency. Totipotency is defined in the case where all terminal cell populations could be achieved,
while multipotency describes the possibility to pursue a more restricted pattern of phenotypes.

The promotion of synapse formation or axon elongation by transplanted neuronal progenitors
after damage was described in animal models [35]. Direct modulation in the differentiation of stem cells
into terminal phenotypes expanded the focus of research, while promising studies showed encouraging
recovery of neurological deficits after transplantation of derived cellular populations from embryonic
stem cells (ESCs) in rodents after SCI [36–40].

Since then, researchers multiplied their fields of interest, ranging from the modulation of
phenotypic pathways and optimization of transplant techniques, to imaging techniques in order to
obtain spatial and temporal information on the grafts [41,42], up to clinical studies starting with
the Geron clinical trial which promoted the use of human ESC-derived oligodendrocyte progenitor
cells (OPCs) in the site of injury [43]. Although mechanisms are far from being elucidated, stem
cell functions seem linked mostly to their paracrine effects and trophic support as shown in other
neurological degenerative diseases [16,44–46]. Given by a relatively high number of studies focusing
on SCI and neuronal repair, both in vivo and in vitro, evidence shows that a combinatory strategy
involving not only stem cells, but also gene therapy, biomolecular targets and drugs, and biomaterials
as scaffolds could dramatically improve the functional outcomes after SCI [16].

In this charming landscape, mesenchymal stem cells (MSCs) gained attention because of their
easy isolation (from different sources) and preservation, raising no ethical concern [47–49], and of the
limited risk of developing tumors [49]. In the case of ESCs, indeed many ethical controversies limited
their application because of the problems related to the violation of a human embryo [50]. Additionally,
MSCs maintain their regenerative potential even after cryopreservation at 80◦ C [51]. Their proliferation
is very rapid, and a high multilineage differentiation can be obtained [47]. Immunoreactivity or a
reaction versus hosts is minimal or absent.

Finally, MSCs show properties of “homing”, being able to migrate toward the site of lesion (Figure 1).
According to other authors, we previously observed this phenomenon in SCI experimental models
both by immunofluorescence reactions [52] and in MRI experiments [42]. Many authors demonstrated
that this cellular behavior is mediated by several inflammatory or chemotactic factors [53]; for example,
the vascular endothelial growth factor and hepatocyte growth factor, released at the injury level, can
actually attract MSCs [53,54]. Additionally, the SDF-1α/CXCR4 (stromal cell-derived factor-1α/C–X–C
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chemokine receptor 4) axis plays an important role in these mechanisms [55]; the impairment or the
upregulation of this axis can respectively affect or increase the MSC homing ability [56,57]. Other
factors able to positively influence MSC migration include substance P [58] and the granulocyte
colony-stimulating factor [59]. However, the precise mechanisms justifying the homing MSC ability
are still largely unknown [54].
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cytokines, etc.) are secreted; when transplanted into the spinal parenchyma, MSCs are attracted by 
chemotactic stimuli and migrate toward the lesion site. (C) Moreover, when injected intravenously, 
MSCs can interact with endothelial cells through the VLA-4−VCAM-1 interaction; then, the 
extravasation is mediated by the interaction between the C–X–C chemokine receptor 4 and stromal 
cell-derived factor-1α (SDF-1), a chemotactic cytokine induced by proinflammatory stimuli. 
Created with BioRender software. 

4. Secretome of MSCs

Although some differences were reported depending on the source, MSCs show a remarkable 
autocrine and paracrine activity [60,61] (Figure 2). 

Through their secretome, MSCs can stimulate proliferation and differentiation of different cell 
types, including themselves. Notably, it was demonstrated that the release of growth factors, 
cytokines, and interleukins can also influence MSC migration (see also “homing” mechanism above), 
via an autocrine loop; indeed, when exposed to conditioned medium (i.e., the medium where MSCs 
are cultured), the MSC expression of Aquaporin 1 and CXCR4 (two membrane proteins involved in 
cell migration) significantly increased, by activating Akt and Erk intracellular signal pathways, and 
caused an enhancement of MSC migration [55].  

Moreover, the MSC secretome can also exert immunomodulatory, anti-inflammatory, 
neurotrophic/neuroprotective and angiogenetic effects on the host microenvironment (as necessary 
in case of SCI). 

The immunomodulation is realized thanks to the expression of the major histocompatibility 
complex-I on the MSC surface, in this way preventing T-cell recognition and induction of a host 
immune response [62]. Moreover, MSCs are able to inhibit the proliferation, the activation, and 
differentiation of T cells [63,64]. 

Concerning their anti-inflammatory potential, MSCs can secrete a variety of soluble molecules; 
among the anti-inflammatory cytokines, we can include tumor necrosis factor (TNF) β1, interleukin 
(IL)-13, IL-18 binding protein, ciliary neurotrophic factor (CNTF), neurotrophin 3 factor (NT-3), IL-

Figure 1. The main factors and mechanisms influencing mesenchymal stem cell (MSC) homing
process are illustrated. (A) When injected either intravenously or intraspinally, MSCs show remarkable
properties of “homing”. (B) At the injury site, some molecules (such as VEGF, HGF, cytokines, etc.) are
secreted; when transplanted into the spinal parenchyma, MSCs are attracted by chemotactic stimuli
and migrate toward the lesion site. (C) Moreover, when injected intravenously, MSCs can interact with
endothelial cells through the VLA-4−VCAM-1 interaction; then, the extravasation is mediated by the
interaction between the C–X–C chemokine receptor 4 and stromal cell-derived factor-1α (SDF-1), a
chemotactic cytokine induced by proinflammatory stimuli. Created with BioRender software.

4. Secretome of MSCs

Although some differences were reported depending on the source, MSCs show a remarkable
autocrine and paracrine activity [60,61] (Figure 2).

