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Abstract: The tumor microenvironment, including cancer-associated fibroblasts (CAF), has developed
as an important target for understanding tumor progression, clinical prognosis and treatment
responses of cancer. Cancer cells appear to transform normal fibroblasts (NF) into CAFs involving
direct cell-cell communication and epigenetic regulations. This review summarizes the current
understanding on miR involvement in cancer cell—tumor environment/stroma communication,
transformation of NFs into CAFs, their involved targets and signaling pathways in these interactions;
and clinical relevance of CAF-related miR expression profiles. There is evidence that miRs have very
similar roles in activating hepatic (HSC) and pancreatic stellate cells (PSC) as part of precancerous
fibrotic diseases. In summary, deregulated miRs affect various intracellular functional complexes,
such as transcriptional factors, extracellular matrix, cytoskeleton, EMT/MET regulation, soluble
factors, tyrosine kinase and G-protein signaling, apoptosis and cell cycle & differentiation, but also
formation and composition of the extracellular microenvironment. These processes result in the
clinical appearance of desmoplasia involving CAFs and fibrosis characterized by deregulated stellate
cells. In addition, modulated release of soluble factors can act as (auto)activating feedback loop
for transition of NFs into their pathological counterparts. Furthermore, epigenetic communication
between CAFs and cancer cells may confer to cancer specific functional readouts and transition of
NF. MiR related epigenetic regulation with many similarities should be considered as key factor in
development of cancer and fibrosis specific environment.
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1. Introduction

Over the years the tumor microenvironment has developed as an important target for
understanding tumor progression, clinical prognosis and treatment responses of cancer, such as for
chemotherapy and radiation. General understanding of a dynamic relationship between the expanding
tumor and the host surrounding tissue is advancing. Cancer-associated fibroblasts (CAF) are a major
cellular constituent of this tumor stroma, but little is known how cancer cells transform normal
fibroblasts (NF) into CAFs and about the cell-cell communication between cancer cells and CAFs.
These cells and their interactions seem to be relevant for various cancer related phenomena, but also
for resistance against treatment modalities [1]. For example, CAFs can promote tumorigenesis, growth,
invasion and metastasis of cancer, whereas NFs are thought to suppress tumor progression [2]. As one
key event CAF activation appears to induce alternative production and secretion of extracellular matrix
(ECM) proteins resulting in ECM remodeling and cancer cell invasion [3]. Resulting desmoplasia is
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not only attributed to CAFs but also to surrounding stellate cells, which are believed to play critical
roles in conferring cancer aggressiveness.

Although it is fully accepted that microRNA (miRs) are deregulated in human cancers, we are
only at the beginning of elucidating whether miR expression and function in resident fibroblasts of
the tumor microenvironment are affected by their interactions with cancer cells. There is increasing
evidence that miRs are involved in the transformation from NFs into CAFs and that vice versa, miRs
released from CAFs can affect various characteristics of cancer cells. Collectively, published results
suggest a crosstalk between CAFs and cancer cells, which in part may confer increased aggressiveness
to the tumors [4].

MiRs are small noncoding RNA molecules that negatively regulate gene expression at a
post-transcriptional level. Their target genes are known to affect cell differentiation, adhesion,
migration, proliferation, secretion and cell-cell interaction, among others. It has also been proposed that
miRs can reprogram various somatic cells to become pluripotent stem cells [5]. MiRs frequently occur in
clusters at a short inter-miR distance [6] and are usually combined by a single promotor/transcription
region for all cluster members. They have to be differentiated from miR families where sequence
homology is the major determinant. Clustering appears to be an important way of evolutionary
spreading of miR genes throughout the human genome and many clusters have a significant degree of
evolutionary conservation [7], indicating that miR clustering is important for their biological role due
to combined regulation of their expression [8].

The aim of this review was to summarize the current understanding on: (a) how miRs are involved
in cancer cell—tumor environment/stroma communication, specifically the transformation of NFs into
CAFs, their involved targets and signaling pathways in these interactions; and (b) whether CAF-related
miR expression profiles are clinically relevant. By reviewing the literature we also found evidence that
miRs have very similar roles in the activation of hepatic (HSC) and pancreatic stellate cells (PSC) which
are also specifically activated fibroblasts being part of precancerous fibrotic diseases, like pancreatic and
hepatic fibrosis. HSC and PSC are major determinants of the well-known phenomenon desmoplasia
and are considered as significant part of the precancerous microenvironment in fibrotic tissue, esp. in
these two organs. Therefore, miR-related similarities and differences related to tumor-related cellular
dysfunctions between the various types of activated fibroblasts were included in this review.

