
ARTICLE

Genetic and phenotypic analysis of the causal
relationship between aging and COVID-19
Kejun Ying 1,2,3,8, Ranran Zhai 1,8, Timothy V. Pyrkov 4, Anastasia V. Shindyapina2, Marco Mariotti2,5,

Peter O. Fedichev4,6, Xia Shen 1,7✉ & Vadim N. Gladyshev 2✉

Abstract

Background Epidemiological studies revealed that the elderly and those with comorbidities

are most affected by COVID-19, but it is important to investigate shared genetic mechanisms

between COVID-19 risk and aging.

Methods We conducted a multi-instrument Mendelian Randomization analysis of multiple

lifespan-related traits and COVID-19. Aging clock models were applied to the subjects with

different COVID-19 conditions in the UK-Biobank cohort. We performed a bivariate genomic

scan for age-related COVID-19 and Mendelian Randomization analysis of 389 immune cell

traits to investigate their effect on lifespan and COVID-19 risk.

Results We show that the genetic variation that supports longer life is significantly asso-

ciated with the lower risk of COVID-19 infection and hospitalization. The odds ratio is 0.31

(P= 9.7 × 10−6) and 0.46 (P= 3.3 × 10−4), respectively, per additional 10 years of life. We

detect an association between biological age acceleration and future incidence and severity of

COVID-19 infection. Genetic profiling of age-related COVID-19 infection indicates key con-

tributions of Notch signaling and immune system development. We reveal a negative cor-

relation between the effects of immune cell traits on lifespan and COVID-19 risk. We find that

lower B-cell CD19 levels are indicative of an increased risk of COVID-19 and decreased life

expectancy, which is further validated by COVID-19 clinical data.

Conclusions Our analysis suggests that the factors that accelerate aging lead to an increased

COVID-19 risk and point to the importance of Notch signaling and B cells in both. Inter-

ventions that target these factors to reduce biological age may reduce the risk of COVID-19.
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Plain Language Summary
Older adults and those with comor-

bidities are more likely to develop

severe COVID-19 if infected with

SARS-CoV-2. In this study, we

investigate the genetic factors

underlying the link between aging

and COVID-19. Using data on the

genetic variation between individuals

and statistical methods to allow us to

determine causality, we find that

genetic variation associated with

longer lifespan is associated with

reduced risk of COVID-19 infection

and hospitalization. We also find that

acceleration of biological age (i.e., the

age of your body based on physiolo-

gical measurements rather than time)

is associated with future incidence

and severity of COVID-19, and iden-

tify some of the key cells and mole-

cules involved in aging-related

COVID-19 risk. Our study helps to

characterize the relationship between

aging and COVID-19, which may help

to identify strategies to protect or

treat older adults.
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The coronavirus disease 2019 (COVID-19), caused by severe
acute respiratory coronavirus 2 (SARS-CoV-2), first
emerged in late 2019 and has led to an unprecedented

global health crisis1. Notably, the aging population is particularly
at risk of COVID-192, e.g., in Italy, 88% of the individuals who
tested positive for COVID-19 were 40 years or older3. A recent
report based on epidemiological data from multiple countries
showed that 69% of infections in people over 70 are symptomatic,
whereas this number drops to 21% for 10−19-year-olds4.
Unsurprisingly, elderly people are also more likely to die from
COVID-19, and the case fatality rate for COVID-19 grows
exponentially with age3. As observational evidence implies a
strong link between COVID-19 and age, COVID-19 can be
considered a disease of aging3, and multiple clinical trials using
potential lifespan-extending drugs (e.g., metformin, rapamycin,
and senolytics) to protect the elderly from COVID-19 have been
proposed5–7. Although observational data on metformin seems
promising8,9, it is unclear if other lifespan-extending drugs should
be prioritized in clinical trials since the evidence of any causal link
between lifespan and COVID-19 susceptibility is still missing.

Mendelian Randomization (MR) is a genetic instrumental
variable approach that assesses the causal effect of exposure of
interest on an outcome by ascertaining genetic variants, e.g.,
single nucleotide polymorphisms (SNPs), strongly associated with
the exposure phenotype. Since the alleles of the genetic variants
are naturally randomly allocated at conception, when the genetic
effects on the outcome are only mediated through the exposure,
the causal effect inferred by MR is, in analogy to randomized
clinical trials (RCTs), free of any environmental confounders and
reverse causation. Although RCTs are considered a gold standard
for establishing causal relationships, MR can provide valuable
insights into causality when it is not feasible to perform an RCT
or before an RCT is performed10.

In this study, we perform a multi-SNP MR analysis to elucidate
whether and how the rate of aging is associated with COVID-19.
We consider four lifespan-related traits (parental lifespan,
healthspan, longevity, and healthy aging (the combination of
these three traits)) as exposures and evaluate their causal effects
on COVID-19 infection and related phenotypes. To support the
argument, we also estimate the biological age acceleration in
COVID-19 patients from the UK Biobank (UKBB) cohort and
observe a significant association between the phenotypic indica-
tors of aging progress (aging clocks) and the risk and case fatality
rate of COVID-19. To provide functional insight into how aging
contributes to a higher risk of COVID-19, we conduct a bivariate
genomic scan to highlight the loci contributing to both aging and
COVID-19 risk, identifying the Notch signaling pathway and
immune system development. Finally, we perform MR using 389
immune cell traits as exposure and observe a significant negative
correlation between their effect on lifespan and COVID-19 risk,
especially for B cell-related traits. More specifically, we discover
that lower CD19 levels in B cells may increase the risk of COVID-
19 and decrease lifespan, which is further validated by clinical
data from COVID-19 subjects.

Methods
GWAS data for lifespan-related traits and diseases. We studied
four lifespan-related traits (lifespan, longevity, healthspan, and a
combined trait) with publicly available GWAS summary statistics.
The parental lifespan GWAS included unrelated, European-
ancestry subjects (a total of 512,047 mothers’ and 500,193 fathers’
lifespan), 60% of which were complete. The statistics for every
cohort were calculated by fitting Cox survival models to mother’s
and father’s survival, respectively, taking account of 10 principal
components, study-specific covariates, and sex. In the GWAS

setting, parental lifespan is the same phenotype as the general
lifespan of individuals (but with a weaker power) due to the fact
that the genetic effect on a parental phenotype is simply half of
the individual’s phenotype itself. Thanks to the large sample size
of UK Biobank, such a GWAS is powerful enough to uncover the
genetic architecture11.

The longevity GWAS included unrelated, European-ancestry
subjects with a lifespan above the 90th survival percentile
(N= 11,262) or whose age at the last follow-up visit (or age at
death) was before the 60th percentile age (N= 25,483). The
statistics for each cohort were calculated using logistic regression
and then combined using a fixed-effect meta-analysis12. The
healthspan GWAS contained 300,477 unrelated, British-ancestry
individuals from UKBB. The statistics were calculated by fitting
Cox−Gompertz survival models. The healthspan was defined as
the age of the first incidence of dementia, congestive heart failure,
diabetes, chronic obstructive pulmonary disease, stroke, cancer,
myocardial infarction, or demise13.