Through their secretome, MSCs can stimulate proliferation and differentiation of different cell
types, including themselves. Notably, it was demonstrated that the release of growth factors, cytokines,
and interleukins can also influence MSC migration (see also “homing” mechanism above), via an
autocrine loop; indeed, when exposed to conditioned medium (i.e., the medium where MSCs are
cultured), the MSC expression of Aquaporin 1 and CXCR4 (two membrane proteins involved in cell
migration) significantly increased, by activating Akt and Erk intracellular signal pathways, and caused
an enhancement of MSC migration [55].

Moreover, the MSC secretome can also exert immunomodulatory, anti-inflammatory,
neurotrophic/neuroprotective and angiogenetic effects on the host microenvironment (as necessary in
case of SCI).

The immunomodulation is realized thanks to the expression of the major histocompatibility
complex-I on the MSC surface, in this way preventing T-cell recognition and induction of a host immune
response [62]. Moreover, MSCs are able to inhibit the proliferation, the activation, and differentiation
of T cells [63,64].
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Concerning their anti-inflammatory potential, MSCs can secrete a variety of soluble molecules;
among the anti-inflammatory cytokines, we can include tumor necrosis factor (TNF) β1, interleukin
(IL)-13, IL-18 binding protein, ciliary neurotrophic factor (CNTF), neurotrophin 3 factor (NT-3), IL-10,
IL-12p70, IL-17E, IL-27; moreover, MSCs can also modulate cytokine production of the host, for
example, by inhibiting the release of pro-inflammatory cytokines (as interferon-γ and tumor necrosis
factor α) or increasing the release of anti-inflammatory IL-10 [44,65].
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Figure 2. The main MSC sources, including bone marrow, umbilical cord, adipose tissue, and amnion.
MSCs can exert both autocrine and paracrine effects. Among the molecules secreted, we can include
several immunomodulatory and trophic factors, and anti-inflammatory cytokines; when transplanted
in an injured spinal cord, the grafted cells can positively influence the host environment. Created with
BioRender software.

To exert neuroprotection, MSCs secrete a number of neurotrophic factors, as brain-derived growth
factor (BDNF), glial-derived growth factor (GDNF), nerve growth factor (NGF), NT-1, NT-3, CNTF,
and basic fibroblast growth factor (bFGF) [44,65–69]; through these factors, MSCs can, on one side,
prevent nerve degeneration and apoptosis, and, on the other, support neurogenesis, axonal growth,
re-myelination, and cell metabolism [70–76].

MSCs can also induce angiogenesis, an important process by which new vasculature sprouts
from pre-existing blood vessels; to this aim, MSCs secrete the tissue inhibitor of metalloproteinase-1,
vascular endothelial growth factor, hepatocyte growth factor (HGF), platelet-derived growth factor
(PDGF), IL-6, and IL-8. The production of these factors is particularly important for supporting the
wound healing processes [77,78].

5. MSCs

MSCs can be obtained from different sources, each of which bears intrinsic characteristics
differences, as shown below (Figure 2; Table 1) [52,79–91].
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Table 1. Mesenchymal stem cell (MSC) characteristics.

MSC Type Availability
[83]

Invasive
Procedure of

Collection [83]

Cell
Proliferation In

Vitro [81,85]

Secretome *
[79,82,87]

MSC Survival
at the Injury

Site After Graft
[88,89]

Low
Immunogenicity

in the Host
Tissue [84,85]

Anti-Inflammatory
Effect in

Injured Spinal
Cord ** [84]

Glial Scar
Reduction

[52,80,86,90]

Axonal
Regrowth/Sprouting

Support
[52,80,86,90,91]

Use in
Pre-Clinical

Studies (This
Review)

Use in Clinical
Trials (This

Review)

BM-MSCs +++ +++ ++ +++ ++ ++ ++ ++ +++ +++ +++

UC-MSCs + not invasive +++ +++ +++ +++ +++ ++ +++ ++ ++

AD-MSCs +++ ++ ++ +++ +++ ++ ++ ++ +++ ++ ++

AF-MSCs + not invasive +++ +++ +++ +++ not reported not reported +++ + not reported

* Secretion of neurotrophic factors (bFGF, NGF, NT3, NT4, GDNF) is higher for UC-MSCs, whereas the production of pro-angiogenetic factors (VEGF, angiogenin, and PLGF) is higher for
BM-MSCs and AD-MSCs. ** Based on the modulation of two inflammatory cytokines of the host tissue (COX-2 and IL-6).
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5.1. Bone Marrow Mesenchymal Stem Cells (BM-MSCs)

These cells are found within the adult bone marrow, where they contribute to hematopoiesis and
bone regeneration. BM-MSCs can not only be obtained from humans, rodents, or primates, but also
from several animal species such as sheep, dogs, cats, and bovines (Figure 3) [88,92–98].Int. J. Mol. Sci. 2019, 20, 2698 9 of 30 
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The possibility to differentiate into cells of mesodermal origin and to adhere to plastic distinguishes
BM-MSCs from hematopoietic cells. Their range of differentiation is larger than expected, including
not only mesenchymal cells such as osteocytes, chondrocytes, and adipocytes, but also a broad range
of lineages expressing non-mesenchymal markers [99,100]. Pre-clinical studies collected promising
results (Table 2) Wislet-Gendebien et al. addressed the question of differentiation of MSCs in vitro
trying to identify neuronal phenotypes. A series of markers were evaluated [100]. Authors found
Nestin expression in some groups of cells, a marker for the responsive characteristic of MSCs to
extrinsic signals. In Nestin-positive cells, they also registered an overexpression of proteins like
sox2, sox10, pax6, fed, erbB2, and erb4. These cells showed a neuron-like conduction, responding
to several neurotransmitters (GABA, glycine, glutamate). Compared to neurons, however, trains of
action potentials or synaptic activities in co-cultured Nestin-positive MSCs were not observed.