2. Methods

A PubMed search was performed using combinations of the following keywords: miR, microRNA,
cancer associated fibroblasts, cancer and fibroblasts, hepatic stellate cells (HSC) or pancreatic stellate
cells (PSC). Articles that met the criteria included:

• ([mir] OR [miR] OR [microRNA]) AND [cancer] AND ([caf] OR [cancer associated fibroblasts]) = 184;
• ([mir] OR [miR] OR [microRNA]) AND [cancer] AND ([hsc] OR [hepatic stellate cells]) = 64;
• ([mir] OR [miR] OR [microRNA]) AND [cancer] AND ([psc] OR [pancreatic stellate cells]) = 15.

Relevant publications were identified by screening the abstracts and the text of the entire published
paper as necessary. Reference lists from relevant articles were also searched for additional literature.
Data were extracted from the article, or if only available from the abstracts. This method was applied
until the beginning of May 2016 and has been updated in January 2017.

A narrative review of relevant literature was conducted to identify and summarize evidence that
miRs play a pivotal role in the communication between cancer cells and environmental fibroblasts.
Due to clinical and functional similarities of fibroblasts in cancers and precancerous lesions, pancreatic
and hepatic fibrosis were included in this search. Specific focus was given towards cluster organization
of the reported miRs.
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3. Clinical Relevance of miR in CAF

Very few data are available on deregulated miR-expression in CAFs from clinical specimens.
Up- and downregulation of miRs has been found comparing normal or tumor-adjacent fibroblasts.
For example, in ovarian CAFs, miR-31 and miR-214 were downregulated, whereas miR-155 was
upregulated [5]. In contrast, expression of miR-31 in CAFs was higher than in normal colorectal
fibroblasts [9]. In endometrial cancer miR-148a [10] and miR-31 [11] were downregulated. MiR-26b
was downregulated and miR-92 was upregulated in CAFs from estrogen receptor (ER)-positive breast
cancers [12,13]. Downregulation of miR-200 family members in activated CAFs has been found in
breast [3,14], gastric [15] and pancreatic cancer [16]. Interestingly, a reciprocal correlation of miR-200
and its putative target expression (SIP1 and E-cadherin) compared between pancreatic CAFs and cancer
specimens was reported [16]. In addition, miR-21 was frequently upregulated in CAFs in various
entities [17,18]. Moreover, expression of this miR in stellate cells derived from normal pancreas was
substantially lower when compared to PSCs or CAF cells [4]. Specific upregulation of miR-409-3p and
miR-409-5p was found in prostate cancer stromal tissue specimens [19], whereas miR-15 and miR-16
were downregulated in fibroblasts surrounding prostate tumors [20]. Additional mixed patterns were
found by array technologies in breast [10,14], lung [21] and prostate [22] cancer specimens in very
small patient cohorts, but the evidence for reproducible cancer specificity of such signatures is still
very limited. These genome-wide screenings provided potentially deregulated miRNAs in CAFs from
different entities (upregulated: miR-221-5p, miR-31-3p, miR-221-3p; and reduced: miR-205, miR-200b,
miR-200c, miR-141, miR-101, miR-342-3p, let-7g, miR-26b) (Table 1). Interestingly, contradictory results
between clinical and experimental samples have been reported, such as for miR-106b (compare Table 2).
These different observations of dysregulated miR has also been observed in other context for which
the authors provided the model of regulators freedom for miR regulation (see review in ref. [8]).

Prognostic impact of altered miR expression in CAFs in clinical cohorts has been observed for
patients with breast cancer (miR-26b) [12], gastric cancer (miR-106b [23], miR-143 [24], miR-145 [25],
miR-200b [15]), esophageal carcinoma (miR-21 [17], miR-27a/b [26]) and pancreatic adenocarcinoma
(miR-21 [17]). Furthermore, miR-21 expression in CAFs was elevated in colorectal cancer specimens
compared to fibroblasts in colonic polyps [27] and it was associated with decreased overall survival
in pancreatic cancer patients who received 5-FU, but not gemcitabine [18]. It has also been
reported that miR-27a/b are involved in resistance to chemotherapy in esophageal cancer through
miR-27a/b-induced transformation of NFs into CAFs [26].