The summary association statistics of healthy aging was from
the meta-analysis of healthspan, lifespan, and longevity summary
statistics using MANOVA14, while accounting for correlations
between studies due to sample overlap and correlation amongst
the traits. Summary association statistics were calculated for
7,320,282 SNPs shared between the studies. These statistics
represented the significance of each SNP affecting one or more of
the traits, giving a P-value against the null hypothesis that effect
sizes are zero in all studies14,15.

We investigated four additional traits genetically correlated
with lifespan using published case-control studies: Alzheimer’s
disease16, coronary artery disease (CAD)17, type 2 diabetes18, and
smoking19 (Table S1).

We also included GWAS for age acceleration measured by four
epigenetic clocks, including Hannum age, Horvath age, Pheno-
Age, and GrimAge20. The epigenetic age was estimated for 34,449
healthy individuals of European ancestry. In addition to
epigenetic age, we include two physical function-related traits,
the pace of walk and the sedentary lifestyle, as they are correlated
with the rate of aging and therefore can serve as the surrogates to
the biological age21,22.

GWAS data for 22 common diseases were from a community-
based study, Genetic Epidemiology Research on Adult Health and
Aging (GERA)23. There were 60,586 individuals of European
ancestry in the GERA data. The summary statistics of these
diseases were adjusted with age, gender, and the first 20 PCs.

We used 1000 Genomes Phase 3 reference (released in 2014
October) to map variants in the GWAS results to rsIDs by
chromosome, position, and alleles. Only the autosomal SNPs
available in the 1000 Genomes reference panel were used, and the
1000 Genomes European ancestry reference was used to estimate
the linkage disequilibrium (LD) among these SNPs. Duplicated
rsIDs in the data were removed prior to the analysis.

COVID-19-related traits. To extensively evaluate the genetic
effects on COVID-19 risk, we used GWAS summary statistics
data from 8 COVID-19-related traits (Table S1). The GWAS
results for SARS-COV-2 infection are from the National Institute
of Health, Genome-Wide Repository of Associations Between
SNPs and Phenotypes (NIH-GRASP), which includes 1,503
positive cases and 11,409 negative or 457,747 UK Biobank con-
trols with European ancestry; the GWAS summary statistics for
the critical illness was from the GenOMICC (Genetics Of Mor-
tality In Critical Care) study in 2,244 critically ill Covid-19
patients from 208 UK intensive care units24. The rest of the five
traits are from the COVID-19 Host Genetics Initiative (HGI)
release 5 (Jan 2021), with the sample size varies from 1,332 to
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1,079,76825. Those traits including COVID-19 hospitalization
(versus non-hospitalized COVID-19 or population control),
susceptibility (affected versus unaffected population), very severe
respiratory confirmed COVID-19 (versus the general population),
and COVID-19 infection (versus population).

Expression quantitative trait loci (eQTLs) and age-related gene
expression in blood. Blood eQTL data were obtained from the
eQTLGen Consortium (31,684 whole blood samples)26. Only the
significant near-independent eQTLs (FDR-q < 0.05, r2 < 0.05)
were used in the MR analysis.

The age-related transcriptomic change in whole blood was
obtained from a large-scale meta-analysis27, including six
European-ancestry studies (n= 7,074 samples), and detected
roughly half of the genes in the human genome (n= 11,908). The
direction and P-value of age-related differential expression were
directly obtained from the published dataset.

Immune cell traits. The GWAS summary statistics of immune
cell-type-specific surface marker levels are obtained from the
largest immune cell GWAS study28. 389 median fluorescence
intensities (MFIs) of surface antigens were profiled by flow
cytometry and assessed in a general population cohort of 3,757
Sardinians.

Mendelian randomization analysis. MR is a method that uses
genetic variants as instrumental variables to determine whether
an observational association between a risk factor and an out-
come is consistent with a potential causal effect29. The multi-SNP
MR analysis was implemented using GSMR (Generalized
Summary-data-based MR) in GCTA30.

As instruments for each exposure (four lifespan-related traits,
four risk factors, and four epigenetic age acceleration traits), we
selected near-independent SNPs (r2 < 0.1) with genome-wide
significant (P < 5 × 10−8) association with the exposure. For the
expression of NOTCH1-4 in whole blood and other tissues, we
selected significant near-independent eQTLs (FDR-q < 0.05,
r2 < 0.05); For 22 diseases from GERA community-based study,
we selected SNPs with suggestive genome-wide significance
(P < 1 × 10−6) as instruments and performed a separate analysis
due to the limited case number in the community-based study. A
full list of genetic instruments is provided (Supplementary
Data 1).

GSMR includes a HEIDI-outlier filter to remove potential
pleiotropic SNPs that affect the exposures and the outcomes via
different pathways. We set its p-value threshold to 0.01 and tested
the remaining SNPs for association with the COVID-19-related
traits. The required minimum number of instrumental SNPs for
each exposure in the analysis was lowered to 1.

Conditional analysis. To test whether the effect of lifespan-
related traits on COVID-19 risk depends on certain age-related
diseases and vice versa, we performed a conditional analysis using
a two-step approach, as described by Zhu et al.30. In the first step,
we performed a conditional GWAS analysis to adjust the expo-
sure of interest with other risk factors using mtCOJO (multi-trait-
based conditional and joint analysis). In the second step, we
estimate the effect of adjusted exposure on the outcome using
GSMR as previously described. We, therefore, can estimate the
effect size of lifespan-related traits on COVID-19, accounting for
other age-related risk factors by a GSMR analysis using SNP
effects conditioning on covariate traits. Notably, as the exposures
are very highly correlated, the multivariate MR will have lower
power. To estimate the causal effects of conditional traits, we had
to lower the P-value threshold for genetic instruments to 5e−6 to

obtain a sufficient number of SNPs for MR analysis. To make the
univariate and conditional analysis results comparable, we also
performed a univariate analysis using the same P-value threshold.

Sensitivity analysis. We used GSMR for the main analyses
because it gains power by taking account of sampling variation of
the effect size of SNPs on exposure and outcome, compared with
the MR-Egger and inverse variance weighted (IVW) methods30.
GSMR also accounts for the remaining LD among instruments
after clumping analyses. To compare the results from other MR
methods based on various assumptions, we performed a sensi-
tivity analysis using the Maximum likelihood method31, MR-
Egger method32, and simple median method33.

The Maximum likelihood method estimates the causal effect by
maximization of the likelihood based on the effect of SNPs on
exposure and outcome. It gives robust estimates even in the
presence of small measurement error for the effect of SNPs on
exposure31; the MR-Egger method is the modification of the IVW
method, which allows a non-zero intercept. This way, it allows
unbalanced pleiotropic effects across all of the instruments while
still returns unbiased causal effect estimates. This method
assumes no correlations between horizontal pleiotropic effects
and SNP-exposure effects (the InSIDE assumption)32. The MR-
Egger regression also provides an intercept test to detect the
directional pleiotropy in the instruments (i.e., the pleiotropic
effect is evident if the intercept term significantly deviates from
0). Lastly, the simple median method takes the median effect of
all instrumental SNPs. It only requires half of the SNPs to be valid
to return accurate causal effect estimates.