BM-MSCs can not only be transplanted directly into the damaged spinal cord, but also infused
with intravenous injections because of the aforementioned homing properties [101–106]. Deng et al.
transplanted BM-MSCs two weeks after dorsal SCI in monkeys [104]. A partial functional improvement
was noticed in terms of a slight motor recovery (active joints movements in the study group) and in
electrophysiological studies with evoked potentials. Monkeys were then studied after three months
with characterization of the scar. No neuronal cells were found. The analysis revealed the presence of
markers such as neuron-specific enolase (NSE), the neurofilament (NF), and the glial fibrillary acidic
protein (GFAP) in approximately 10% of the cells. The true blue, originally injected at the caudal side
of injuries, was at the end traceable in the rostral thoracic spinal cord, red nucleus, and sensorymotor
cortex. Zurita et al. transplanted BM-MSCs three months after dorsal SCI in pigs [105]. Authors used a
motor score (0–10, with 10 considered as animals without deficits). Twelve weeks after transplantation,
pigs that underwent stem cell therapy showed a mean score of 6.2 on the motor function scale. Some
of the treated animals were even able to get up spontaneously. Recovery of evoked potentials was
also noticed.
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Table 2. Main preclinical studies regarding MSCs.

Study Type of Stem
Cell

Transplanted

Type of SCI Animal Administration Scores Adverse
Reactions

Results Cells
Analysis/Findings in

the Scar

Wislet-Gendebien
et al. [100]

BM-MSC In vitro study N/A N/A Anti-glial fibrillary acidic protein
(GFAP);

anti-GLAST; anti-Tuj1; anti-NeuN;
anti-SMI31;

anti-MAP2ab;
anti synaptophysi; anti-M2; anti-M6;

RT-PCR, electrical conductivity

N/A Neuron-like cells differentiated from Nestin + cells
without the mature neuron electrical features; No

differentiation in oligodendrocyte-like cells

Nestin + cells; GFAP +
cells

Deng et al. [104] BM-MSC Transplantation of
BM MSC 2 weeks
after dorsal SCI

Macaco rhesus Intralesional Motor and sensitive improvement
(Tarlov behavior assessment), SEP, MEP

None Motor and sensitive functions improvement (Tarlov
2-3 achieved) in treated monkeys after 3 months

follow up; Improvement of SEP and MEP

NSE +, NF +, GFAP +
cells

Zurita et al.
[105]

BM-MSC BM MSC
transplanted 3

months after dorsal
SCI

Pigs Intralesional Clinical improvement (from 0 to 10
scale where 0 means paraplegia and 10

constantly useful hike), SEP, MRI

None 3 months after transplantation improvement of motor
functions (mean score of 6.20) and SEP; reduction of

the centromedullary cavity

GFAP +, NF +, S100 +
cells

Hofstetter et al.
[107]

BM-MSC Iperacute
(immediately after
trauma) and acute
(transplantation 1
week after dorsal

trauma)

Lewis rat Intralesional Fibronectin, vimentin, laminin cells
positivity; GFAP, electrical conduction

None Markers of neuron-like cells, but no depolarization
their membrane like mature neurons; No clinical

benefit in the iper acute SCI group. In the acute SCI
group Ab anti Nestin and GFAP of host astrocytes

around and in the scar in the MSC treated population.
Immature astrocytes Nestin + GFAP + with the
possibility to differentiate into neuron-like cells

Neuron-like cells, host
astrocytes closely
connected with

transplanted MSC cells,
astrocyte-like cells

Nishio et al.
[108]

HUCB stem
cells

Acute (1 week after
dorsal trauma)

Wistar rats Intralesional Basso, Beattie, Bresnahan locomotor
scale (BBB), MRI

None Hindlimb recovery, reduction of cystic cavity, no
detection of any double-positive cells for human
mitochondria and CD34, of CD4 positive cells, no

significant differences between the two groups in the
number of OX-42–positive or CD8-positive cells;

GAP-43–positive fibers at the epicenter significantly
higher than that of the control group

CD45 and human CD14,
OX-42, CD4, CD8,

GAP-43, 5-HT fibers,
T-positive fibers

Pal et al. [109] BM-MSC Acute (1 week after
dorsal trauma)

Wistar rats Intrathecal BBB locomotor scale, grid walk, plantar
test, inclined plane; cells were tested for

CD34, CD44, CD45, CD73, CD90,
CD105 and HLA-DR.

None Improved locomotor and sensory behavioral scores.
Negative astroglial markers. No graft versus host

immune reaction evoked by BM MSC, with the
capacity to escape the immune system and be

effective in wound healing

Negative astroglial
markers, BM MSC

Nemati et al.
[110]

Monkeys NSC Acute (10 days after
dorsal trauma)

Macaco rhesus
monkeys

Intralesional Spontaneous motor activity, Tarlov’s
scale, limb pinch test, tail pinch test,

sensory test, MRI, evaluation of neural
specific markers Tuj1, MAP2, GFAP,

Pax6, Sox1

None Improvement in the sensory and motor activity,
improvement in MRI

Isolated mNSCs express
NSC markers such as
nestin, Sox1, and Pax6
and could differentiate

into mature neurons
positive for MAP2 and

GFAP
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Table 2. Cont.

Study Type of Stem
Cell

Transplanted

Type of SCI Animal Administration Scores Adverse
Reactions

Results Cells Analysis/Findings in the
Scar

Gutierrez et al.
[111]

Human fetal
cortex-derived

neural
progenitor cells

(hNPCs)

Iperacute
(immediately after

cervical trauma)

Göttingen
minipig

Intralesional Tarlov scale, sensory evaluation in the
form of a tactile stimulus to the

interdigital space

None Improvement in motor and sensitive
functions, no significant decrease in

neuronal density between groups; cell
engraftment ranged from 12% to 31%

Hakim et al.
[112]

BM-MSC Acute (24 h after
dorsal trauma)

Mice Intralesional Cells were evaluated by flow cytometry,
immunohistochemistry,

immunocytochemistry, proliferation
assay differentiation assay, confocal

microscopy and automatic cell
quantification

None MSCs transplanted downregulate genes
related to cell-cycle and DNA

metabolic/biosynthetic processes and
upregulate genes related to immune system

response, cytokine production, and
phagocytosis/endocytosis; Sca1 and CD29,

MHC I maintained expression; upregulated
expression of CD45 and MHC II;

