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Abstract

Objective: To evaluate the relationship and redundancy between gait speeds measured by the 10 Meter Walk Test (10MWT)
and 6 Minute Walk Test (6MWT) after motor incomplete spinal cord injury (iSCI). To identify gait speed thresholds
supporting functional ambulation as measured with the Spinal Cord Injury Functional Ambulation Inventory (SCI-FAI).

Design: Prospective observational cohort.

Setting: Seven outpatient rehabilitation centers from the Christopher and Dana Reeve Foundation NeuroRecovery Network
(NRN).

Participants: 249 NRN patients with American Spinal Injury Association Impairment Scale (AIS) level C (n = 20), D (n = 179)
and (n = 50) iSCI not AIS evaluated, from February 2008 through April 2011.

Interventions: Locomotor training using body weight support and walking on a treadmill, overground and home/
community practice.

Main Outcome Measure(s): 10MWT and 6MWT collected at enrollment, approximately every 20 sessions, and upon
discharge.

Results: The 10MWT and 6MWT speeds were highly correlated and the 10MWT speeds were generally faster. However, the
predicted 6MWT gait speed from the 10MWT, revealed increasing error with increased gait speed. Regression lines remained
significantly different from lines of agreement, when the group was divided into fast ($0.44 m/s) and slow walkers (,
0.44 m/s). Significant differences between 6MWT and 10MWT gait speeds were observed across SCI-FAI walking mobility
categories (Wilcoxon sign rank test p,.001), and mean speed thresholds for limited community ambulation differed for
each measure. The smallest real difference for the 6MWT and 10MWT, as well as the minimally clinically important difference
(MCID) values, were also distinct for the two tests.

Conclusions: While the speeds were correlated between the 6MWT and 10MWT, redundancy in the tests using predictive
modeling was not observed. Different speed thresholds and separate MCIDs were defined for community ambulation for
each test.
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Introduction

In people with incomplete spinal cord injury (iSCI), walking

capacity - comprised of walking speed and endurance - is an

important construct in evaluating efficacy of gait training

rehabilitation[1]. Currently, the most accepted standardized timed

tests used in studies of persons with iSCI are the 10 Meter Walk

Test (10MWT) for speed and 6 Minute Walk Test (6MWT) for

walking endurance[2]. These outcome measures are valid, reliable
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and responsive for acute to chronic iSCI[3]. The pragmatic

characteristics of timed walking tests, such as ease and time burden

to perform, often determine whether both will be used for clinical

outcomes or research trials.

Recent studies advocate the use of only a single walking test,

specifically the 10MWT, for clinical research in individuals with

SCI[4;5] due to ease of administration. When compared to age-

matched normative data[6] and data on stroke survivors after

rehabilitation[7], the 10MWT and 6MWT showed little clinical

differences for speed. Additionally, strong correlations between the

10MWT and the 6MWT exist at a single time point after recovery

periods for individuals with iSCI[8;9]. However, each walking test

appears to perform differently when measuring preferred vs.

maximum walking speed. Higher speeds occurred most often with

the 10MWT compared to the 6MWT when measuring maximum

speeds, but during tests of preferred speed, the highest speeds

occurred most often using the 6MWT[5;10]. Thus, measured

walking speed appears to differ for the two walking tests according

to walking speed demands. Indeed, Barbeau[4] found that people

with iSCI produced similar walking speeds on the 15.2 Meter

Walking Test (15.2 MWT) and the 6MWT when maximum

speeds were below 0.9 m/s. However, when higher speeds were

attained, the two walking tests produced significantly different

values from each other. These differences were postulated to be

clinically irrelevant, because subjects were all independent ambu-

lators and considered to have sufficient capacity to perform

unrestricted community walking, although the community ambu-

lation scores were not reported. Thus, there is a need to determine

whether different walking speeds on the two tests reflect true

differences in function and community ambulation. Furthermore,

although speed thresholds for community ambulation after iSCI

been described for the 10MWT[11] they have yet to be identified

for the 6MWT.

Support for the use of a single walking test may lie in the

interpretation of the redundancy between walking tests. Barbeau

et al. considered redundancy to be the degree of equivalency, or

the comparison between the average gait speed during a short

walking test and the 6MWT[4]. Another method for evaluating

redundancy is to model the relationship between the 10MWT and

the 6MWT and compare the predicted 6MWT walking speed

(from the 10MWT data) to the actual 6MWT speed. The two

walking tests would be considered redundant if the error between

the predicted and actual values was small across all ranges of gait

speed. Thus, knowledge of speed on one test could be used to

accurately predict speed on the other, mitigating the need for

conducting both tests. To our knowledge, predictive modeling has

not been used to determine if the 10MWT and 6MWT provide

unique measures of walking capacity across a range of speeds and

over time after iSCI.