We selected independent instrumental SNPs (r2 < 0.01) for
each exposure with the same genome-wide significance
threshold as in GSMR analysis (P < 5 × 10−8 for lifespan-
related traits and FDR < 0.05 for eQTLs); the analysis was then
performed using the “TwoSampleMR” R package (https://
mrcieu.github.io/TwoSampleMR)34.

Bivariate genomic scan and functional annotation. To identify
genetic variants associated with aging-related COVID-19 risk, we
meta-analyzed UKBB COVID-19 infection (with population
control) and healthy aging (with the sign of effect size reversed)
summary statistics while accounting for correlations between
studies due to sample overlap and correlation between the traits,
as implemented in MultiABEL v1.1-61014,35. Summary associa-
tion statistics were calculated for the 7,318,649 SNPs shared
between studies. These statistics represent the significance and
consistency of each SNP affecting one or both of the traits (e.g.,
the SNPs that significantly contribute to aging and COVID-19
risk in the same direction will have a smaller P-value). Therefore,
we refer to this bivariate genomic scan result as the aging-related
COVID-19 throughout this study.

We then used the summary statistics of aging-related COVID-
19 and performed functional annotation for all SNPs in genomic
areas identified by lead SNPs (P < 1 × 10−6, 250 Kb apart) using
FUMA (Functional Mapping and Annotation)36. The annotated
genes were used for functional enrichment analyses using the
default setting of the FUMA platform.

Genetic correlation analysis. We estimated genetic correlations
between lifespan-related traits, risk factors, epigenetic age accel-
eration, and COVID-19 using LD score regression (LDSC) and
high-definition likelihood (HDL) methods37,38. SNPs that are
imperfectly imputed (INFO < 0.9) or with low frequency (MAF <
0.05) were removed to reduce statistical noise. LDSC was per-
formed using LDSC software v1.0.1 (https://github.com/bulik/ldsc);
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the HDL was performed using R package “HDL” v1.3.8 (https://
github.com/zhenin/HDL).

Biological age estimation for UKBB cohorts. The collection of
the UK Biobank (UKBB) data was approved by the UKBB’s
Research Ethics Committee. Access to the UK Biobank data was
granted for this work under UK Biobank application number
21988. All-cause mortality increases exponentially with age.
Hence, log-linear risk predictors from proportional hazards
models can provide natural composite organism state repre-
sentations characterizing the progression of aging based on bio-
logical and physiological measurements. We used two such
biological age measures: Phenotypic Age based on blood
biochemistry39 and Dynamic Organism State Indicator (DOSI)
based on widely available Complete Blood Counts (CBC)40. The
latter is a proxy for the frailty index and is derived from the blood
markers only, whereas the Phenotypic Age additionally employs
the explicit age. We also used physical activity (number of steps
per day averaged over the week), which is associated with all-
cause mortality and hence can also be viewed as a measure of
biological aging41.

We investigated an association between the incidence of
COVID-19 and biological age acceleration (which is the
difference between the biological age of a person and the average
biological age in the cohort of individuals of the same age and
sex) using logistic regression. Chronological age and biological
sex were used as additional covariates in the analysis.

Following UKBB recommendations, we used the “result” label
from the table “COVID-19 test results table” as the proxy of
disease severity. This implies that primarily those individuals that
showed characteristic COVID-19 symptoms were selected for
testing. We investigated biological age acceleration associations
with the incidence of COVID-19 and its associated fatality using
all available cases (All) and separately cohorts of individuals who
have (Frail) or do not have (Not Frail) major chronic diseases
(from the list including all kinds of cancer, angina pectoris,
coronary heart disease, heart attack, heart failure, hypertension,
stroke, diabetes, arthritis, bronchitis, and emphysema) at the time
of infection.

Reporting summary. Further information on research design is
available in the Nature Research Reporting Summary linked to
this article.

Results
Genetic and MR analysis of lifespan-related traits and COVID-
19 risk. We applied MR using GSMR to test for potential causal
associations between four lifespan-related traits and COVID-19,
including lifespan, longevity (i.e., surviving to the 90th percen-
tile), healthspan (time to a first major age-related disease), and
healthy aging (multivariate meta-analysis of all three traits
combined) (Table S1). We employed summary-level GWAS
data11–13,15 and selected near-independent SNPs at a genome-
wide significance level as genetic instruments for each trait. The
HEIDI-outlier filter was used to detect and eliminate genetic
instruments with pleiotropic effects on both exposure and out-
come, as described by Zhu et al30. For the outcomes, we used
eight different sets of GWAS summary statistic data for COVID-
19-related traits from case-control studies (Table S1).

Strikingly, our MR analysis showed that genetic variants
associated with longer lifespan, longevity, and healthy aging are
both protective against COVID-19 infection and lowered the
chance of being hospitalized after getting COVID-19 (Fig. 1a−g
and Table 1). For lifespan, the estimated odds ratio of being
infected by SARS-CoV-2 was 0.31 (95% CI: 0.18−0.52;

P= 9.7 × 10−6), indicating that the risk of infection is decreased
by 69% with approximately every additional ten years of life;
similarly, the risk of getting hospitalized after being infected with
SARS-CoV-2, which is usually due to the development of severe
symptoms, was also decreased by 54% (OR 95% CI: 0.18−0.52;
P= 3.3 × 10−4) with every additional ten years of predicted
lifespan. For the longevity trait, the risk of COVID-19 infection
and hospitalization was decreased by 47% (OR 95% CI:
0.43−0.65; P= 2.3 × 10−9) and 19% (OR 95% CI: 0.71−0.93;
P= 2.3 × 10−3), respectively, with each unit higher log odds of
surviving to the 90th percentile in the population. None of the
lifespan-related traits showed a significant protective effect on
COVID-19 with a severe respiratory disorder or critical illness,
possibly due to the small case number of severe COVID-19
(Table S1).

The GSMR was used as the main analysis because it gains
power by taking account of sampling variation of the effect size of
SNPs on exposure and outcome, compared with the MR-Egger
method and IVW method30. To further investigate the robustness
of our findings, we performed a sensitivity analysis using multiple
MR methods, which can provide a reliable estimate of the causal
effect even with invalid SNPs (i.e., horizontal pleiotropy or
measurement error of the SNP-exposure effect), at the cost of
lower power (see “Methods”). The protective effect of genetically
proxied lifespan on the risk of COVID-19 infection was
consistently estimated using the Maximum likelihood method,
the MR-Egger method, and the simple median method with
largely overlapped 95% CI, and only for the simple median
method the 95% CI included the null (Fig. S1). The findings for
longevity are also consistent across all methods, with only the
MR-Egger method giving a 95% CI crossing the null. Likewise,
the MR sensitivity analysis for COVID-19 hospitalization
produced similar estimates to the main analysis, only with a
wider 95% CI that crossed the null (Fig. S1).