Clinical expression data for PSCs have not been published yet, but for HSCs and liver fibrosis
several investigations are available. The hepatic contents of miR-21 [28,29], miR-33a [30] and
miR-200b [31] were significantly increased in liver specimens from human patients with liver fibrosis
as compared to normal patients. Upregulation was also identified for miR-199a-5p/199a-3p and
miR-221/222 in hepatitis C induced liver fibrosis in a fibrosis progression-dependent manner [32].
Members of the miR-17-92 cluster (19a, 19b, 92a) [33], miR-29, miR-133, miR-193 and miR-30c [34,35]
were observed to be specifically downregulated in human liver fibrosis and HSC, while they showed
a reciprocal expression pattern after recovery from liver fibrosis. Reduced expression of miR-144
was correlated with elevated HSC-specific expression of transforming growth factor-β1 (TGF-β1)
and expression of α-SMA in fibrotic liver tissues. In contrast, miR-200c did not show comparable
differences and correlations [36]. Hepatic expression levels of miR-199a, miR-199a*, miR-200a, and
miR-200b were positively associated with progression of liver fibrosis [31,37].

In liquid biopsies, levels of miR-17-5p [38], miR-21 [28], miR-33a [30] and miR-181b but not
miR-181a expression [39] were higher in fibrotic than in normal patients. In addition, miR-133a
serum levels were increased in patients with chronic liver disease and indicative for the presence and
progression of liver cirrhosis [35].
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Table 1. Direction of deregulated miR expression in CAFs in clinical cohorts of various cancer entities.

Alteration in Clinical Specimens microRNA
Cancer Entity

Breast Ovarian Endometrial Esophageal Gastric Colorectal Pancreatic Prostate Mixed Entities

upregulated

miR-21 ↑ ↑ ↑
miR-31 ↑ ↑
miR-92 ↑
miR-221 ↑
miR-409 ↑
miR-155 ↑

downregulated

miR-15 ↓
miR-16 ↓

miR-26b ↓
miR-31 ↓ ↓
miR-101 ↓

miR-106b ↓
miR-141 ↓ ↓

miR-148a ↓
miR-200 ↓abc* ↓b* ↓ab* ↓bc*
miR-205 ↓
miR-214 ↓
miR-342 ↓

miR-let7g ↓
* reported members of the miR-200 family are listed accordingly.
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Table 2. Deregulated miRs in (A) CAFs and (B) HSC/PSC, consequences on cellular functions and identified target structures. MiRs that occur in clusters are
highlighted with blue background.

(A)

MiR with
Cluster

Cancer
Entities

Regulation
of miR

in CAFs
Interaction in CAFs

Cellular Consequences
Pathway Targets

Migration Invasion Adhesion Growth Proliferation,
Progession Differentiation Chemoresistance Apoptosis Methylation

15, 16 PC ↓ α-SMA ↑ ↑ ↑ ↑ p-AKT, p-ERK
↑

Fgf-2 and its
receptor Fgfr1 ↑

27a/b EOC ↑ α-SMA ↑ ↑ ↓ TGF-β ↑
92 BC ↓ ↑

106b GC ↑ α-SMA ↑ ↑ ↑ ↑ TGF-β ↑ PTEN

101 BC, LC ↓↑ α-SMA ↑, IL-6 ↑ ↓↑ ↓↑ ↓ ↓↑ ↓ ↑ ↓ PI3K-AKT ↓,
TGF-β ↑ CXCL 12 ↓

143, 145 GC ↑ α-SMA ↑, Collagen Typ
III ↑ ↑ ↑ ↑ TGF-β /SMAD

signaling ↑

200a, 200b BC, LC,
PaC, GC ↓↑ α-SMA ↓↑, IL-6 ↑ ↓↑ ↓↑ ↓↑ ↓↑ ↓↑ ↓ TGF-β ↑↓ ZEB1, ZEB2 ↑; Flt 1