To delineate the unique or redundant contributions of the

10MWT and the 6MWT, a measure of functional capacity must

be used. Recently gait speed from the 10MWT was validated as a

predictor of community ambulation in a large European

study[11]. A minimum gait speed of 0.44 m/s was the threshold

for community ambulation as determined by partitioning compo-

nents of the Spinal Cord Independence Measure (SCIM)[11]. By

contrast, the mobility portion of the Spinal Cord Injury Functional

Ambulation Inventory (SCI-FAI), which relies on patient self-

report of gait parameters and frequency of walking in the home

and community, has not been examined relative to gait speed. The

SCI-FAI is a reliable, valid and sensitive measure of walking ability

in individuals with SCI[12]. In the present study, we analyzed gait

speed at each successive level of ambulatory capacity, as defined

by the SCI-FAI mobility scale, to determine the validity of walking

speed measurements in discriminating household and community

ambulation. We also separately analyzed the 6MWT and 10MWT

data using the 0.44 m/s threshold for identifying slow (household)

and fast (community) gait speeds[11].

The first purpose of this study was to evaluate the relationship

and redundancy between gait speeds measured by the 10MWT

and the 6MWT after motor iSCI. If redundancy exists then the

scores should be highly correlated and one of the measures would

predict performance of the other. Speeds collected before, during

and after Locomotor Training rehabilitation will determine

whether differences between the two walk tests depend on the

extent of recovery. The second purpose was to examine if the

variability between these gait speed measures was unique at fast or

relatively slow gaits speeds. We propose that there are differences

in walking test performance, not previously identified, for both

slow walking speeds (less than 0.44 m/s) and fast walking speeds

(those equal or greater than 0.44 m/s)[13]. The third purpose was

to establish whether statistical and clinically relevant differences

exist between the 10MWT and 6MWT. Measures of smallest real

difference (SRD) and functional walking capacity (e.g. household

vs. community ambulation with SCI-FAI) were examined. We

propose that differences in the inter-evaluation variability between

the walking tests may best signify whether both tests are clinically

meaningful, or if only one test is needed.

Methods

Study Participants
Two hundred forty-nine patients, enrolled in the standardized

Locomotor Training therapy program described in detail

elsewhere[14–16]. Patients who were admitted between February

2008 through April 2011 were evaluated at seven out-patient

clinical sites in the Christopher and Dana Reeve Foundation

(CDRF) NeuroRecovery Network (NRN). Sites included Boston

Medical Center, Boston, MA; Frazier Rehabilitation Institute,

Louisville, KY; Kessler Institute for Rehabilitation, West Orange,

NJ; Magee Rehabilitation Hospital, Philadelphia, PA; the Ohio

State University Medical Center, Columbus, OH; Shepherd

Center, Atlanta, GA; and The Institute for Rehabilitation and

Research, Houston, TX. From each center an IRB-approved

written statement of consent was obtained in writing prior to

collecting clinical information and administering the outcome

measures. Participants provided their written informed consent to

participate in this study. The IRB institutions were as follows:

Institutional Review Board of Boston University Medical Campus

and Boston Medical Center, Boston, MA; Kentucky One Health

Research Center, Institute of Review Board, Louisville, KY;

Kessler Foundation Institutional Review Board, West Orange, NJ;

Magee Rehabilitation Institutional Review Board, Philadelphia,

PA; Biomedical Sciences Institutional Review Board, the Ohio

State University, Columbus, OH; Research Review Committee at

Shepherd Center, Atlanta, GA; University of Texas Health

Science Center Houston, Texas. Patients were selected for

participation in the NRN Locomotor Training program and

outcome assessments based on 1) the presence of a non-progressive

spinal cord lesion, 2) neurological level of injury above T11 as

determined by the International Standards for Neurological

Classification of Spinal Cord Injury (ISNCSCI), 3) completion of

an in-patient rehabilitation program, 4) no use of Botox or other

medications for chemodenervation for spasticity for the 3 months

prior to enrollment, 5) some lower limb movement or visible

voluntary contraction, 6) the capacity to generate a lower limb

reciprocal alternating flexion/extension stepping pattern in the

body-weight supported step training environment, and 7) medical

Are the 10 MWT and 6 MWT Redundant

PLOS ONE | www.plosone.org 2 May 2014 | Volume 9 | Issue 5 | e94108



referral by a physician for physical therapy. Patients on anti-

spasticity medications were weaned during participation in the

NRN program as directed by their NRN physicians. The patients

underwent at least the baseline evaluation, a minimum of 20

training sessions and at least one additional evaluation of the

functional outcome measures.

Outcome Measures
The 6MWT and the 10MWT were captured as part of a battery

of measures at baseline in a single session or over two consecutive

days, depending on the abilities of the participants to perform

them. These measures were captured approximately every 20

treatment sessions thereafter, and at discharge from the Locomo-

tor Training program. The standardized procedures for gait

assessment within the NRN have been outlined in a previous

manuscript[16]. For the 6MWT, the placement of turns, precise

verbal feedback and location of the observer conformed to

standardized methods[17]. The need for physical assistance or to

sit ended the test. For the 10MWT, a 14-meter path with a flying

start was used to avoid acceleration/deceleration effects associated

with starting and stopping during this assessment. The middle 10

meters of this path were used for the measurement. Patients were

instructed to ‘‘walk as fast as they can’’. Both tests included use of

assistive devices when required; however, no lower limb bracing or

physical assistance was allowed. When patients changed assistive

devices over the course of treatment, each gait outcome measure

was conducted twice – once with the device used at enrollment,

termed the ‘‘initial device’’ and once with the device currently

being used, termed the ‘‘current device’’. Five minutes of seated

rest preceded each of the gait tests. Our data represent the fastest

walking speed attained, irrespective of ambulation device. The

walking mobility scale of the SCI-FAI was used to classify the

individuals’ self- reported level of home or community ambulation.