To further examine the pleiotropic effect across the instru-
ments used in the MR analysis, we tested for the directional
pleiotropy using the intercept term of MR-Egger regression. The
MR-Egger intercept terms do not differ from zero (P > 0.1) for
most of the significant exposure-outcome pairs identified in the
main analysis, suggesting there is no imbalanced pleiotropic effect
(Table S2). The only exception is for the association between
lifespan and COVID-19 infection compared with the population,
for which the Egger intercept is 0.07 (P= 0.04). However, this
does not affect the validity of our findings as the causal effect of
this exposure-outcome pair is also statistically significant based
on MR-Egger regression, which in design is robust to the
directional pleiotropy, and its estimate is consistent with our
findings in the main analysis.

Healthspan is defined as the age period free of major age-
related morbidities. In the healthspan GWAS study, the top seven
age-related morbidities were included (see “Methods”)13. In our
analysis, healthspan did not show a significant effect on COVID-
19-related traits (Fig. 1a). This is unlikely to be due to the power
of healthspan GWAS since there were 17 near-independent
genome-wide significant SNPs (P < 5 × 10–8), which is more than
in lifespan and longevity GWAS datasets. We, therefore,
performed an additional MR analysis to evaluate the role of
age-related diseases in age-related COVID-19 risk. The loci for
AD, CVD, T2D, cancer, and smoking (or lung cancer) explained
the most genetic variance of lifespan, as reported by Timmer
et al.11. To investigate whether these risk factors contribute to the
plausible causal association between lifespan and COVID-19, we
conducted an MR analysis of late-onset AD, CAD, T2D, and
smoking (the number of cigarettes smoked per day) as exposures
(Fig. S2A and Supplementary Data 2). The late-onset AD and
CAD were found to significantly increase the risk of COVID-19
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infection and hospitalization, while smoking also increases the
risk of hospitalization, suggesting the benefit of a longer lifespan
on the risk of COVID-19 may be partially mediated by less severe
or later occurring of age-related critical disease.

The three lifespan-related traits (lifespan, healthspan, and
longevity) are very highly correlated, but each of them is slightly
different from the others. For example, the longevity GWAS
mainly captured the genetic effect on late-life mortality; lifespan
GWAS also includes the genetic effect on early- and mid-life
mortality, while the healthspan GWAS additionally represents the
disease status of the subjects. As the combined effect of these
three traits (healthy aging) is protective against COVID-19 risk
(Fig. 1a), we further sought to investigate whether there are
marginal effects contributed by the signals specific to individual
traits. To do this, we adjusted each of the three lifespan-related
traits based on the other two traits, using mtCOJO (see

“Methods”). As the exposures are highly correlated, the multi-
variate MR will have lower power. We had to lower the P-value
threshold for genetic instruments to 5e−6 to obtain a sufficient
number of SNPs for MR analysis. We observed similar univariate
estimates for lifespan and longevity as the main analysis after
lowering the P-value threshold (Fig. S2B). Interestingly, we
observed significant protective effects of longer healthspan on
COVID-19 infection (OR= 0.90, 95% CI: 0.83−0.97) and
hospitalization (OR= 0.85, 95% CI: 0.74−0.99). This gain of
power can be explained by the trade-off between the increased
number of instruments and the inclusion of more weak
instruments.

The effects of each trait on COVID-19 hospitalization remain
to be significant after conditioned based on the other two traits.
They are largely consistent with univariable analysis, suggesting
the existence of marginal effects of each trait on COVID-19

Fig. 1 Mendelian randomization analysis reveals an association of lifespan-related traits with the risk of COVID-19. a Forest plot shows Mendelian
randomization estimates for the causal effect of lifespan-related traits on the risk of COVID-19. Error bars show 95% confidential interval. Significant
effects with FDR < 0.05 are in orange. Nominally significant effects (P < 0.05) are in black. Plots of effect sizes of all genetic instruments from GWAS for
healthy aging (b), lifespan (c), and longevity (d) (x-axis) versus those for UKBB COVID-19 (y-axis); and the same set of exposure traits (e−g) (x-axis)
versus HGI COVID-19 hospitalization (y-axis). Error bars represent standard errors. UKBB UK Biobank, HGI Host Genetics Initiative, pop population control,
OR Odds Ratio.
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hospitalization that are independent of other traits (Fig. S2B).
However, none of the three traits showed protective effects on
COVID-19 infection. This result suggests that the protective
effect of lifespan-related traits is mainly due to the shared
components of the three traits, which are eliminated in the
conditional analysis.

Using a similar approach, we further included four lifespan-
related risk factors (AD, CAD, smoking, and T2D). After being
conditioned on the lifespan-related traits and other three risk
factors, the effect of AD on COVID-19 risk is completely
removed, with only one nominal significant association showing
that the conditioned AD is protective against COVID-19
(Fig. S2C). Similarly, the conditional effect of CAD on COVID-
19 risk also became non-significant. These results imply that the
effects of AD and CAD on COVID-19 risk are mostly dependent
on the effects that are shared with lifespan-related traits instead of
the disease itself. Only smoking shows a significant marginal
effect on COVID-19 hospitalization, with a consistent estimate as
in unconditional analysis, suggesting that the marginal effect of
smoking is independent of the other risk factors and lifespan-
related traits (Fig. S2C).

Phenotypic analysis of the association between biological age
acceleration and COVID-19 risk. Therefore, we hypothesized
that the strong protective effect of longevity against COVID-19
might not be primarily explained by the age-related morbidities
but rather by decelerated biological aging that results in an
extended lifespan. To address this hypothesis, we assessed in
parallel the three different risk-based biological age predictions
computed for the subjects in the UKBB cohort using blood bio-
chemistry (Phenotypic Age), Complete Blood Counts (DOSI),
and physical activity measurements39–41 (Fig. 2a). We found that
COVID-19 incidence in all UKBB datasets was significantly
associated with the acceleration of Phenotypic Age, DOSI, and
decreased physical activity (Fig. 2b−e, Table 2, and Supplemen-
tary Data 3). The estimated odds ratio of COVID-19 infection is
1.28 (95% CI: 1.25−1.31; P= 8.4 × 10–82) and 1.31 (95% CI:
1.26−1.38; P= 9.5 × 10–32) for every ten years higher biological
age measured by Phenotypic Age and DOSI, respectively. Phe-
notypic Age and DOSI were also significantly associated with
COVID-19 incidence and case fatality independent of the biolo-
gical age acceleration association with chronic diseases, i.e.,
separately in cohorts of UKBB individuals having (Frail) or not
(Not frail) chronic age-related health conditions (Fig. 2e and

Table 2). To assess the causality of this observation, we performed
an additional MR analysis to estimate the causal effect of
genetically proxied physical activity and epigenetic age accelera-
tion on the risk of COVID-1920. Although none of the epigenetic
age traits were shown to have a significant effect on COVID-19
after accounting for false discovery rate, the higher walk pace was
found to be significantly protective against COVID-19 infection
and hospitalization, while a sedentary lifestyle increased COVID-
19 susceptibility (Fig. S8). This finding suggests that the asso-
ciation between physical activity and COVID-19 risk observed in
the UKBB cohort is likely to be causal.

