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Abstract

Background: Various methods have been developed to computationally predict hotspot residues at novel protein-
protein interfaces. However, there are various challenges in obtaining accurate prediction. We have developed a
novel method which uses different aspects of protein structure and sequence space at residue level to highlight
interface residues crucial for the protein-protein complex formation.

Results: ECMIS (Energetic Conservation Mass Index and Spatial Clustering) algorithm was able to outperform
existing hotspot identification methods. It was able to achieve around 80% accuracy with incredible increase in
sensitivity and outperforms other existing methods. This method is even sensitive towards the hotspot residues
contributing only small-scale hydrophobic interactions.

Conclusion: Combination of diverse features of the protein viz. energy contribution, extent of conservation,
location and surrounding environment, along with optimized weightage for each feature, was the key for the
success of the algorithm. The academic version of the algorithm is available at http://caps.ncbs.res.in/download/
ECMIS/ECMIS.zip.
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Background
Protein-protein interactions are vital for many cellular
processes like signal transduction, DNA replication, cellu-
lar motion, and transport of molecules from one cell to
another. Free energy is an important criterion for protein-
protein binding and hence for better understanding of
protein-protein interactions. The contribution of various
interface residues towards free energy of binding is not
uniform [1,2] and the ones which are energetically more
important are known as hotspots. Hotspot residues are
defined as those which bring changes in the binding
free energy by more than 2 kcal/mol, when mutated to
alanine [3]. These residues are generally seen to exist in
clusters known as ‘hot regions’ [4]. Such hotspot re-
gions provide stability to the protein complexes and
also attribute specificity to their binding sites [1,2,5].
Alanine Scanning Energetic Database (ASEdb) [6]
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contains a list of hotspots from some selected proteins
where they were mutated to alanine and changes in free
energy of binding were recorded. Binding Interface
Database (BID) [7] is another database which collects
information on hotspot residues from literature studies.
The amino acid compositions of hotspot and non-

hotspot residues are slightly different [2]. Residues like
Tyr, Arg and Trp have higher tendency to be a hotspot
residue, because of their size and conformation [2], while
other residues like Leu, Thr, Ser and Val are less preva-
lent [2,5]. Asp and Asn have been observed to contrib-
ute critically to hotspots, more frequently than Glu and
Gln. This might be attributed to the differences in their
side chain conformational entropy [2,5]. Some studies
have also indicated that hotspot residues are more con-
served than non-hotspot residues [8,9]. Hotspot residues
have been observed to be surrounded by residues which
are moderately conserved [4] and play a part in occlud-
ing the bulk solvent from the hotspots [10,11]. This oc-
clusion of hotspot residues from the bulk solvent is
found to be the major reason for their highly efficient
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interactions with other residues at the interface. Resi-
dues at protein-protein interfaces have been studied for
their conserved nature [12-15] and those residues which
are structurally and functionally [16] important tend to
remain evolutionarily conserved or mutate at a slower
pace as compared to the rest of the protein. Further
studies maintain that conserved residues remain highly
buried in the protein surface [17,18]. Hotspot residues
have been found to correlate well with the conserved
residues at the interfaces [17,19] and found to be buried
and tightly packed within the interface [4].
Since identification of hotspot residues by experimental

methods like alanine scanning mutagenesis [20], alanine
shaving [21] and residue grafting [21] is both expensive
and time consuming, their characteristics have been greatly
exploited by a number of computational methods which
can predict and identify these hotspot residues from the
interface ones. In recent years, several computational
methods have been developed which uses one or more
characteristics of hotspots, as described above, to identify
and successfully predict them from the set of interface
residues.
ROBETTA [22] uses a simple physical model which

measures changes in binding energy of the complex when
a residue is mutated to Alanine. It was applied on a large
dataset obtained from ProTherm and ASEdb. FOLDEF
[23] uses atomic descriptors of protein structures and
various energy terms weighted based on empirical data as
obtained from experimental data. It was trained on 339
mutations as obtained from 9 different proteins and the
various parameters were optimised. This was then tested
on 667 mutations from 82 protein-protein complexes.
There are several machine learning methods available