Transplanted MSCs survived and
proliferated to a low extent, no expression of
Caspase-3, no differentiation into neurons or

astrocytes

Transplanted MSCs express CD29,
Sca1, and CD45 MHC-I and
MHC-II; transplanted MSCs

survive and proliferate but do not
undergo apoptosis or neural

differentiation

Cao et al. [113] NSC Acute (10 days after
dorsal trauma)

Fischer rats Intralesional,
intrathecal

Cells were evaluated by
immunohistochemistry, confocal
microscopy and automatic cell

quantification

None The majority of transplanted cells either
differentiated into GFAP + cells or remained

nestin +. No Brd-U-positive neurons or
oligodendrocytes detected

GFAP+ cells, nestin+ cells, Brd-U+
cells

Dasari et al.
[114]

HUCB stem
cells

Acute (1 week after
dorsal trauma)

Lewis rat Intralesional BBB locomotor scale, cells were tested
for CD44, NF200, CNPase, O1, beta III

tubulin, APC, myelin basic protein
caspase 3, MAP-2A&2B,

confocal/fluorescence microscope,
automatic cell quantification, immune

blot

None Improved locomotor and sensory
behavioral scores, downregulation HUCB

cellsmediated Fas and caspase

NF-200+ cells, CNPase+ cells, CD
44+ cells,

co-localization of hUCB with
neurons and oligodendrocytes

Cho et al. [115] HUCB stem
cells

Acute (1 week after
dorsal trauma)

Sprague-Dawley
rats

Intralesional BBB locomotor scale, SSEPs, cells were
evaluated by immunoistochemistry

None Improved locomotor and sensory
behavioral scores, shortened SSEPs latencies

in treated rats

HuNu and GFAP + cells, MBP +
cells, beta III tubular + cells

Khan et.al. [92] AD-MSCs +
BDNF

Acute (1 week after
lumbar trauma)

Beagle dogs Intralesional BBB locomotor scale, cells were tested
for Tuj-1, NF, GAP-43, GFAP, Nestin,

COX2, TNFa, IL6, STAT3, IL-10, HO-1,
BDNF

None Significant improvement in hindlimb
functions, with a higher BBB score

Increase in neuroregeneration,
higher expression of Tuj-1, NF-M,

and GAP-43, decreased expression
of the inflammatory markers

interleukin-6 (IL-6) and tumor
necrosis factor-α

(TNF-α), and an increased
expression of interleukin-10 (IL-10).

H&E staining showed more
reduced intraparenchymal fibrosis
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Table 2. Cont.

Study Type of Stem
Cell

Transplanted

Type of SCI Animal Administration Scores Adverse
Reactions

Results Cells Analysis/Findings in the
Scar

Ryu et. al. [88] BM-MSC,
AD-MSC, UCB

MSC, Wharton’s
jelly-derived

MSC

Acute (1 week after
lumbar trauma)

Beagle dogs Intralesional Olby score and Revised Modified Talov
scale, BBB locomotor scale,

confocal/fluorescence microscope.
Immunoistochemistry

None Significant differences of neurologic
recovery in MSCs groups at 2 weeks

following MSC transplantation. Purposeful
hind limb motion of all dogs in the MSCs

groups. No significant differences observed
among the MSCs groups. UCB-derived

MSCs (UCSCs) induced more nerve
regeneration and anti-inflammation activity

Some MSCs expressed markers for
neurons (NF160), neuronal nuclei

(NeuN) and astrocytes (GFAP).
NF160- and NeuN-positive

neurons were found,
GFAP-positive reactive astrocytes
were observed more often in the

control group than in MSCs
groups. Lesion sizes were smaller,
and fewer microglia and reactive

astrocytes were found in the spinal
cord epicenter of all MSC groups

Penha et.al. [93] BM-MSC Acute (10 days after
dorsal or lumbar

trauma)

Dogs Intralesional Clinical evaluation, MRI images None No changes at the MSC administration site
into the spinal cord. Progressive recovery of

the panniculus reflex and diminished
superficial and deep pain response.
Conscious reflex recovery occurred

simultaneously with moderate
improvement in intestine and urinary

bladder functions

N/A

Kim et.al. [94] AD-MSCs Acute (1 week after
dorsal or lumbar

trauma)

Dogs Intralesional Clinical improvement: full recovery
(normal neurologic state; grade 0),

improved (regained deep pain
perception (DPP) and recovery of

ambulation, but still had mild ataxia;
grade 1–2) and unsuccessful (did not

regain DPP or the ability to walk
without support; grade 3–5)

None Clinical improvement (55.6% of the dogs
were in full recovery, 22.2% showed
improved outcomes and 22.2% had

unsuccessful recovery)

N/A

Kim et.al. [95] AD-MSCs Iperacute
(immediately after

lumbar trauma)

Beagle dogs Intravenous Revised Tarlov scale, gait analysis, cells
were evaluated by western blot

None Significant enhanced motor function in
AD-MSCs group compared with those in
the control group at 7 days post treatment

The levels of GFAP, and GalCa
were increased in the AD-MSC

group,
β3-tubulin levels were increased,

COX-2, IL-6, and TNFα levels were
significantly decreased;

3-NT level was significantly
decreased, the level of 4-HNE was
significantly decreased; the level of

PC was significantly decreased
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Many authors investigated BM-MSC transplantation in dogs [88,92–95]. Among them, Ryu et al.
recorded improved neurological outcomes in MCSs groups after acute transplantation (one week
after trauma), since all dogs had purposeful hind limb motion. He also showed that some MSCs
expressed markers for neurons (NF160), neuronal nuclei (NeuN) and astrocytes (GFAP). NF160- and
NeuN-positive neurons were found, and GFAP-positive reactive astrocytes were observed more often
in the control group than in MSCs groups [88].

Hofstetter et al. in 2002 studied stem cell therapy after both iperacute and acute (one week)
transplantation. Populations of neuron-like cells with the presence of neural markers were found,
but they were not able to depolarize their membrane-like mature neurons. No clinical benefits were
recorded. In the acute SCI group, a population of neuronal progenitors and astrocytes of the host were
found in tissues after introduction of BM-MSCs in the lesion site [107].