The walking mobility portion of the SCI-FAI scale classifies

individuals from 0 to 5. A score of 0 indicates self-reported non-

ambulatory status or ambulation with physical assistance only;

scores 1–3 indicate in-home but not community ambulation; and

scores 4–5 indicate limited and independent community ambula-

tion ability.

Data Analysis
Of 249 patients, 6MWT and 10 MWT data were available for

217 at enrollment, 249 at discharge and 249 at interim

evaluations. Thirty-two (32) were unable to complete one or both

of the walk tests at enrollment. One hundred seventy patients had

enrollment and discharge measurements of the 10MWT, 6MWT

and SCI-FAI mobility measure. On this sample, we calculated the

SRDs and conducted the analysis of changes in the 10MWT and

6MWT. One hundred twenty-five patients had enrollment and

discharge measurements of the 10MWT and 6MWT as well as an

enrollment SCI-FAI score below 5. On this sample, we calculated

minimum clinically important differences (MCIDs). The details of

the calculation of SRD and MCID are provided below.

The relationship between the 10MWT and 6MWT was

evaluated using correlation and regression methods for measure-

ments taken at enrollment, discharge, and over the entire period of

participation in the NRN. Simple linear regression models were fit

and Pearson correlation coefficients calculated on the enrollment

and discharge data using 10MWT speed as the predictor and

6MWT speed as the outcome. The regression models were fit with

generalized least squares to permit the modeling of heterogeneous

residual variance. The same models – 6MWT speeds predicted by

10MWT speeds – were fit for all of the data (i.e. enrollment,

interim, and discharge measurements) using the linear mixed

effects model. The 10MWT speed served as the only fixed and

random effect, and variance functions to model heterogeneous

variance patterns were included[18]. Pearson correlation coeffi-

cients calculated on the full data were calculated utilizing recently

developed methods for clustered data[19]. We calculated these

clustered data coefficients to account for dependence among

repeated evaluations of NRN patients and control for the potential

biasing effect of informative cluster size, in this case the varying

number of observations contributed by NRN patients.

We compared 10MWT and 6MWT speeds over categories

defined by the SCI-FAI mobility subscale using the Kruskal-Wallis

test, with pairwise comparisons of SCI-FAI categories conducted

using the Wilcoxon rank sum test with the Hochberg correction

for multiple testing[20]. We compared the measurement proper-

ties of the 10MWT and 6MWT by calculating the SRD and the

MCID. The SRD was calculated according to a modified version

of a formula proposed by Beckerman[21]; a discussion of the

modification to the SRD formula is in the Appendix (Appendix

S1). The MCID was calculated through a receiver-operator

characteristic (ROC) analysis utilized by Tilson, et al.[22] which

we describe briefly. We selected a one-unit increase in the SCI-

FAI mobility subscale to represent clinically relevant change in a

patient’s walking function and divided patients into responders

and non-responders based on this criterion[12;22]. We construct-

ed ROC curves for enrollment-to-discharge changes in the

10MWT and 6MWT, from which we calculated the area under

the curve (AUC) with 95% confidence intervals. The walk tests

were defined to be in significant correspondence with 1-unit

increases in the SCI-FAI if the 95% confidence interval for the

AUC did not contain 0.5. Each point on the ROC curve defines a

threshold for the change in walking speed, above which a patient is

classified as a responder and below a non-responder. At each of

these speed thresholds on the ROC curve we calculated two

quantities: (1) sensitivity, defined as the proportion of patients

classified as responders among those experiencing clinically

relevant improvement (a one-unit increase in SCI-FAI), and (2)

specificity, defined as the proportion of patients classified as non-

responders among those not experiencing clinically relevant

improvement. We defined the MCID to be the threshold at

which the sum of the sensitivity and specificity was maximized[23].

All analyses were conducted using the full data and for two

subgroups of data – slow walks, defined as walk speeds less than

0.44 m/s, and fast walks were equal to or greater than 0.44 m/s

per van Hedel, 2009[11;23]. Demographic and clinical charac-

teristics at NRN enrollment were summarized using means and

standard deviations for continuous, symmetric data, medians and

extrema for continuous skewed data, and counts and percentages

for categorical data. Hypothesis tests were conducted at the .05

significance level. Analyses were conducted using the open-source

R software package[24].

Results

Demographic, Clinical, and Treatment Characteristics
The demographic and clinical characteristics of our sample of

249 patients (Table 1) corresponded with those of other samples of

NRN data[8;13;25] and with the incomplete SCI population[26].

Patients were enrolled in the NRN for a median 3.4 months and

received a median of 40 treatment sessions, with the highest

enrollment time and number of completed treatment sessions

being 52.5 months and 353 sessions, respectively. The number of

evaluations ranged from 2–18 with a median of 4 evaluations per

patient at which 6MWT and 10MWT were measured.