e.g. KFC [24] uses a machine learning approach to
characterize its local structural environment and then
compare it with the environments of experimentally deter-
mined hotspots. If the environment of the interface resi-
due resembles the experimentally determined hotspots,
then it is predicted as a hotspot. The method was trained
on 249 experimentally characterised mutations from 16
non-redundant protein-protein complexes and tested on
an independent test dataset of 112 mutations. MINERVA
[25] uses a support vector machine (SVM) based ap-
proach, wherein various structure, sequence and molecu-
lar interaction parameters are used to predict hotspots.
HotPoint [26] is based on an empirical model which uses
features like solvent occlusion and knowledge-based pair
potential of residues to predict hotspots. KFC2 [27] uses a
SVM-based approach, wherein solvent accessibility and
local plasticity of the residues are used as features to pre-
dict hotspots. Most of these methods are trained on a sub-
set of Alanine Scanning Energetic Database (ASEdb) and
tested independently on a dataset obtained from Binding
Interface Database (BID).
Other methods use features like solvent accessibility
[28-30], atomic contacts [31], restricted mobility [17], lo-
cation in the interaction patch [4], structural conservation
[32], sequence conservation [29,33-35], sequence environ-
ment and evolutionary profile [36], and pattern mining
[37] to identify hotspot residues. Although these methods
alone provide reasonable information about the hotspot
residues, it has been observed that these cannot be used
for the prediction/identification of hotspot residues with
high accuracy [38]. Some of the methods employ energy
functions [23,39] while others use molecular dynamics
simulations [40]. Various machine learning approaches
[3,24,25,41-43], based on geometry and biochemical fea-
tures of residue-residue contacts across binding interfaces,
have also been developed to identify hotspot residues.
Simple empirical method based on residue-residue pair-
wise potentials and surface accessibility [26], and a differ-
ent method which uses protein docking tools [44], have
also been developed which identifies hotspot residues with
fairly good accuracy. Robetta [22] was one of the first
methods developed to identify hotspot residues, which
accounted for energies of packing interactions, hydrogen
bonds and solvation [45]. Molecular dynamics (MD) sim-
ulations have also been used and found to provide good
predictive results for hotspot prediction [46]. However,
MD simulations cannot be used for large scale prediction
of hotspot residues, since they are computationally very
intensive.
In this paper, we present a new method “Energetic Con-

servation Mass Index and Spatial Clustering” (ECMIS)
which uses a combination of interface energetic (non-
covalent interactions like hydrogen bonds, Van der
Waals and electrostatics), residue conservation, mass-
index and spatial clustering to predict hotspot residues
with higher accuracy than any of the other methods avail-
able. ECMIS considers most essential and carefully se-
lected distinguishing features of hotspot residues, along
with optimum weightage, to calculate combined score for
each position. Hence, ECMIS was able to achieve high
sensitivity compared to other methods.

Method
Dataset

a) Training set

A dataset of 316 alanine-mutated interface residues
(Additional file 1) derived from 19 protein complexes
was taken from ASEdb [6]. Residues in the dataset
corresponding to a binding free energy equal to or
higher than 2.0 kcal/mol were alone considered as a
hotspot residues. The interface residues with binding
free energy less than 0.4 kcal/mol were considered as
non-hotspot residues, as described by Tuncbag et al.
[30] and Xia et al. [47]. Other interface residues with
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binding free energy between 0.4 and 2.0 kcal/mol were
excluded from the training set, in order to better
discriminate between hotspots and non-hotspots. The
final training dataset comprised of 78 hotspot residues
and 119 non-hotspot residues. The program was
optimized based on the prediction accuracy of the
hotspots in this dataset with varying parameters. The
entry 1DN2 has been removed from the dataset, since
the protein is complexed with an artificial peptide and
therefore the conservation based scores cannot be
applied.

b) Test set
An independent test set from the BID database [7]
(Additional file 2) was used to further assess the
performance of our proposed method. The residues
in BID database, are categorized as ‘strong’,
‘intermediate’, ‘weak’ or ‘insignificant’ based on the
effect of the mutation. The residues labeled as
‘strong’ were considered as true hotspot and the
other residues are considered as non-hotspots. As a
result, the test set contained 125 alanine-mutated
interface residues in 18 protein complexes with 38
hotspots and 87 non-hotspots.