Other preclinical studies are reported in Table 2 [108–115].
Jeon SR et al. described one of the first applications of these cells in patients with cervical SCI

(Table 3). In this case, cells were isolated from iliac bones and then subjected to intramedullary
or intradural introduction after expansion in a subacute and chronic state. After six months, most
patients showed a slight improvement of motor function in the upper limbs, while magnetic resonance
imaging (MRI) showed changes at the level of treatment in terms of the disappearance of the cavity
margin and the presence of fiber-like streaks [116]. No evidence of neoplasm growth was observed
even at three years follow-up [117] This study and others showed promising but very limited results
(Table 3) [118–126]. Dai et al. [118] tested BM-MSCs in a randomized study with complete and
chronic SCI patients. Neurological functions were evaluated with AIS grading, ASIA score, residual
urine volume, and neurophysiological examination. In the treatment group (N = 20), 10 had clinical
improvement. Mean motor improvement with AIS grading was 0.9 ± 1.07, that with the ASIA score
was 11.5 ± 17.07, that with the sensory prick score was 5.2 ± 7.78, and that with the sensory light
touch score was 5.4 ± 8.22. Residual urine volume (mL) was decreased with a mean of 61.55 ± 77.43.
Patients were followed up for six months after an interval between the injury and stem cell therapy of
51.9 ± 18.3 months. No details about clinical improvements before stem cell therapy or other therapies
were mentioned.

In a phase I/II controlled single-blind clinical trial, El-Kehir et al. [119] showed functional
improvements over patients in the control group of stem cell therapy and physical therapy using AIS
grading and ASIA scores in about half of the cases (46%), especially in patients with thoracic injuries
with shorter durations of injury and smaller cord lesion. Motor recovery was recorded and promising
but still qualitatively limited. Geffner et al. [120] described a partial efficacy of stem cell therapy with
some improvements in ASIA, Barthel (quality of life), Frankel, and Ashworth scoring in eight cases
(four acute, four chronic). Karamouzian et al. [121] described the results of a nonrandomized clinical
trial of transplantation of BM-MSCs in 11 complete SCI patients against 20 in the control group. Results
showed improvements of 45.5% of patients (a two-grade improvement from baseline, i.e., from ASIA
A to ASIA C) in the study group vs. 15% in the control group, but were not statistically significant
(p = 0.095). The heterogeneity and small number of the patients did not allow a reliable analysis.
Mendonca et al. [122], Park et al. [123], and Cheng et al. (NCT01393977) described a slight functional
improvement in small groups of patients treated with stem cells. Other papers and reviews questioned
the extent of improvement and the correct timing of treatment [63,64]. Park et al. only described six
cases with some improvements in motor function and changes in cord enhancement with the MRI [123].
Sykova et al. reported data from 20 patients with complete SCI who received transplants 10 to 467 days
post-injury. Patients were then evaluated at three, six, and 12 months after implantation with ASIA
protocol, the Frankel score, motor and somatosensory evoked potentials, and MRI evaluation of lesion
size. Authors registered improvement in motor and/or sensory functions within three months in five
of six patients with intra-arterial application, in five of seven acute patients, and in one of 13 chronic
patients. Transplantation of cells appeared safe but there was no evidence that the observed beneficial
effects were linked to cell therapy [124].
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Table 3. Main clinical studies on BM-MSC transplantation.

Study Type of SCI Administration n of Transplanted
Cells

Transplanted
Cells Type

Scores Adverse
Reactions

Results

Jeon et al. [116] 10 acute SCI patients Intrathecal 8 × 106 cells Autologous MSCs ASIA, Frankel score,
EMG, SEP, MRI

None Improvement in ASIA score, EMG, and SEP;
improvement in MRI imaging

Dai et al. [118] 40 human patients; chronic
and complete cervical SCI

(AIS A)

Perilesional Suspension with
8 × 105 cells/microl

Autologous
BM-MSCs

expanded in
culture

AIS, ASIA, residual
urinary volume, EMG,

MRI

None 45% AIS A to B; ASIA total scores were 31.6
prior and 43.1 after treatment (p = 0.01);

preoperative urinary volume 235 mL to postop
volume 173 mL (p = 0.01), improvement also in

EMG and MRI

El Kheir et al. [119] 70 human patients; chronic
complete cervical or

thoracic SCI

Intrathecal 2 × 106 cells/kg Autologous
BM-MSCs

AIS, ASIA, MRI, SEP None AIS conversion from AIS A to AIS B or C and
from AIS B to AIC C; Improvement in ASIA

score, SEP and in MRI. Higher improvement in
the thoracic than in the cervical SCI group

Geffner 2008 [120] 8 human patients (4 acute
SCI, 4 chronic SCI)

Directly into the spinal
cord, directly into the

spinal canal, and
intravenous

/ Autologous
BM-MSCs

ASIA, Barthel, Frankel
Ashworth score,
residual urinary

volume, MRI

None Improvement in all of the parameters

Karamouzian et al.
[121]

11 human patients with
acute or subacute (2-8

weeks after trauma) SCI

Intrathecal 7 × 105 to 1.2 × 106

cells
Autologous
BM-MSCs

ASIA (12-33 months
follow up)

None Improvement in the ASIA score but the score
was not statistically significant (p = 0.095)

Mendonca et al.
[122]

14 human patients with
chronic thoraco -lumbar SCI

Intralesional 5 × 106 cells/cm3 BM-derived MSCs
expanded in

culture

ASIA, SEP, MRI,
urodinamic, AIS

None AIS A to B or C; incomplete injury; urinary
function improved in 9 subjects, SEP improved

in 1 subject

Park et al. [123] 6 human patients with
cervical SCI treated at 72 h

after trauma

Intralesional 2 × 108 cells Autologous
BM-MSCs

Frankel, AIS, MRI None AIS A to B/C; improved MRI

Sykova et al. [124] 20 human patients with
complete SCI transplanted
from 10 to 467 days after

trauma

Intra arterial vs. intra
venous

89.7 +/− 70.7 × 106

cells
Autologous
BM-MSCs

Frankel, AIS, ASIA,
SEP, MRI

None Not significant results at 3–6–12 months
follow-up; however, there was a positive trend