Are the 10 MWT and 6 MWT Redundant
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Little Redundancy between 10MWT and 6MWT Gait
Speeds
To examine redundancy, we reasoned that the scores for the

10MWT and the 6MWT should be highly correlated and one

measure would predict the performance on the other. Speeds from

the 10MWT and 6MWTwere highly correlated (Table 2, Figure 1)

at enrollment (0.93), at discharge (0.94) and for all evaluations

(r = 0.94). Speeds from the 10MWT were generally faster than

those from the 6MWT. However, it is noteworthy that for up to

23% of cases, gait speeds on 6MWT were faster than 10MWT.

Corresponding to each plot, in Figure 1 we compared the

regression line of best fit with the line of agreement, defined by an

intercept of 0 and a slope of 1, as a measure of redundancy. The

lines differed significantly at enrollment, at discharge and for all

evaluations, indicating that speeds from the 10MWT and 6MWT

were not equivalent (F-test, p,.001; Figure 1).

From the linear models, we predicted the 6MWT gait speed

from 10MWT and examined the error in prediction across a range

of speeds (Table 3, Figure 2). In fitting the linear mixed effects

models, we modeled the residual variance as an increasing power

function of 10MWT speed (see the Appendix S1, for technical

specifications and details of modeling variance heterogeneity). At

the enrollment evaluation, residual standard error increased from

0.05 m/s to 0.31 m/s as 6MWT speeds increased from 0.20 m/s

to 2.0 m/s. Comparable increases were observed for discharge

evaluations (error increased from 0.08 m/s to 0.21 m/s) and for

all evaluations (0.07 m/s to 0.22 m/s).

Inequalities between 10MWT and 6MWT Occur for Fast
and Slow Walkers
Given that Barbeau et al.[4] established differences at faster

speeds and we established substantial error at slow speeds we

repeated the analyses of the relationship between the 10MWT and

6MWT for two groups of patients – fast walkers, those with gait

speeds meeting or exceeding 0.44 m/s, and slow walkers, with gait

speeds less than 0.44 m/s. This cutoff was selected based on prior

research identifying 0.44 m/s as a threshold for community

ambulation[13;27]. Compared to the overall sample, correlations

between the 10MWT and 6MWT were reduced within the fast

group and, to a greater extent, the slow group (Table 2, Figure).

Gait speeds from the 10MWT continued to exceed 6MWT speeds

in the two groups, although to a lesser extent in the slow walk

group (Figure 3). Sixty-six percent (55 of 83) of enrollment

evaluations, 73% (46/63) of discharge evaluations and 70% (282/

404) of all evaluations had 10MWT speeds greater than 6MWT

speeds for slow walkers. Conversely, up to 34% of gait speeds were

higher during the 6MWT for slow walkers. For fast walkers, 85%

(80/94) of enrollment evaluations, 88% (152/172) of discharge

evaluations and 86% (480/559) of all evaluations registered higher

speeds on the 10MWT than the 6MWT. Conversely, up to 15% of

gait speeds were higher during the 6MWT for fast walkers. The

lines of best fit remained significantly different from the lines of

agreement in both slow and fast walking groups (Figure 1, Table 2,

p,.001), although disparity from the line of agreement was

greater in the fast group. The slopes of the regression lines for fast

walkers were substantially below the line of agreement for each

plot while the slopes for slow walkers were modestly displaced.

Table 1. Demographic, clinical, and treatment characteristics.

Demographics (N=249)

Sex

F 59 (24)

M 190 (76)

Age 42616

AIS

C 20 (8)

D 179 (72)

Not evaluated 50 (20)

Time Since SCI (years) 0.7 [0.1, 21.6]

Mechanism of Injury

MVA 83 (33)

Fall 54 (22)

Sporting 45 (18)

Med-Surg 25 (10)

Violence 17 (7)

Non-Trauma 15 (6)

Other 10 (5)

Treatment Characteristics

Time in NRN (months) 3.4 [0.2, 52.5]

Treatment Sessions 40 [2, 353]

Evaluations 4 [2,18]

Values are counts (percentages), mean 6 SD, or median [min, max].
doi:10.1371/journal.pone.0094108.t001
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Linear models fit to the two subgroups continued to exhibit

increasing prediction errors with increased gait speed (Table 3,

Figure 3), which was modeled with a power function as before.

Smallest Real Difference is Lower for 6MWT
To determine whether the differences in 6MWT and 10MWT

surpassed the error of the measurement we calculated the SRD.

Average improvement from enrollment to discharge in 10MWT

and 6MWT speeds was 0.30 m/s and 0.26 m/s, respectively

(Table 4, Figure 4), and slow walkers tended to show greater

improvement than fast walkers. Previous reports[9;28] have

estimated the test-retest intraclass correlation coefficient of both

the 6MWT and 10MWT to be 0.98. Using this estimate and the

estimated standard deviation of enrollment-to-discharge changes

in the 6MWT and 10MWT, we calculated the SRD for the

6MWT and 10MWT to be 0.08 m/s and 0.10 m/s, respectively.

The SRDs for walkers defined as slow (,0.44 m/s) and fast ($

0.44 m/s) at enrollment were nearly identical to the SRD for the

overall sample (Table 4).