We also observed elevated biological age acceleration of all
measures of biological age (Fig. 2b−d, Fig. S3A−D, and
Supplementary Data 3) in cohorts of individuals who died from
COVID-19 compared to those tested (and most probably
suffering from the disease), and, separately, in cohorts of those
tested versus the rest of UKBB (and presumed free of the disease).
The number of UKBB subjects with data fields required for the
Phenotypic Age and DOSI was comparable, and we found that
Phenotypic Age comparisons produced a better statistical power.
The number of UKBB subjects with physical activity metrics was
small, but the association of biological age acceleration in the
form of physical activity deficit and the incidence of COVID-19
was significant.

Bivariate genomic scan of aging-related COVID-19 risk. To
gain mechanistic insights into how aging and COVID-19 inter-
twined at the genetic level, we performed a bivariate genomic scan
using the GWAS of healthy aging and UKBB COVID-19 infection
to identify the genetic variants that contribute to both aging and
the risk of COVID-19, i.e., aging-related COVID-19 risk (Fig. S4,
see “Methods”). We identified twenty bivariate loci at genome-
wide significance (P < 5 × 10−8), where the null hypothesis is no
association with healthy aging and COVID-19 infection (Fig. S4).
The summary statistics of aging-related COVID-19 risk were then
annotated using FUMA and a functional enrichment analysis in
2868 canonical pathways (including gene sets from BIOCARTA,
KEGG, PID, REACTOME, and WikiPathways) and 7350 Gene
Ontology (GO) biological processes was performed. We found
significant enrichment (Padjusted < 0.05) in 67 canonical pathways
and 26 biological processes. The canonical pathways with the
strongest enrichment included pre-Notch expression and proces-
sing (P= 3.0 × 10−8), signaling by Notch (P= 3.6 × 10−7), and
oxidative stress-induced senescence (P= 1.4 × 10−6) (Fig. 3a and

Table 1 Mendelian randomization estimates for the association between lifespan-related traits and risk of COVID-19.

Exposure Outcome OR 95% CI P

Healthy aging HGI covid susceptibility 0.33 0.13−0.85 2.2e−02
Healthy aging HGI hosp covid vs. nonhosp 0.38 0.18−0.78 9.1e−03
Healthy aging UKBB covid vs. neg 0.25 0.09−0.69 7.0e−03
Healthy aging UKBB covid vs. pop 0.12 0.05−0.32 1.6e−05
Longevity HGI covid susceptibility 0.68 0.56−0.82 8.5e−05
Longevity HGI hosp covid vs. nonhosp 0.81 0.71−0.93 2.3e−03
Longevity HGI hosp covid vs. pop 0.89 0.82−0.96 2.9e−03
Longevity UKBB covid vs. neg 0.58 0.47−0.72 5.1e−07
Longevity UKBB covid vs. pop 0.53 0.43−0.65 2.3e−09
Lifespan HGI covid susceptibility 0.45 0.27−0.77 3.2e−03
Lifespan HGI hosp covid vs. nonhosp 0.46 0.3−0.71 3.3e−04
Lifespan HGI hosp covid vs. pop 0.71 0.55−0.91 6.8e−03
Lifespan UKBB covid vs. neg 0.44 0.26−0.77 3.6e−03
Lifespan UKBB covid vs. pop 0.31 0.18−0.52 9.7e−06

Only the associations that reached nominal significance (P < 0.05) are shown. hosp: hospitalized COVID-19 patient; nonhosp: non-hospitalized COVID-19 patient; pop: population control; neg: COVID-19
negative control.
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Fig. 2 Analysis of association of biological age acceleration with the risk of COVID-19. a Schematic representation of analysis of the biological age
acceleration in the UKBB cohort. The box plots showing the distribution of biological age acceleration measured by phenotypic age (b), DOSI (c), and
negative log physical activity (d) in UKBB subjects that were not tested, tested, or died with COVID-19 infection. Boxes indicate 25−75% interquartile
ranges, and whiskers indicate minimum to maximum. The sample size (N) for each group is shown under the x-axis. e The forest plot is showing the
predicted effect of biological age acceleration on the risk of COVID-19 in different categories. Error bars show the 95% confidential interval. Significant
effects (P < 0.001) are in orange. Nominally significant effects (P < 0.05) are in black. The odds ratio for Phenotypic Age and Dynamic Organism State
Index (DOSI) is given per 10-yr biological age acceleration. The odds ratio for physical activity is given per increase of 1000 steps/day. UKBB UK Biobank,
DOSI Dynamic Organism State Indicator.

Table 2 Association between biological age acceleration and the risk of COVID-19.

Biological age measurement Outcome OR 95% CI P

Phenotypic age COVID19 incidence (All) 1.28 1.25−1.31 8.4e−82
Phenotypic age Case fatality (All) 1.19 1.04−1.35 1.1e−02
Phenotypic age COVID19 incidence (Not frail) 1.12 1.04−1.2 1.9e−03
Phenotypic age Case fatality (Not frail) 1.72 1.17−2.51 5.4e−03
Phenotypic age COVID19 incidence (Frail) 1.26 1.23−1.3 3.7e−62
DOSI COVID19 incidence (All) 1.31 1.26−1.38 9.5e−32
DOSI COVID19 incidence (Not frail) 1.09 1.01−1.19 3.6e−02
DOSI Case fatality (Not frail) 2.44 1.45−4.06 7.7e−04
DOSI COVID19 incidence (Frail) 1.35 1.28−1.42 3.6e−28
Physical activity COVID19 incidence (All) 0.95 0.93−0.96 9.1e−19

Only the associations that reached nominal significance (P < 0.05) are shown.
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Supplementary Data 4). Top enriched biological processes were
immune system development (P= 2.3 × 10−7) and myeloid cell
differentiation (P= 2.4 × 10−6), among others (Fig. 3b and Sup-
plementary Data 4).

Association between NOTCH signaling and aging-related
COVID-19 risk. The Notch pathway is an evolutionally con-
served signaling pathway, which is thought to be involved in both
age-related inflammation and the development of age-related
disease42. Moreover, Notch signaling is related to the entry of
SARS-CoV-2 through the positive regulation of host proteins that

promote the entrance of the virus into the cell (e.g., FURIN and
ACE2)43. In humans, there are four paralogs in the Notch family
(NOTCH1-4)44. We hypothesized that Notch signaling is a
mediator of aging-related COVID-19 infection, and its effect may
be related to the expression of NOTCH. This hypothesis was
investigated with MR of blood eQTLs of NOTCH1-4 from
eQTLgen26, against COVID-19-related traits (Fig. 3c and
Table 3). We found that per standard deviation, higher expression
of NOTCH1 in whole blood increases the risk of critical illness of
COVID-19 by 157% (Fig. 3d, OR 95% CI: 1.39−4.74, P= 0.0025),
and higher expression of NOTCH2 in whole blood increases the

Fig. 3 Bivariate genomic scan identified Notch signaling as an age-related COVID-19 risk. Gene set enrichment analysis of aging-related COVID-19. Top
significantly enriched (Padjusted < 0.05) canonical pathways (a) and GO biological processes (b) are shown. c Forest plot showing Mendelian randomization
estimates for the causal effect of blood NOTCH2 expression on the risk of COVID-19 infection. Error bars show the 95% confidential interval. Nominally
significant effects (P < 0.05) are in black. Error bars show the 95% confidential interval. d, e Plots of effect size of all genetic instruments from blood eQTLs
for NOTCH1 versus those for COVID-19 critical illness (d) and NOTCH2 versus UKBB COVID-19 infection (e). Error bars represent standard errors. f Bar
plot showing the age-related differential expression of NOTCH1-4 in blood. The y-axis represents the −log10(P.adj) × sign of changing direction, i.e., the
positive value represents an age-related increase. UKBB UK Biobank, HGI Host Genetics Initiative.