Pal et al. [125] 30 human patients with
complete cervical or

thoracic SCI

Intrathecal 1 × 106 cells Autologous
BM-MSCs

expanded in
culture

ASIA, Barthel, SSEP,
MEP, NCV, MRI

None No significant results in ASIA score; variable
patterns of recovery (especially in bladder

functions), no significant variations in SSEP,
MEP, NCV. Improved MRI

Moviglia et al.
[126]

2 human patients with
cervical and thoracic

chronic SCI

Intra arterial 5 × 108 to 1 × 109

cells
Autologous
BM-MSCs

SSEP, MEP, MRI,
clinical examination

None Improvement in all of the parameters



Int. J. Mol. Sci. 2019, 20, 2698 13 of 26

Therefore, new trials are needed, given the absence of protocols and the poor knowledge about
mechanisms and outcomes of BM-MSC transplantation. In the ongoing trials (phase I and II), hundreds
of patients should be enrolled, thus trying to improve quality of evidence.

Some studies are trying to explore benefits of different combinatory strategies involving not only
BM-MSCs, but also technological tools such as virtual reality or exoskeletal stimulation to face the
challenge with more holistic approaches [127].

BM-MSCs showed a very promising anti-inflammatory effect on cell environment. In animal
models (rats), they promoted anti-inflammatory phenotypes of macrophages (M2) and suppressed
lymphocyte proliferation before sustaining regeneration [128–130]. Furthermore, molecules such as
vascular endothelial growth factor (VEGF), the glial cell-derived neurotrophic factor (GDNF), the
nerve growth factor (NGF), and the brain-derived neurotrophic factor (BDNF) could be produced
by MSCs and are currently related to the ability of MSCs to provide trophic support, studied in vivo
with animal models [128,131,132]. This is probably why the genetically modified over-expression of
these factors could improve clinical outcomes [133]. Finally, the homing properties of BM-MSCs could
sustain targeted delivery of drugs acting like specific vectors [134].

In clinical trials involving SCI patients, BM-MSCs were injected with an intrathecal approach in
about half of the cases, while, in the remaining studies, other routes of administration were used (in
situ as grafts or with scaffold, intravenous or intramuscular) [16].

5.2. Umbilical Cord Mesenchymal Stem Cells (UC-MSCs)

These cells are obtained from cord blood or the umbilical cord [49], and grow in colonies with the
support of growth factors [16,49]. The risk of graft rejection using these cells is very low as confirmed
by studies demonstrating their hypoimmunogenicity [62]. In preclinical studies, using SCI animal
models with rats or mouse, UC-MSCs showed a promising profile of neurotrophic, anti-apoptotic,
and anti-inflammatory effects [135–138]. Molecular markers and neuron-like characteristics were
observed after homogeneous maturation of UC-MSCs [139]. Despite the aforementioned results in
pre-clinical studies, only few clinical trials were published describing minor improvements in some
SCI patients [130–132]. Kang et al. described a case report of a young female patient with slight
improvements after acute transplantation [140]. In the study of Yao et al., 25 patients with traumatic
SCI (injury time >6 months) were treated with human umbilical cord blood stem cells via intravenous
and intrathecal injection. The follow-up period was 12 months after transplantation. Results reported
some autonomic restoration and changes in somatosensory evoked potentials [141]. The trial of
Zhu et al. showed more promising, although limited results after transplantation in the chronic phase:
13 out of 20 patients improved their motor and sphincteric functions. Five out of 20 converted from
complete to incomplete (two sensory, three motor; p = 0.038) SCI [142]. A phase II ongoing multicenter,
randomized, sham-controlled trial (NCT03521336) recently started with patient enrollment, trying
to evaluate efficacy of intrathecal transplantation of UC-MSCs. Completion of the study is expected
in 2022.

5.3. Adipose-Derived Mesenchymal Stem Cells (AD-MSCs)

AD-MSCs represent an appealing source of transplantable MSCs, given the remarkable population
of somatic stem cells and the availability of adipose tissue [143,144]. The ability of AD-MSCs to
secrete growth factors, proteases, cytokines, extracellular matrix molecules, and immunomodulatory
factors supports their potential of neuroregenerative, anti-apoptotic, angiogenetic, and wound healing
actions [145]. Cellular survival pathways and repairing mechanisms in pre-clinical studies involved
the upregulation of kinase proteins like ERK1/2 and Akt [40]. AD-MSC transplantation was studied
in animal models showing no adverse effects but often unsatisfactory functional results [86,94,146].
Biomolecular and histological analysis revealed promising details. Kolar et al. [146] studied the effect
of transplantation in rats with SCI. AD-MSCs were transplanted into the lateral funiculus 1 mm rostral
and caudal to the C3–C4 lesion. In animals treated with cyclosporine, BDNF, vascular endothelial
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growth factor, and fibroblast growth factor-2 were expressed for about three weeks. An extensive
ingrowth of 5HT-positive raphespinal axons was noticed in the trauma zone with some terminal
arborizations reaching the caudal spinal cord. Furthermore, sprouting of raphespinal terminals in C2
contralateral ventral horn and C6 ventral horn on both sides was observed. Relative to the lesion scar,
astrocytic processes extended into the middle of the trauma zone in association with regenerating
axons. Menezes et al. described an abundant deposition of laminin at the lesion site and spinal midline,
the appearance of cell clusters composed of neural-like precursors in the areas of laminin deposition,
and the appearance of blood vessels [86]. Kim et al. showed a modification of the inflammatory
environment after transplantation of AD-MSCs, with decreased astrogliosis-related signal molecules
such as phosphorylated signal transducer and activator of transcription. Furthermore, markers like
Tuj-1, Nestin, microtubule-associated protein 2, and neurofilament M were expressed as shown in
other aforementioned studies [94]. In clinical studies, a slight sensory improvement was recorded in
the majority of patients after intrathecal transplantation, but longitudinal clinical trials with concrete
motor responses are still lacking [40]. Coadministration of other compounds, such as 17b-estradiol,
and overexpression of Bcl-2 or chondroitinase ABC, were able to enhance therapeutic efficacy in
dog models [147]. On this premis, a series of ongoing trials of AD-MSC transplantation is currently
underway [40] (Table 3).