Table 2. Assessment of linear relationship between 6MWT and 10MWT via correlation and regression.

Walk Type Evaluations Correlation Intercept Slope

All Walks Enrollment (N = 217) 0.93 (0.91, 0.95) 0.01 (0.00, 0.02) 0.80 (0.76, 0.84)

Discharge (N = 240) 0.94 (0.92, 0.95) 0.04 (0.01, 0.06) 0.77 (0.74, 0.80)

All (N = 249, 1028 observations) 0.94 (0.92, 0.96) 0.05 (0.04, 0.07) 0.74 (0.71, 0.77)

Slow Walks Enrollment (N = 123) 0.84 (0.76, 0.89) 0.01 (0.00, 0.01) 0.87 (0.79, 0.94)

Discharge (N = 68) 0.73 (0.59, 0.83) 0.00 (20.01, 0.02) 0.89 (0.79, 0.99)

All (N = 143, 469 observations) 0.80 (0.73, 0.86) 0.03 (0.01, 0.04) 0.77 (0.71, 0.84)

Fast Walks Enrollment (N = 94) 0.85 (0.78, 0.90) 0.17 (0.10, 0.24) 0.60 (0.52, 0.68)

Discharge (N = 172) 0.90 (0.86, 0.92) 0.10 (0.04, 0.16) 0.71 (0.66, 0.76)

All (N = 178, 559 observations) 0.89 (0.85, 0.92) 0.14 (0.10, 0.18) 0.66 (0.62, 0.70)

For enrollment, discharge, and all evaluations, nonparametric Spearman correlation coefficients and slopes and intercepts from lines of best fit are given with 95%
confidence intervals. Results are presented for all walk evaluations, slow walk evaluations (,.44 m/s) and fast walk evaluations ($.44 m/s).
doi:10.1371/journal.pone.0094108.t002

Figure 1. Lines of best fit from linear models predicting 6MWT speeds with 10MWT speeds at enrollment, discharge, and all
evaluations. Top row: linear models fit to all observations. Bottom row: linear models fit to slow and fast walkers (separated by dotted line). Dashed
line is 45-degree line of agreement.
doi:10.1371/journal.pone.0094108.g001
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Gait Speeds and Functional Walking Capacity Classified
by SCI-FAI
To understand whether clinical measures of gait speed align with

functional walking, we partitioned patients with the SCI-FAI

walking mobility scale into non-walkers (score 0), limited in-home

ambulators (scores 1–3) and community ambulators (scores 4–5). A

small number of patients (n = 19) who indicated a SCI-FAI score of 0

ambulated sufficiently at initial evaluation in the clinic to complete

the 10MWT and 6MWT, albeit at gait speeds near 0 m/s (Table 5).

Significantly higher speeds occurred with higher classifications for

both the 6MWT and 10MWT (Kruskall-Wallis tests, p,.001,

Table 5). Those classified as extensive community ambulators (SCI-

FAI 5) had significantly faster gait speeds than all other classifications

regardless of which walking test was used to measure gait speed

(Wilcoxon test, Hochberg correction, p,.001). Gait speeds for

adjacent SCI-FAI categories 1–4were not significantly different (p.

.06) whereas separations of more than one category resulted in

significant differences using either walking measure (p,.04). For

example, gait speeds in patients with SCI-FAI score of 2 did not

significantly differ from gait speeds in patients with SCI-FAI scores 1

or 3, but were significantly lower than gait speeds of patients with

SCI-FAI scores of 4 or 5.

10MWT and 6 MWT Differ from Each other across
Functional Classifications
The 10MWT and 6MWT did not perform equally for each

walking category on the SCI-FAI. For most SCI-FAI levels, mean

gait speed on the 6MWT was slower than that on the 10MWT

(Table 5). The differences between 10MWT and 6MWT gait

speeds were significant for SCI-FAI categories 3, 4 and 5

(Wilcoxon sign rank test p,.001) (Table 5). The mean speed

threshold for limited community ambulation (SCI-FAI 4) at initial

evaluation was 0.39 m/s vs. 0.49 m/s for the 6MWT and

10MWT, respectively, and corresponded closely to the reported

minimum speed for community ambulation of 0.44 m/s identified

by van Hedel (2008)[11].

To determine if differences in gait speed between the two walk

tests were functionally or clinically relevant, we calculated the

MCID for all patients with enrollment and discharge measure-

ments of the 10MWT, 6MWT, and SCI-FAI, and had SCI-FAI

scores less than 5 at enrollment (n = 125). Of these patients, 78%

(98/125) experienced at least a 1 unit improvement. The MCIDs

were 0.11 m/s for the 6MWT and 0.15 m/s for the 10MWT

(Table 4). ROC analyses showed that increases in the 6MWT and

10MWT corresponded well with 1-unit improvements in the SCI-

FAI. The area under the ROC curve for the 6MWT was 0.85

(95% CI: 0.77, 0.94) and for the 10MWT was 0.83 (95% CI: 0.73,

0.92). The substantial overlap of these 95% confidence intervals

Table 3. Residual standard errors for linear models using 10MWT speeds to predict 6MWT speeds at selected speeds.