Dataset for calculation of energy ranges
PPCheck is a program used for calculating energies at
protein-protein interfaces and the energy ranges have
been benchmarked earlier on 246 complexes (Sukhwal
and Sowdhamini, 2013) [48]. These PDB complexes
were obtained at a resolution of 2.5 Å or better, consti-
tuting 270 protein-protein interfaces (water excluded
from interface) in order to define the energy ranges for
the three energy components viz. electrostatic-energy,
Van der Waals interaction energy and hydrogen bond
energy. This benchmarking dataset had included homo-
dimers, heterodimers, transient and permanent com-
plexes, antigen-antibody complexes, etc. [48].

Energy scoring scheme
The energy contribution per residue was examined, as
reported in PPCheck. Energy values from PPCheck in-
volve three energy components viz. electrostatics, Van
der Waals interactions and hydrogen bond energy. Fur-
ther scripting was done to extract energy values in a
residue-centric manner. Energy component for each
residue was weighted to calculate final energy score.
These weights were decided based on the application
and performance on training dataset (Additional files 3
and 4).

eiT ¼ wVW � eiVW
� �þ wES � eiES

� �þ wHB � eiHB
� �

Where eiT = Total binding energy contributed by ith

residue
eivw = Van der Waals interaction energy contributed by
ith residue
eiES = Electrostatic interaction energy contributed by

ith residue
eiHB = Hydrogen bond energy contributed by ith

residue
wVW = Optimized weight for Van der Waals inter-

action energy
wES = Optimized weight for electrostatic interaction

energy
wHB = Optimized weight for hydrogen bond energy

Energy per residue was then normalized with respect to
the volume of the residue to reduce bias due to size of
the interacting residues.

neiT ¼ eiT
V i

Where neiT = Volume normalized total interaction en-
ergy contributed by ith residue
Vi = Volume of ith residue
These volume-normalized scores were further normal-

ized using observed energy ranges of all component
energies.

Ei ¼ neiT
nemax

K If neiT > nemax : E
i ¼ 1

� �

Where Ei = Final binding energy of ith residue normal-
ized between 0–1
nemax = Maximum volume normalized interaction en-

ergy observed in large dataset of different protein
complexes

Conservation score
Along with energy score, the extent of evolutionary
conservation for each residue was calculated. First, ho-
mologues were searched using PSI-BLAST [49] tool
and homologues having blast identity more than 30%
were chosen. Further, redundancy amongst homologous
sequences was addressed by applying a filter at 80% se-
quence identity by using CD-HIT [50]. The threshold
of 80% was found as the best value to remove highly
similar sequences as well as maintaining optimum
number of homologues required for accurate multiple
sequence alignment (Additional file 5). This was per-
formed to calculate the conservation score without any
bias due to closely related sequences. All the homo-
logues, along with query, were aligned using ClustalW
[51] software. Each position was then individually
checked for conservation and assigned a conservation
score as per Johnson and Overington matrix [52]. This
matrix was derived using structure-based sequence
alignment of homologous protein families. A similar
approach was used earlier in Smotif [53] algorithm,



Shingate et al. BMC Bioinformatics 2014, 15:303 Page 4 of 10
http://www.biomedcentral.com/1471-2105/15/303
which proved to be very efficient in finding structural
motifs.

ci ¼

Xn

a¼1

Xn−1

b¼aþ1

Sab
� �

n� n−1ð Þ
Where ci = Normalized total conservation score of ith

position
a = Residue type present in homologous sequence at ith

position in multiple sequence alignment
b = Residue type present in another homologous se-
quence at ith position in multiple sequence alignment
Sab = Amino acid substitution score residue type “a”
substituted by residue type “b” from Birkbeck matrix
n = Total number of homologues present in the multiple
sequence alignment
All scores were further normalized by 100 (maximum
possible score i.e. cysteine-cysteine substitution score in
Johnson and Overington matrix [54]).