5.4. Amniotic Fetal Mesenchymal Stem Cells (AF-MSCs)

These cells can be obtained from amniotic membrane or amniotic fluid. Several features are
attributed to AF-MSCs such as their multipotency, ease of isolation, and ability of proliferation, together
with a low immunogenicity [148]. Despite this, only few pre-clinical studies in animal models were
performed. They showed preliminary and limited results in terms of reduced inflammation and
apoptosis, promoted angiogenesis, and provided trophic support [149–151]. No effective clinical trials
followed pre-clinical investigations.

6. Biomaterials and Scaffolds for Stem Cell Therapy

Due to technological advances, researchers started to investigate biomaterials with the aim of
promoting tissue repair, improving stem cell survival, and supporting their functions [152]. This
strategy could be pursued using biomaterials as carriers, thereby ensuring stem cell biofactor delivery,
or as a scaffold, offering a structural support for tissue regeneration [16].

Among synthetic polymers, biodegradable hydrogels (such as polylactic acid (PLA), polyglycol
acid (PGA), and polyethylene glycol (PEG)) were developed to promote cellular survival and carry
several advantages. They easily fill the lesion cavity after injection and show high flexibility, gas
permeability, no toxicity, and a favorable mechanical profile [16]. Drugs, biomolecules, and biofactors
can be loaded and released locally by hydrogels [153]. To improve proper micro-structure and
ensure correct support, three-dimensional (3D) printing nano-architecture was developed to recreate a
sustainable and attractive stem cell niche [16,154]. Usually, hydrogels are injected at the site of the
lesion. The possibility to use them with a minimally invasive injection reduces the risk of a surgical
procedure. Furthermore, they have the ability to load hydrophilic drugs and biomolecules with
controlled release. Among the disadvantages, it is important to highlight that the kinetics and delivery
of drugs could be inadequate because of uncontrolled diffusion or an unfavorable environment. For
example, molecules with low steric hindrance cannot be controlled easily and might diffuse without
reproducible control. Furthermore, the loading of hydrophobic drugs with a reduced affinity for the
aqueous environment constitutes a real limitation. Bonds between drugs molecules could be built
to increase or reduce the rate of release, depending on the ease of breakage of links, thereby offering
controlled stem cell biofactor delivery [16].

Among natural scaffolds, a variety of materials were evaluated. Because of its biocompatibility,
plasticity, and flexibility, fibrin was shown to promote regeneration and delay accumulation of astrocytes
at the site of the injury. Enriched with stem cells or growth factors, fibrin improved survival and
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migration of transplanted cells, also increasing neural fiber density. Collagen and hyaluronic acid
were proposed and used because of their elasticity, time of degradation, and ability to support cell
adhesion and migration. Time of degradation plays a key role in letting the matrix produced by
transplanted cells progressively replace the scaffold during the repairing process. An example of an
innovative composite implant was described by Rochkind et al., cross-linked hyaluronic acid with
growth factors and the adhesive molecule laminin (NVR-Gel), showing promising results. Natural
scaffolds were able to reduce neuro-inflammation in the acute stage and support synaptic plasticity,
as well as axonal outgrowth [106]. That said, despite this promising neuroengineering background,
no concrete results were observed in clinical trials [16,155–158]. The field of polymeric scaffolds was
developed to support stem cell survival and efficacy after transplantation, but favorable biomechanical
properties did not translate encouraging pre-clinical studies into clinical success, highlighting the
necessity for new comprehensive experimentations.

7. Limitations of Current Evidence and Future Directions

Stem cell technology is a growing and evolving field with an unquestionable appeal, as testified by
many research papers and state-of-the-art reviews published in the English literature [16,40,80,158,159].
In our experience with MSCs or other stem cells [52,160], like in many other aforementioned papers,
tests with animal models showed promising results. Despite this, many caveats arise and, thus, elicit
caution against inordinate enthusiasm.

First of all, studies involving animal models are usually performed applying standardized
protocols of lesions, treatments, and specific timings of transplantation in each group of investigation.
These conditions are often inimitable in human patients with SCI, when timing and treatments are
dependent on chance and emergency setting, or where lesions at the cord site could differ a lot from
tailored laboratory damage. Most in vivo studies are necessarily performed with rodents, and, despite
many anatomical or behavioral correspondences, human clinical trials should be the unavoidable aim
of stem cell research.

Therefore, completed human trials showed only limited results. On the one hand, the use of
MSCs in SCIs seems caused no harm; different trials [118–126,161] described, above all, the safety of
stem cell therapy showing no adverse reactions or side effects. On the other hand, results in terms
of clinical outcomes were poor compared to expectations. Among the others, few studies seemed
particularly to encourage cell therapy.

Dai et al. [118] tested BM-MSCs in a randomized study with complete and chronic SCI patients.
Neurological functions were evaluated with AIS grading, ASIA score, residual urine volume, and
neurophysiological examination. In the treatment group (N = 20), 10 had clinical improvement.
As already mentioned, patients were followed up for six months and details about clinical improvements
before stem cell therapy or other therapies were not mentioned. Outcomes seemed limited, even
if promising.