ARTICLE COMMUNICATIONS MEDICINE | https://doi.org/10.1038/s43856-021-00033-z

8 COMMUNICATIONS MEDICINE |            (2021) 1:35 | https://doi.org/10.1038/s43856-021-00033-z | www.nature.com/commsmed

www.nature.com/commsmed


risk of COVID-19 infection by 43% (Fig. 3e, OR 95% CI:
1.39−4.74, P= 0.0025). We also observed a similar odds ratio
estimate with overlapping 95% CI using the maximum likelihood
method, MR-Egger method, and simple median method, but with
a wider 95% CI that includes null in the sensitivity analysis for
NOTCH1-2. The MR-Egger intercept term was not deviated from
zero for NOTCH2, suggesting there is no imbalanced pleiotropic
effect in eQTLs (Table S3). Note that due to the limited number
of available eQTLs, we could not perform MR-Egger and simple
median method on NOTCH1 and critical illness of COVID-19
(Fig. S5).

To further explore the tissue-specific effect of NOTCH1-4
expression on COVID-19, we performed an MR analysis using
the tissue eQTL from GTEx V8 (Fig. S6). Due to the limited
sample size in GTEx, there were no or only a few significant
Notch eQTLs in most tissues, especially for NOTCH1-3. Among
the testable tissues, we found that NOTCH2 expression in the
colon and esophagus increased the risk of COVID-19, with larger
effect sizes and significance compared with the effect estimate
from blood eQTL (Fig. S6). In addition, although we didn’t
observe the risk associated with NOTCH3 and NOTCH4
expression in whole blood, NOTCH3 expression in the lung
and thyroid, as well as NOTCH4 expression in the brain increased
the risk of COVID-19 infection (Fig. S6). These results suggest a
causal role for the Notch family, and more generally, Notch
signaling, in the risk of COVID-19. We further examined the
dataset of Peters et al.27, which contains associations of genes
with age in humans, estimated from 7,074 whole blood samples.
Among NOTCH1-4, only NOTCH2 significantly (P= 0.007)
increased during aging, suggesting that the age-related increase
of COVID-19 risk may partially be mediated through the increase
in NOTCH2 expression. Additional mechanistic work would be
necessary to provide further evidence for a causal link between
Notch, aging, and COVID-19.

Effects of 389 immune cell traits on aging and COVID-19.
Regulation of immune cell development is a major function of
Notch signaling45. Interestingly, the top enriched GO term for
aging-related COVID-19 risk is immune system development
(Fig. 3b). Surface antigens (e.g., cluster of differentiation (CD)
molecules) expressed in immune cells play critical roles in
immune cell function and are essential markers for immune cell
types46. To gain further insight into how the immune system
affects aging-related COVID-19 risk, we performed a systematic
MR analysis using 389 immune cell-type-specific surface markers
represented by MFIs as exposure28, and explored their effects on
lifespan and COVID-19 risk. Specifically, we considered two
components of COVID-19 risk: the risk of infection, represented
by COVID-19 cases versus negative controls (Fig. 4a), and the
risk of developing severe symptoms after infection, represented by
COVID-19 cases with critical illness (admission to ICU) (Fig. 4b).
We focused on 243 MFI traits whose causal effect can be esti-
mated for both lifespan and COVID-19 related traits. Among

these traits, we observed significant negative correlations between
their effects on lifespan and COVID-19 risk, both for the risk of
infection (Pearson’s r=−0.49, P= 1e−14) and the risk of
developing critical illness (Pearson’s r=−0.31, P= 6.7e−6),
indicating that the immune-related traits that lead to a longer
lifespan also tend to decrease COVID-19 risk in both categories,
and vice versa. We then examined the correlation in individual
cell types. B cell-related traits showed the strongest negative
correlation of the effect on lifespan and COVID-19 risk (Fig. S7)
in terms of infections (r=−0.71) and severity (r=−0.48). This
finding is consistent with our results (Fig. 1), suggesting that the
immune function, especially B cells, at least in part mediates the
effect of aging on COVID-19 risk.

To identify individual traits important for both lifespan and
COVID-19 risk, we assessed the candidate traits that reach
nominal significance threshold (P < 0.05) for both lifespan and
COVID-19 risk, and also with FDR < 0.05 for at least one of the
outcome traits. Only six traits satisfy these criteria. Interestingly,
all of them represent the CD19 levels in different subsets of B
cells, suggesting that higher CD19 levels in B cells lead to a longer
lifespan and lower risk of COVID-19 infection (Fig. 4a and
Supplementary Data 5). Four of these six traits also reached
nominal significance for their effect on the risk of developing
critical illness (Fig. 4b and Supplementary Data 5), suggesting
that higher CD19 in B cells may reduce COVID-19 severity.

To validate the clinical relevance of our finding, we analyzed a
clinical dataset from the COVID-IP (Covid–ImmunoPhenotype)
project (Fig. 4c), which provides the MFIs measurement of CD19
in B cells in COVID-19 patients, healthy controls, and patients
with non-COVID-19 lower respiratory tract infections (LRTIs)47.
Consistent with the estimation of MR, healthy subjects showed a
significantly higher expression of CD19 in B cells, compared to
COVID-19 patients with low, moderate, and severe symptoms
(Fig. 4c and Supplementary Data 6). CD19 is a member of the
immunoglobulin superfamily expressed exclusively in B cells, and
it facilitates their activation48. Although we did not observe
significant changes in CD19 levels between young and old
subjects in any of the groups, previous studies suggest that the
number of CD19+ B cells decreases during aging49, especially in
men who are more susceptible to COVID-1950. B cells are
severely depleted in COVID-19 patients and fail to form germinal
centers51–53, thus providing a link between proper B-cell
development and COVID-19. In addition, activation of Notch
signaling was shown to interfere with the development of B cells
and decreased CD19 levels, which makes further connections to
our findings involving the NOTCH gene family (Fig. 3)54. Since
successful elimination of respiratory infections is dependent on B
cell activation through CD1955, and respiratory infections are one
of the leading causes of death in the elderly, our findings may
explain the apparent genetic link between lifespan and COVID-
19 through CD19 expression.

Genetic correlations across lifespan-related traits, age-related
diseases, and COVID-19 risk. Next, we estimated genetic cor-
relations across all traits using LD score regression and HDL
methods (Fig. 5 and Supplementary Data 7)37,38. After adjusting
for 190 tests (FDR < 0.05), we observed four pairs of significant
genetic correlations between four lifespan-related traits and eight
COVID-19 traits. COVID-19 hospitalization (with population
control) negatively correlated with healthy aging (rg=−0.33,
P= 5.8e−6), healthspan (rg=−0.42, P= 7.1e−6), and lifespan
(rg=−0.30, P= 2.0e−4). Critical illness of COVID-19 also
negatively correlated with healthy aging (rg=−0.27, P= 2.1e
−6). The rest of 28 pairs of lifespan-related traits and COVID-19
traits were, although less significantly, negatively correlated with

Table 3 Mendelian randomization estimates for the
association between NOTCH2 expression and risk of COVID-
19.