10MWT Speed (m/s) FULL MODEL SLOW/FAST MODELS

Enrollment
(N=217)

Discharge
(N=240)

All
(N=249)

Enrollment
(N=217)

Discharge
(N=240)

All
(N=249)

0.2 0.05 0.08 0.07 0.05 0.06 0.07

0.4 0.08 0.11 0.10 0.09 0.11 0.10

0.6 0.12 0.13 0.12 0.12 0.15 0.14

0.8 0.15 0.15 0.14 0.14 0.16 0.15

1.0 0.18 0.16 0.15 0.16 0.16 0.16

1.25 0.21 0.18 0.17 0.19 0.17 0.17

1.5 0.25 0.19 0.19 0.21 0.17 0.17

2.0 0.31 0.21 0.22 0.25 0.18 0.18

Standard errors were modeled as a power function of the 10MWT speeds. Results presented for modeling all of the data and for modeling slow and fast walkers
separately. Models including the heterogeneous variance function fit the data significantly better than models without (ANOVA F-test, p,.001), justifying their use in
models of the 6MWT and 10MWT.
doi:10.1371/journal.pone.0094108.t003

Figure 2. Difference in walk speeds (10MWT26MWT) by speed on 10MWT for enrollment, discharge, and all evaluations. Vertical
dashed line is at 0.44 m/s, separating slow and fast walkers. Negative values represent faster gait speeds on the 6MWT than the 10MWT.
doi:10.1371/journal.pone.0094108.g002
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indicated that the measures did not significantly differ in their

correspondence with clinically relevant change. The sensitivity for

each of the 6MWT and 10MWT at their respective MCID were

0.81 and 0.74 with a specificity of 0.81 for both tests.

When partitioned into slow and fast walkers, 73 slow walkers

(77%) and 25 fast walkers (83%) had at least a 1 unit increase in

the SCI-FAI. The MCID for slow walkers were 0.10 to 0.15; and

in close correspondence with the MCID for all walkers. We did

not calculate the MCID for fast walkers, because too few people

were available to yield interpretable results (i.e. only 6 fast walkers

failed to improve on SCI-FAI).

Discussion

This study examined whether two common walking tests detect

both statistically and clinically significant changes in walking

function for a large cohort of individuals with relatively chronic

iSCI. The primary finding was that walking speeds collected from

the 10MWT and the 6MWT differed from each other across a

broad range of speeds and for people who were self-reported in-

home or community ambulators. While the speeds were correlated

between the two tests, we did not find redundancy in the tests

using predictive modeling. Importantly, we defined different speed

thresholds for community ambulation and separate MCIDs for

each test.

The current view of timed walking tests for iSCI is that the

10MWT and 6MWT produce largely equivalent measures of gait

speed[4;5]. While strong correlations between the measures

suggest redundancy, especially at slow speeds, several findings

raise questions about whether outcomes measured by the 10MWT

and the 6MWT are indeed equivalent. Significant differences in

gait speeds collected with the 10MWT and the 6MWT have been

identified in fast walkers[4]. Recent evidence also showed that the

change in performance over time on these two measures for a

given intervention was not strongly correlated8. Taken together, it

appears that the 10MWT and the 6MWT may measure different

aspects of walking function and is the foundation of the current

study[4;29–31].

Little Redundancy of Walking Measures for Slow and Fast
Walkers
In this study, strong correlations occurred between 6MWT and

10MWT speeds for all walkers and when classified as slow or fast

walkers (Table 2), which is consistent with the literature and has

previously been used as evidence for redundancy between

measures[4;9]. However, we present three lines of evidence that

the 6MWT and 10MWT appear to capture different aspects of

walking performance which warrant using both tests.

First, individual walking performance differed significantly as

measured by the 10MWT and the 6MWT (Figure 1). Using the

line of equivalence as a measure of redundancy as described by

Barbeau et al.[4], we found that the line of best fit differed

significantly from this for enrollment, discharge and all evaluations

collected during treatment (slope,1.0). These differences re-

mained significant for both slow and fast walkers and indicates that

most slow and fast walkers had higher gait speeds on the 10MWT

than on the 6MWT (Table 2). While differences have been

reported for fast walkers above 0.9 m/s previously[4], this may be

Figure 3. Residuals from linear models predicting 6MWT speeds with 10MWT speeds at enrollment, discharge, and all evaluations.
Linear models fit to slow and fast walkers (separated by dotted line). Dashed lines are estimated residual standard errors from models.
doi:10.1371/journal.pone.0094108.g003

Table 4. Walking speeds at enrollment and discharge (m/s), smallest real difference (SRD), minimal clinically important difference
(MCID), and area under the curve (AUC) calculated for 6MWT and 10MWT (in m/s), all and by speed group at enrollment.