In the trial of El-Kehir et al. [119], functional improvements were noted but were confined and
particularly involved patients with smaller and thoracic lesions. Geffner et al. [120] described partial
efficacy of stem cell therapy with some improvements in ASIA, Barthel (quality of life), Frankel, and
Ashworth scoring in eight cases (four acute, four chronic). The other clinical studies confirmed the
trend of confined (Mendonca et al. [122], Park et al. [123], and Cheng et al. (NCT01393977)) or no
significant improvements (Karamouzian et al. [121]). Many other trials failed to report satisfactory
outcomes (NCT01186679, NCT02027246, NCT01769872, NCT01873547, NCT01624779, NCT01328860,
NCT02237547, NCT01694927, and NCT01730183). There is a marked lack of large phase III trials
of therapeutic efficacy, due to financial, ethical, and logistics reasons. [40] The phase III study of
Oh et al. [162] showed weak efficacy in functional recovery, although some limitations could have
compromised clinical results. For instance, only a single administration was given because of a
restrictive government policy.
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Finally, even if immunochemistry, molecular markers, and morphological tracts show that MSCs,
once transplanted, present neuron-like characteristics, it is hard to consider them as such [16,129];
indeed, the expression of neuronal antigens can be simply due to the extremely immature nature of
MSCs [163]. Moreover, cell fusion (between MSCs and neurons) was sometimes documented [164];
furthermore, when forced to transdifferentiate by chemical means (such as DMSO), MSCs showed
evident morphological changes, which finally were simply attributed to cell shrinkage and changes
in the cytoskeleton [165]. More sophisticated protocols are continuously being developed in order
to differentiate MCSs into neurons [166,167]. However, currently, the efficacy of MSCs still seems in
particular related to their paracrine activity, rather than to cellular replacement mechanisms [168].

Ongoing trials (Table 4) will probably help researchers improve knowledge about the clinical
impact of stem cell therapy. Encouraging data from preclinical experiments were not concretely
translated into clinical practice. This probably reflects the multifactorial and complex physiopathology
of SCI, requiring a multimodal therapeutic approach. As a matter of fact, many points need to be
further clarified and depicted, as listed below.

1. The optimal therapeutic protocols regarding the preparation, type, and number of stem
cells transplanted;

2. The timing of transplantation and route of administration;
3. The paracrine effects and their influence on functional recovery;
4. The importance of biomaterials and scaffold;
5. The importance of microenvironment;
6. The plasticity and ability to recreate connections of neuronal cells.
7. Additionally, logistics, ethical, and financial problems related to this field of research constitute a

real challenge to face in order to channel basic science studies into clinical practice.
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Table 4. Ongoing trials about MSCs. IANR-SCIRFS = International Association of Neural Restoration Spinal Cord Injury Functional Rating Scale; NSC = neural stem
cell; SCIM III = Spinal Cord Independence Measure III; UC = umbilical cord.

ClinicalTrials.Gov
Identifier Title MSC Type Enrolled

Subjects Phase(s) I End Point II End Point Date of
Completion

Site of
Administration Intervention Status

NCT03521336
Intrathecal transplantation of

UC-MSC in patients with
sub-acute spinal cord injury

UC-MSCs 130 II ASIA score IANR-SCIRFS score;
EMG; residual urine Dec 2022 Intrathecal Allogeneic

UC-MSCs Recruiting

NCT03308565 Adipose stem cells for traumatic
spinal cord injury AD-MSCs 10 I Acute adverse

event

ASIA; MEPs; SSEPs;
MRI; functional

changes
Nov 2023 Intrathecal Autologous

AD-MSCs Recruiting

NCT03225625
Stem cell spinal cord injury

exoskeleton and virtual reality
treatment study

BM-MSCs 40 N/A ASIA score ANS function; general
well-being Jul 2022

Paraspinal;
intravenous;

intranasal

Autologous
BM-MSCs Recruiting

NCT02917291
Safety and preliminary efficacy of
FAB117-HC in patients with acute

traumatic spinal cord injury
AD- MSCs 46 I/II Safety ISNC-SCI; SCIM III;

SSEPs; MEPs Jan 2020 Intramedullary Autologous
AD-MSCs Recruiting

NCT01676441
Safety and efficacy of autologous

mesenchymal stem cells in
chronic spinal cord injury

BM-MSCs 32 II/III Treatment / Dec 2020 Intramedullary Autologous
BM-MSC Recruiting

NCT03505034
Intrathecal transplantation of
UC-MSC in patients with late

stage of chronic spinal cord injury
UC-MSCs 43 II ASIA score IANR-SCIRFS score;

EMG; residual urine Dec 2021 Intrathecal

Umbilical
cord

mesenchymal
stem cells

Recruiting

NCT02574572

Autologous mesenchymal stem
cell transplantation in cervical

chronic and complete spinal cord
injury

BM-MSCs 10 I

N of participants
with

treatment-related
adverse events as
assessed by MRI

ASIA score, ASIA
impairment scale,
improvement in

sensorial mapping
and neuropathic pain

Jun 2020 Intralesional Autologous
BM-MSC Recruiting

NCT03521323
Intrathecal transplantation of

UC-MSC in patients with early
stage of chronic spinal cord injury

UC-MSCs 66 I/II ASIA score IANR-SCIRFS score;
EMG; residual urine Dec 2021 Intrathecal

Umbilical
cord

mesenchymal
stem cells

Recruiting

NCT02574585

Autologous mesenchymal stem
cell transplantation in

thoracolumbar chronic and
complete spinal cord injury

BM-MSCs 40 II

N of participants
with
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8. Conclusions

MSC therapy represents an intriguing field of research trying to face the burden of SCI. MSCs
of different origin, together with scaffolds, can release immunomodulating and neuroprotective
factors which may support neuron survival, axonal growth, and control of glial scarring in absence
of significant side effects. Despite promising preclinical findings, clinical trials failed to keep their
promises and are still far from obtaining functional recovery and restoring neural circuits. Further
studies are needed to improve our knowledge on their mechanisms of action and on the cellular
mechanisms preventing restoration of neural circuits after SCI, while combinatory strategies involving
stem cells, biomaterials, and modifications of cell environment could be the key to translate fascinating
premises into clinical practice. A better relationship between preclinical and clinical studies with a
back-and-forth approach is mandatory to enhance the efficacy of cell therapy. Nevertheless, stem cell
therapy in SCI injury remains an experimental therapy, possibly in association with others, and should
be tested and provided at no cost for the patient. Moreover, patients should be aware of the poor
clinical results obtained thus far in clinical trials to prevent exaggerated expectations and dramatic
psychological consequences in the case of failure to obtain significant results.
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