Ci ¼ ci

100

Ci= Final conservation score normalized between 0–1

Mass index score
For each interface residue, sum of mass of interacting
residues were calculated as Mass Index score.

mii ¼ mi þ
Xn

j¼1

mj

MIi ¼ mii

mimax
K If mii > mimax : MIi ¼ 1

� �

Where mii = mass index of ith residue
mi = mass of ith residue
mj = mass of jth residue
j = jth residue interacting with ith residue
n = Total number of residues interacting with ith residue
mimax = Maximum mass index in large dataset of differ-
ent protein complexes
MIi = mass index of ith residue normalized between 0–1

Spatial clustering
Hotspot residues could cluster spatially and forms
hot-regions [4]. This fact was used to further enhance
score of those hotspot residues which forms very effi-
cient and conserved binding patch. To achieve this,
average of energy and conservation scores was re-
ferred. If this average score for any residue exceeds
0.5, then its score will be further enhanced with re-
spect number of other hotspot residues within 7 Å
spatial proximity.
SCi ¼ niintra þ niinter

SCi ¼ sci

scmax
K If sci > scmax : SC

i ¼ 1
� �

Where sci = Spatial cluster score for ith residue
niintra = Number of residues present within same pro-

tomer within 7 Å distance of ith residue
niinter = Number of residues present within interacting

protomer within 7 Å distance of ith residue
scmax = Maximum spatial cluster score observed in

large dataset of different protein complexes
SCi= Final spatial cluster score for ith residue normal-

ized between 0–1

Final score
Final score was calculated by combining energy score,
conservation score and spatial clustering score. Each
subscore was weighted according to their importance
in identifying hotspots. These weights were applied
along with threshold score (decided using ROC plots)
to decide hotspot criteria and were empirically opti-
mized based on the minimization of residual error in
the prediction using training dataset. Here, the reduc-
tion in the number of false positives and false nega-
tives were considered as optimization function.

f i ¼ wE � Ei
� �þ wc � Ci

� �þ wSC � SCi
� �

þ wMI �MIi
� �

Fi ¼ f i

f max

Where f i = Final combined score of ith residue
wE = Optimized weight for energy score
wC = Optimized weight for conservation score
wSC = Optimized weight for spatial clustering score
wMI = Optimized weight for mass index
fmax = Maximum combined score observed in data
Fi= Final combined score of ith residue normalized be-
tween 0–1

Performance evaluation
In order to assess the performance of classification
methods, commonly used measures such as prediction
accuracy (ACC), sensitivity (SE), precision (PR), speci-
ficity (SP) and Mathews Correlation Coefficient (MCC)
were used. These measurements are defined as

Accuracy ¼ TP þ TNð Þ
TP þ FP þ TN þ FNð Þ

Precision ¼ TP
TP þ FP



ffi

Table 2 Threshold scores for each component scoring
scheme

Scoring scheme Threshold score

Energy score 0.58

Conservation score 0.68

Mass index score 0.50

Spatial clustering score 0.54

Combined score 0.80
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Recall ¼ TP
TP þ FN

Specificity ¼ TN
TN þ FP

MCC ¼ TP � TN−FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þp

Where TP, FP, TN and FN represent true positive
(correctly predicted hotspot residue), false positive (non-
hotspot residue incorrectly predicted as hotspot), true
negative (correctly predicted non-hotspot residue) and
false negative (hotspot residue incorrectly predicted as
non-hotspot), respectively.