Measure 6MWT 10MWT

All Slow Fast All Slow Fast

Speed at Enrollment (m/s) 0.4060.39 0.1360.13 0.7760.32 0.5160.53 0.1560.14 0.9860.48

Speed at Discharge (m/s) 0.6760.43 0.4260.29 0.9960.38 0.8160.55 0.5060.37 1.2360.48

Change in Speed (m/s) 0.2660.28 0.2860.28 0.2360.26 0.3060.35 0.3560.35 0.2560.35

SRD 0.08 0.08 0.07 0.10 0.10 0.10

MCID 0.10 0.11 NA 0.15 0.15 NA

AUC 0.85(0.77, 0.94) 0.90(0.84, 0.96) 0.66(0.31, 1) 0.83(0.73, 0.92) 0.87(0.79, 0.94) 0.62(0.23, 1)

NA: among fast walkers, the 6MWT and 10MWT did not significantly correspond with clinically relevant change and reliable MCID could not be calculated.
doi:10.1371/journal.pone.0094108.t004
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the first report of statistically significant differences at much slower

speeds ,0.44m/s but its clinical importance remains to be

determined. This implies that even in slow walkers or during early

recovery when walking is slow, the two tests may not capture a

change in walking capacity similarly.

Second, prediction error from linear regression models can

serve as another marker of redundancy. If the results from one test

can be predicted with minimal error from the results of a different

test, then the two tests could be considered redundant – knowledge

of the results of one test provide an accurate estimate of the results

of another, mitigating the need for the test being performed. The

smallest real differences we calculated for the 10MWT and

6MWT (0.10 and 0.08) provide reasonable thresholds for

prediction error from a linear model. Based on these thresholds,

we found substantial error in the estimates of 6MWT performance

at gait speeds of 0.4 m/s and above for enrollment data and

0.2 m/s and above for discharge evaluations for the entire sample.

When partitioned into slow and fast walkers, the error surpassed

the SRD at a gait speed of 0.4 m/s on the 10MWT. The

magnitude of the error increased as 10MWT gait speed increased,

suggesting that performance on one walking test is distinct from

performance on the other walking test. Importantly, the error in

predicting 6MWT speeds from 10MWT speeds surpassed even the

6MWT MCID at speeds as low as 0.6 m/s. Therefore, both

statistically (SRD) and clinically relevant (MCID) errors exist when

predicting the performance of the 6MWT based on the 10MWT

at slow, fast, and over all speeds. Therefore our data suggests that

the 6MWT cannot be accurately predicted from the 10MWT via a

linear regression model, in - contrast with the findings of van

Hedel’s group[5]. In their study of subacute iSCI, regression

analysis showed no differences between walking speeds from

6MWT and 10MWT, collected at preferred and maximum

walking speeds.

The differences between our study and previous work may be

explained by sample size and chronicity of the injury. Our sample

was 249 subjects with time since injury ranging from 8 months to

21 years post SCI, whereas van Hedel studied a smaller sample

(n = 51) and 1–6 months post SCI. In addition, in the current

study, data collection occurred without physical assistance

provided during ambulation, whereas earlier studies allowed up

to moderate physical assistance during ambulation testing [4].

Another distinction between the reported studies and our work is

the instructions given for the walking tests, in our work the

instruction for 6MWT was ‘‘walk as far as you can’’ whereas for

another study the instructions were given to, ‘‘Walk as fast as you

can safely walk’’[4]. Also, while differences in rehabilitation

interventions surely exist, it is doubtful that the LT intervention

impacted our large residual errors, because we observed these

Figure 4. Enrollment-to-discharge improvements in 6MWT speed by enrollment-to-discharge improvements in 10MWT speed for
all patients (n =170), patients that walked slow (,0.44 m/s) at enrollment (n=78), and patients that walked fast ($0.44 m/s) at
enrollment (n=92). Plots restricted to patients that had enrollment and discharge evaluations of the 6MWT and 10MWT. Dotted lines are plotted at
the MCID for the 6MWT (0.10 m/s) and 10MWT (0.15 m/s). Blue = improvements exceeded MCID for both 6MWT and 10MWT, red= improvements
exceeded MCID for 10MWT only, green= improvements exceeded MCID for 6MWT only, black = improvements did not exceed MCID for either 6MWT
or 10MWT.
doi:10.1371/journal.pone.0094108.g004

Table 5. Summary statistics for 6MWT and 10MWT at enrollment, discharge, and all evaluations by SCI-FAI Walking Mobility score.

Enrollment Discharge

SCI-FAI 6MWT (m/s) 10MWT(m/s) SCI-FAI 6MWT(m/s) 10MWT(m/s)

0 (N = 18) 0.0160.03 0.0260.04 0 (N = 3) 0.1860.21 0.1560.13

1 (N = 20) 0.1860.13 0.1760.09 1 (N = 2) 0.1660.08 0.1760.07

2 (N = 19) 0.2760.26 0.2660.21 2 (N = 7) 0.1860.10 0.2960.17

3 (N = 21) 0.2860.13* 0.3760.19 3 (N = 16) 0.2860.20* 0.3060.20

4 (N = 38) 0.3960.21* 0.4960.32 4 (N = 30) 0.4460.28* 0.5860.34

5 (N = 61) 0.8460.35* 1.0760.54 5 (N = 118) 0.8960.37* 1.0860.50

Values are mean 6 SD. SCI-FAI score 0 indicates non-ambulatory status or ambulation with physical assistance only, scores 1–3 indicate in-home but no community
ambulation, and scores 4–5 indicate occasional or regular community ambulation. Table includes 177 patients with enrollment and discharge measurements of the SCI-
FAI, 6MWT, and 10MWT. SCI-FAI categories 3, 4, and 5 exhibited significant 6MW–10MW differences.
*p,.04.
doi:10.1371/journal.pone.0094108.t005
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prediction errors in analyses restricted to enrollment data, before

training began. The fact that residual error was similar at

enrollment and discharge suggests that outcomes from the two

tests reflect walking capacity more than type of intervention.