Exposure Outcome OR 95% CI P

NOTCH1 Covid critical illness 2.57 1.39−4.74 0.0025
NOTCH2 UKBB covid vs. neg 1.46 1.08−1.99 0.0150
NOTCH2 UKBB covid vs. pop 1.43 1.07−1.91 0.0150

Only the associations that reached nominal significance (P < 0.05) are shown.
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Fig. 4 Mendelian randomization on 389 immune cell-type-specific surface markers and analysis of clinical data reveal the role of CD19 in B cells.
Mendelian randomization results showing the effect of immune cell surface marker levels on lifespan (x-axis), and the y-axis shows the Z-score for the risk
of COVID-19 infection (Ntrait= 389) (a) and COVID-19 critical illness (b). Red dashed lines to denote the ±1.96 Z-score threshold (equivalent to P < 0.05).
Only traits with P < 0.05 for both outcomes are annotated. Traits with FDR < 0.05 for at least one outcome are shown in squares. c Box plot showing the
CD19 level in B cells in different groups (Ncontrol= 70, Nlow= 10, Nmoderate= 41, Nsevere= 58, NLRT= 17). Blue boxes represent younger subjects (age < 60)
and the red boxes older subjects (age > 60). Subjects that have been admitted to ICU are in the diamond. The center line in the box shows the median. The
bottom and top of the box show the 25th and 75th quantiles. The whiskers represent the expected variation of the data. The whiskers extend 1.5 times the
IQR from the top and bottom of the box. cDC classical dendritic cells, TBNK T cells B cells and natural killer cells, MFI median fluorescence intensities, LRT
lower respiratory tract infections.
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each other, with nine pairs with P < 0.05 (Fig. 5). In addition, we
observed a positive genetic correlation between PhenoAge
acceleration and risk of COVID-19 infection (rg= 0.38,
P= 0.01). Together, these findings are consistent with our
hypothesis and support a shared genetic mechanism between
aging and COVID-19 risk (Fig. 6 and Supplementary Data 8).

Finally, to evaluate other risk factors for COVID-19 infection
and severity, we conducted a separate MR analysis using GWAS
data of 22 common diseases from GERA23 (Fig. S9 and Table S4)
but did not find a significant association based on FDR. Among
the nominally significant associations, cancer and dyslipidemia
increased the risk of COVID-19 infection, and Hypertensive
disease increased the risk of COVID-19 with respiratory failure
while decreasing the risk of infection. A phenome-wide associa-
tion analysis using a more powerful disease GWAS dataset in the
future might provide a complete picture of how common diseases
affect COVID-19 risk.

Discussion
In this study, we explored a potential causal relationship between
aging and the risk of COVID-19 by conducting a multi-
instrument MR analysis using four different lifespan-related
traits as exposures and various COVID-19-related traits as out-
comes. We found that genetically proxied longer lifespan and
longevity were significantly associated with the decreased risk of
COVID-19, and further analyses revealed a key role of elevated
biological age and severity of chronic age-related diseases in this
association. One of the key contributing factors in these asso-
ciations was found to be the immune response. The competence
of the immune system declines as people age, which is known as
“immunosenescence”56. The hallmarks of immunosenescence

include the impaired response to new antigens, decreased
receptor diversity, and chronic inflammation. As a result, elderly
subjects are more susceptible to infectious diseases, including
COVID-19, and have a poor response to vaccines56,57. On the
other hand, it has been reported that circulating immune cells in
centenarians possess unique characteristics that sustain immune
responses to infections58. Moreover, the offspring of centenarians
were shown to have a lower level of pro-inflammatory cytokines
and better hematopoiesis59, suggesting that the benefits on the
immune system in centenarians are heritable. Therefore, a better
immunological profile in people with pro-longevity genetics may
support the observed effect of longevity on COVID-19.

The Notch pathway is an evolutionally conserved signaling
pathway involved in age-related inflammation and diseases42.
Notch signaling is related to the entry of SARS-CoV-2 through
the positive regulation of host proteins that promote the entrance
of the virus into the cell43, which is mediated by the binding of
viral S (spike) glycoprotein to the Angiotensin-Converting
Enzyme 2 (ACE2)60. Therefore, upregulation of ACE2 could
potentially increase the risk of viral infection. ADAM17 (A Dis-
integrin And Metalloproteases 17) is a metalloprotease that
supports the shedding of ACE2 on the cell membrane61. It is
negatively regulated by Notch signaling, whereas downregulation
of ADAM17 significantly reduces the ACE2 shedding43. Besides
ADAM17, a proteolytic cut of the S protein mediated by furin
after S glycoprotein binds to ACE2 is required for the entry of
SARS-CoV-2 into the cell. Furin expression is positively regulated
by Notch signaling, and furin is also involved in the maturation of
Notch precursor43. All this evidence is in line with our finding
that Notch signaling plays an important role in aging-related
COVID-19.
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Fig. 5 Genetic correlation estimates from HDL and LDSC among phenotypes. Upper triangle: HDL estimates; lower triangle: LDSC estimate. The areas of
the squares represent the absolute value of corresponding genetic correlations. The genetic correlation that could not be estimated is blank. P values are
corrected using Bonferroni correction for 190 tests, *Pnominal < 0.05, **Padjusted < 0.05, ***Padjusted < 0.01. AD Alzheimer’s disease, accel acceleration, CAD
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NOTCH2 is one of the four Notch paralogs in mammals. Our
MR analysis revealed a potential causal relationship between
NOTCH2 expression and COVID-19 infection (Fig. 3e). A pre-
vious study suggested that NOTCH2 promotes goblet cell meta-
plasia in the lung, which is the hallmark of airway diseases62.
Moreover, goblet cells are the major source of ACE2 in the lung,
playing a role in enabling COVID-19 infection. Therefore,
increased NOTCH2 expression during aging may play a causal
role in the increased risk of COVID-19 infection in the elderly.
We observed a relatively large effect size (43% increased risk of
infection for every one standard deviation higher NOTCH2
expression), suggesting that NOTCH2 may be a desirable target in
COVID-19, as well as a marker of a population with a higher
potential risk of infection. Besides NOTCH2, we found that the
expression of the other three paralogs also increases the risk of
COVID-19 in a tissue-specific manner. Notably, NOTCH4 was
identified as the leading genetic risk locus for the critical illness of
COVID-1924. However, the NOTCH4 locus is located in the
major histocompatibility complex region24, and is not replicated
in other cohorts. Therefore, further experimental and clinical
studies are needed to validate the causal relationship between the
Notch family and age-related COVID-19 risk.