Results and discussions
Optimization of the parameters of ECMIS
All the parameters viz. weights for each type of compo-
nent energy (vizN electrostatic energy, Van der Waals
energy and hydrogen bonding), weights for each type of
score and threshold hotspot score were optimized em-
pirically. The maximum accuracy was achieved using
optimized values of these parameters, mentioned in
Table 1).
The best value for the discriminative threshold scores

(Table 2) for all scoring schemes were decided after con-
sulting respective ROC plots (Figure 1). ROC – Receiver
operating characteristics plot is one of the methods
which can be used to decide a threshold value for the
given parameter at which an optimum performance for
the algorithm can be achieved. ROC curve graphically
represents gain in true positive rate with the expense of
false positive rate. The point after which increase in true
positive rate is smaller compared to increase in false
positive rate selected as a threshold value shown in red
(Figure 1; Additional file 6).
While optimizing weights for individual component

energy, it was observed that hydrogen-bond energy was
always over-represented in case of threonine and serine.
Hence their mass-index values (MISer > 0.5, MIThr > 0.5)
was considered as additional criteria to reduce false
Table 1 Empirically optimized set of parameters

Parameters Value

wES 1

wHB 9

wVW 1.4

wE 0.3

wC 0.9

wMI 0.4

wSC 0.4
positive in case of serine or threonine residues. In con-
trast tryptophane and phenylalanine mostly contributed
in Van der Waals energy which is further normalized
by their volume. Compared to other types of energies,
magnitude of Van der Waals energy was very small
while volume of phenylalanine and tryptophan was high
compared to other amino acids. Therefore these residues
always get smaller score irrespective of their importance
in protein-protein complex formation. To overcome this
problem again mass index score (MITrp > 0.5, MIPhe > 0.5)
were consulted to improve scores of true positive trypto-
phan and phenylalanine residues.
Normalization of scores
In order to compare scores obtained for one protein
complex with another protein complex all scores were
normalized using maximum value observed for each par-
ameter in dataset of diverse protein complexes (Figure 2).
These ranges were decided after considering 95% of the
data and extreme 5% were ignored.
Prediction of the independent test set
The optimized parameters were used for the identifica-
tion of hotspot residues in the independent test dataset
from the BID database. Our algorithm was able to
achieve an accuracy of approximately 80% on the test
dataset for optimized set of weights (Table 1).
Comparison of the method with other methods
ECMIS was compared with various other methods
available for the identification of hotspot residues
Robetta [22] and FOLDEF [23], decision tree methods
such as KFC [24] and three recently published methods
MINERVA [25], HotPoint [26], KFC2 [27] and random
forest based methods [43]. An independent test set
from the BID database with 125 alanine-mutated inter-
face residues in 18 protein complexes with 38 hotspots
and 87 non-hotspots was used. The performance of
these methods on the test set is listed in Table 3.
ECMIS performs better than the currently available
methods with an accuracy of 80% and MCC of 0.524.



Figure 1 ROC plots for: A) Energy score, B) Conservation score, C) Mass index score, D) Spatial clustering score and E) Combined score.
The red line corresponds to best threshold score with optimum trade-off between true positive rate and false positive rate.

Figure 2 Energy ranges for: A) Van der Waals interactions B) Electrostatic interactions C) Hydrogen bonding energy.
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Table 3 Comparison of ECMIS with other prediction
methods