Third, differences between speeds derived from the two tests

were also evident when the outcomes were classified according to

function rather than a speed threshold (0.44 m/s). Using the SCI-

FAI, we stratified our sample into 5 groups ranging from little or

no ability to walk (SCI-FAI score 0) to some assisted or

independent community ambulation (SCI-FAI score 4–5). We

found statistically significant differences between 6MWT and

10MWT gait speeds for SCI-FAI classifications 3, 4 and 5 at

enrollment and discharge. Our data suggest that each walking test

captures walking capacity differently for slow and fast walkers and

for individuals with greater capability (SCI-FAI, Table 5) and

supports the use of both tests throughout recovery after an iSCI.

However, if only a single test can be used, our data suggests that

the 6MWT may be more responsive to walking ability. The

6MWT had a higher sensitivity than 10MWT (0.81 vs. 0.74,

respectively) when measuring individuals that improved at least

one category on the SCI-FAI, detecting more responders than the

10MWT. Additionally, the 6MWT had a smaller SRD than the

10MWT (Table 3). Given that SRD reflects the smallest difference

needed to exceed measurement error of the test, the 6MWT

appears to have less volatility than 10MWT and may be more

responsive to walking recovery. Our sample is comprised of a wide

range of functional abilities from walking a few steps to

independent community ambulation which allows for good

generalizability. In this paper, we calculated SRD with compu-

tation modifications that potentially improve the accuracy of

threshold for SCI[28;32;33]. Further we calculated the value for a

much larger population than has previously been report-

ed[28;32;33]. Both of these criteria strengthen the assertion that

the SRD threshold gait speed between the 6MWT and 10MWT,

independent of error, is much lower than reported previously[28].

Given the lower threshold identified, previous studies might have

under reported differences between these two walk tests. However

SRD only peripherally relates to clinical significance since it is the

value that represents change that cannot be attributed to error.

Subsequently our calculated MCID values would provide much

more accurate thresholds for the determination of real clinically

relevant change.

Gait Speeds Associated with SCI-FAI Functional
Classifications
The 10MWT and 6MWT are often used as surrogates for

functional ambulation in which gait speed over short distances

(10MWT) is thought to represent crossing the street, while longer

distances (6MWT) likely reflect endurance required for commu-

nity ambulation. Here we directly compare gait speeds over short

and long distances to self-reported walking function on the SCI-

FAI mobility scale. To our knowledge, this is the first time that gait

speed thresholds for different walking capacities have been

determined using the 6MWT. Previously, van Hedel et al.

generated 10MWT speed thresholds for 5 functional ambulation

groups defined from the Spinal Cord Independence Measure

(SCIM)[27]. These classifications were similar to those defined on

the SCI-FAI. When considering limited community ambulation

(category 4 for SCIM and SCI-FAI 4), we found that both the

6MWT and 10MWT speeds at initial and discharge aligned with

van Hedel’s minimum walking speed of 0.44 m/s. These data

strongly supports his assertion that 0.44 m/s is a plausible

threshold for limited community ambulation after iSCI. For

independent community ambulation, van Hedel proposed an

average 10MWT speed of 0.80 m/s which is consistent with our

6MWT SCI-FAI Category 5 walk speed at enrollment (0.84 m/s)

and discharge (0.89 m/s). However, our average 10MWT speeds

were much higher than reported by van Hedel[27].

Our SCI-FAI results are novel and in contrast to Barbeau et al.,

who assessed walking speeds from the 15.2MWT and 6MWT in

120 subjects with iSCI and found significant separation between

the two tests at gait speeds greater than 0.9 m/s[4]. We, like van

Hedel et al.[11], suggest that much lower speed thresholds for

community ambulation exist for iSCI regardless of whether a short

or long distance walking test is used.

Limitations
The SCI-FAI mobility subscale does have face validity, but it

also demonstrates significant ceiling effects[34], as noted in the

current study. Fifty-two percent of our patients identified

themselves as a SCI-FAI category 5 level of mobility at enrollment

which means that any improvement made during rehabilitation

would not have been detected with the SCI-FAI mobility scale.

These ceiling effects prevented us from calculating MCID for fast

walkers. It appears that perhaps a category 6 might be warranted

for the SCI-FAI, which could reflect a greater return to high-level

pre-morbid ambulation activities than the current scale allows. In

addition, the SCI-FAI was designed to assess functional ambula-

tion, but walking speed is only included in the description of

category 5, where speed is expected to be ‘‘at least 50% of

normal’’. Convergent validity of the SCI-FAI instrument was

established by finding that mobility scores correlated with walking

speed (Pearson r ,=20.742) collected over a 3.8 meter distance,

using a small sample of 22 people with incomplete SCI. The

differences between our gait speed data per SCI-FAI category and

the original SCI-FAI work warrants further investigation.
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