Aging manifests as progressive systemic remodeling of the
organism, and hence a great number of biological measurements
are associated with age. Several sets of physiological and biolo-
gical indices have been proposed for quantification of aging
progression in the form of biological age63,64 and frailty
index65,66. One popular approach is to regress relevant variables
to predict chronological age and thus produce the “biological age”
prediction. Popular Horvath, Hannum, and other methylation
age-clock models, as well as other clocks, are the widely used
examples of such an approach67,68.

An interesting alternative is to produce the log-linear all-cause
mortality estimate with a proportional hazard model and treat the
resulting value as a measure of biological age. Phenotypic Age
from blood biochemistry markers39, DOSI from CBC40, averaged
physical activity levels41, and more sophisticated machine learn-
ing algorithms used to predict the risk of death from physical
activity time series of wearable devices69, or even self-reported
health questionnaires, are all examples of this approach70. All
reliable biological age predictors are associated with chronic
disease burden, unhealthy lifestyles such as smoking (both overall
and in disease-free population), and future incidence of chronic
diseases in healthy subjects39–41,63,64,66,71,72. In our work, we
established the association of biological age acceleration with the

risk of non-chronic disease, COVID-19, and the corresponding
case fatality in the UKBB cohort independent of disease burden.
The association was significant for biological age acceleration
measures obtained from blood biochemistry (Phenotypic Age)39,
CBC (DOSI)40, and mean physical activity (number of steps
per day recorded by wearable devices over a week-long period of
time41; the number of UKBB subjects with physical activity
measurements was too low for separate biological age acceleration
characterization in frail and non-frail cohorts).

Decreased physical activity was associated with an increased
risk of COVID-19 in the UKBB cohort. This observation may be
interesting on its own since the widespread lockdown measures
brought about a dramatic (up to 27.3%, which is 1,432 steps
per day, within 30 days) decline of average physical activity73.
Our association study suggests a more than 10% risk increase
corresponding to 1.5 thousand steps per day loss. There are
feedback loop effects of decreased mobility on biological age
acceleration measures, and as such, the associated risk adjust-
ments must be taken into account in advanced epidemiological
models of lockdown effects. Yet, it was not clear whether this is an
effect of chronic diseases, also negatively affecting mobility. A
biological age model built from consumer-grade wearable sensors
data, the GeroSense biological age acceleration, was better asso-
ciated with the incidence of COVID-19 than the average physical
activity level in UKB. The result persisted among a sub-
population of individuals free of chronic health conditions70.

One advantage of our study design is that all the biological age
acceleration predictors were measured prior to the pandemic.
Therefore, the association between biological age acceleration and
the risk of COVID-19 (and probably other dangerous infectious
diseases) is free of reverse causation and likely to be causal if there
are no other confounders. Thus, our research supports the idea
that the pro-active application of anti-aging (that is, biological
age-reducing) drugs in a prophylaxis mode may protect
biomarker-defined vulnerable individuals. And, reversely, a sig-
nificant reduction of biological age by an experimental drug in a
clinical trial (probably as early as phase I) could warrant further
clinical studies in elderly subjects.

The association of biological age acceleration with case fatality
was weaker (only Phenotypic Age acceleration exhibited a sig-
nificant effect). This can be explained by the considerably smaller
number of UKBB subjects involved in the statistical analysis (346
dead individuals compared to 11,619 tested (and presumed sick)
and 459,872 overall subjects in UKBB). The case fatality rate
increases exponentially with age, and therefore it would be

Fig. 6 Schematic diagram showing the link between aging and COVID-19. Black solid arrows show the causal effect established by Mendelian
Randomization analysis, and the black dashed arrows show the correlation observed in the UKBB cohort. Orange arrows show potential approaches to
reduce COVID-19 risk. SNPs single nucleotide polymorphisms.
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reasonable to expect the association of biological age acceleration
with the risk of death in COVID-19 patients. We expect future
studies to corroborate our findings. Whether or not this asso-
ciation is causative could not be established in our study.

The correlation between COVID-19 risk, lifespan, and immune
phenotypes highlighted the importance of B cells and CD19
expression. CD19 is expressed throughout all stages of B-cell
development and is critical for humoral responses to infection. B
cell numbers decrease in blood with age and with COVID-
1949–53, providing a link between the two processes. Despite
decreasing number of overall B cells, B cells that with lower CD19
expression have more frequently IgM+ B cells in severe COVID-
19 patients, suggesting that B cells undergo plasmacytoid
maturation and immunoglobulin switching due to SARS-CoV-2
infection51. However, little is known about the role of CD19 in it
and whether the loss of B cells is detrimental or adaptive. It is
possible that the genetic predisposition for higher CD19 expres-
sion results in easier activation of B cells and improved produc-
tion of antibodies against virus injection. Future mechanistic
studies are needed to address these questions, and in particular, to
test whether therapies preserving healthy levels of CD19 in B cells
can extend lifespan and protect from COVID-19.

There are multiple clinical trials proposed to employ potential
lifespan-extending drugs to protect the elderly from COVID-19,
based on promising observational data on metformin5–9. How-
ever, epidemiological studies are prone to confounding, reverse
causation, and various biases, and therefore are an unreliable
indicator of the causal associations. MR is a method that utilizes
genetic instruments that are robustly associated with exposures
and thus generate more reliable evidence in predicting novel
interventions74. In our MR analysis, we found evidence for the
causal relationship between longevity and decreased COVID-19.
The analysis of genetic risk factors and phenotypic measurements
suggests that this causal effect is likely to be mediated by the
decelerated rate of aging, which can be captured by biological age
measurements. Therefore, our finding supports a possibility of
using lifespan-extending drugs against COVID-19 when one of
the following assumptions holds: (1) the selected anti-aging drugs
extend lifespan through a mechanism that mimics the genetics of
longevity; and (2) the selected anti-aging drugs could slow down
or reverse the aging process measured by biological age models
(e.g., phenotypic age).

While the first assumption is hard to test, recent studies suggest
that some anti-aging interventions can slow down and even
reverse the biological age measured by biological age models75.
For example, a cocktail treatment of recombinant human growth
hormone, dehydroepiandrosterone, and metformin reversed the
immunosenescent trend, and the biological age was measured by
several biological age models (including PhenoAge) was reversed
by 2.5 years on average after 12 months of treatment75. Thus, it
could be worthwhile prioritizing established anti-aging drugs in
COVID-19 clinical trials (Fig. 6).

Data availability
GWAS summary statistics used in this study are publicly available (for URLs, see
Table S1). The individual-level phenotype data are available in the UK Biobank (http://
www.ukbiobank.ac.uk/) upon application and with permission of UKBB’s Research
Ethics Committee. The source data for the main figures can be accessed as
Supplementary Data 2−6. The bivariate GWAS summary statistics of aging-related
COVID-19 generated in this study are available in Figshare (https://figshare.com/articles/
dataset/combined_ukbbCOVID_meta_txt/16416822).

Code availability
The GSMR analysis was performed using GCTA 1.93.1beta available at https://
cnsgenomics.com/software/gcta/. The genetic correlation analysis was performed using
LDSC v1.0.1 available at https://github.com/bulik/ldsc, and HDL v1.3.8 available at
https://github.com/zhenin/HDL.
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