Method PR (%) SE (%) SP (%) ACC (%) MCC

ECMIS 68% 66% 87% 80% 0.524

RF 70.8 44.7 92.0 77.6 0.429

MINERVA 65.4 44.7 89.7 76.2 0.390

KFC2 58.1 47.4 85.1 73.6 0.345

HotPoint 49.0 63.2 71.3 68.8 0.324

Robetta 52.0 34.2 86.2 70.4 0.235

KFC 48.0 31.6 85.1 68.8 0.191

FOLDEF 47.6 26.3 87.4 68.8 0.168
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Case studies

a) Colicin endonuclease-Im9 complex
Fig
resi
Chy
A random protein from the PDB was chosen to
demonstrate the performance of our hotspot
identification algorithm. Colicin endonucleases
(DNases) are bound and inactivated by immunity
(Im) proteins. A number of hotspot residues have
been identified by mutagenesis which affects the
binding of the DNase-1 m9 complex ((PDBID:
2VLQ). It has been shown that the mutation of
ure 3 Interaction between Subtilisin BPN’ precursor (blue) and Chym
dues identified by ECMIS in Subtilisin BPN’ precursor are represente
motrypsin inhibitor 2 are represented in orange color.
three Im9 residues of helix III Asp51, Tyr54 and
Tyr55 to alanine generates change in the energy
values of ΔΔG > 5 kcal/mol) [54]. In the case of E9
DNase three important residues (Asn75, Phe86 and
Lys97) form a central belt on the surface of the
enzyme that comprises the hotspot. Additionally the
salt-bridge between Glu41 of Im9 with Lys97 of the
E9 DNase has been shown to be a specificity contact
in this complex [55]. Arg54 and Asn72 of E9 DNase
have also been found to effect the binding of DNase
to Im9 protein. It was observed that ECMIS was
able to pick 2 out of the 5 hotspot residues in Dnase
(Lys97 and Asn72) and 3 out of the 4 hotspots in
the 1 m9 protein (Figure 3). Since this complex is
F86A mutant of the Dnase-1 m9 complex the Phe86
of DNase and its interacting partner Tyr55 of 1 m9
were not picked up by our program.

b) Subtilisin BPN’ – Chymotrypsin inhibitor 2
Chymotrypsin inhibitor 2 (CI2) inhibits the serine
protease subtilisin by binding to its active site
(PDBID: ITM1). A series of mutants have been
found to affect the binding of chymotrypsin
inhibitor to subtilisin. It has been shown that the
network of hydrogen bonds and electrostatic
interactions connecting the CI2 binding loop to the
otrypsin inhibitor 2 (green) [PDB ID: 2VLQ]: The true hotspot
d in red color while the true hotspot residues identified in



Figure 4 Interaction between Colicin endonuclease (green) and Im9 (blue) [PDB ID: 1TM1]: The true hotspot residues identified in
Colicin endonuclease by ECMIS are represented as red spheres.
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protein core provides structural integrity and
conformational stability relevant both for binding
affinity and for control of inhibitor religation. The
H-bond between Thr-58 and Glu-60 bridges the
cleavage site, while the interactions between Gly-83,
Arg-65, and Glu-60 tie the leaving group R‘-peptide
tightly to the protein core, assisting in leaving group
retention and accelerating the religation reaction. It
has also been shown that mutation of Arg-62, a
peripheral participant in the H-bonding network, has
comparatively little effect on hydrolysis or inhibition,
while mutation of Arg-67 has an intermediate effect
[56]. Similarly the importance of Met-59 and Tyr-61
has been described in [57]. Among the above
described hotspot residues our program was able to
predict five out of eight reported residues (Figure 4).
Conclusion
Protein-protein interaction hotspot refers to a residue
or cluster of residues that makes a major contribution
to the binding free energy of protein-protein com-
plexes, as determined by alanine scanning mutagenesis.
These residues serve as important targets in the field of
pharmaceutical industry for the impedance of certain
protein-protein complexes. A number of recent studies
have been successful in developing (drug-like) small
molecules that bind at hotspots and inhibit complex for-
mation. Experimental identification of hotspot residues is
however expensive and time-consuming, and computa-
tional methods can thus be helpful in suggesting residues
for possible experimentation. In this paper, we describe a
novel algorithm which performs better than the existing
methods for the identification of hotspot residues vali-
dated using previously established experimental data. The
method records the highest accuracy available so far for
the prediction of hotspots at protein-protein interaction
sites.
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