↓; SIP1

221 BC, PaC ↑ α-SMA ↑, IL-6 ↑ ↑ ↑ ↑ TGF-β ↑ NF-κB, K-Ras ↑
214 OC ↓ cytokines ↑ ↑ ↑ ↑ CCL5

127 BC ↓ ↑ p53/p21 ↑ BCL6 oncogene ↑

133b PC ↑ α-SMA, IL-6 ↑, Collagen
1A1 ↑ TGF-β ↑

141, 200c BC ↓↑ α-SMA ↑, IL-6 ↑ ↑ ↑ ↑ ↑ ↑ ↑ TGF-β ↑ Fli-1, TCF12

342 BC ↓ α-SMA ↑, IL-6 ↑ ↑ ↑ ↑ ↑ ↑ ↑ TGF-β ↑
365 BC ↓ IL-6 ↑ ↑ ↑ p38 MAPK ↓ NF-κB p65 ↑

409 PC ↑
α-SMA, EMT ↑,

extracelluar vesikel (EV)
release ↑

↑ ↑ Ras suppressor 1,
stromal antigen 2

(B)

MiR with
Cluster PSC/HSC

Regulation
of miR in
PSC/HSC

Interaction in Cells
Cellular Consequences Pathway Targets

Migration Growth Development,
Movement Proliferation, Progession, Activation Fibrosis, Apoptosis

15, 16 PSC ↓ ↑ BCL-2 ↑

27a/b HSC ↑ ↑ retinoid X receptor
alpha

17, 19b HSC ↑↓

Collagen Type I and
α-SMA ↑↓, expression of

α1(I) and α2(I)
procollagen in mRNAs ↑

↓ ↓ ↑ TGF-β 1 ↑↓
SMAD7 ↓, TGF-β 2

rezeptor and
SMAD 3, GRB2

101 HSC ↑ ↓ ↓ TGF-β ↓ TβRI/KLF6 ↓
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Table 2. Cont.

143 PSC ↑ ↑ ↑ Smad 2/4
p39 MAP kinase &

extracell.-signal–regulated
kinase

200a, 200b HSC ↓↑ α-SMA , EMT process ↓ ↑ ↓ ↓↑ ↑

Wnt/β-catenin,
TGF-β ,

PI3K/Akt ↑,
Hh pathway

FOG2 ↓-regulation,
Keap1/Nrf2 ↑, Gli2 ↓

221, 222 HSC, PSC ↑ α1Collagen and α-SMA
↑ ↑ ↑ ↑ Smad 2/5,

NF-κB

p40 MAP kinase &
extracell.-signal–
regulated kinase

214 HSC ↓ Collagen Type I ↓ ↑ Cox-2 protein expression,
NF-κB ↑

29a HSC, PSC ↓↑ Collagen Type I ↑ ↑ ↑ ↑
TGF-β1

(SMAD3
dependant) ↑

HDAC4 ↑, Cox-2 protein
expression, NF-κB ↑

34c HSC ↑ α-SMA ↑ PPARγ ↓

122 HSC ↓ collagen maturation and
ECM production ↑ ↑ P4HA1 ↓

130b HSC ECM ↑ ↑ PPARy ↓
144 HSC ↓ α-SMA ↑ ↑ TGF- β1 ↑
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Overall, the body of evidence for clinically useful miR expression patterns in CAFs as prognostic or
predictive markers is not yet sufficient for any recommendation into clinical applications. In addition,
a systematic approach for identification of the relevant miR expression profiles has not been done
thoroughly and, therefore an overall picture for patients is not available yet.

Most promising candidates for future clinical use appear to be miR-21, miR-31 and the miR-200
family. Furthermore, a number of miRs that are known for their involvement in cancer cells have
been identified to also be important in patients derived CAFs suggesting a further look into their
functional consequences.

4. Functional Consequences of miRNA Dysregulation in CAFs

Molecular mechanisms leading to transition of tissue-resident fibroblasts into CAFs, circulating
bone marrow-derived fibroblast progenitors or mesenchymal stem cells are largely unknown [22].
The spectrum of miRs that have been identified as relevant regulators of this CAF transition and/or
for their interactions with cancer cells is relatively limited. Except for two publications investigating
squamous cell esophageal carcinomas [26,40] all data were derived from adenocarcinomas of different
organs. Interestingly, the majority of these miRs belongs to miR clusters (<10 kb sequence distance
between the members) with functional overlap between the various cluster members. Deregulation
of miRs in fibroblasts in general appears to induce as major effects smooth muscle α-actin (α-SMA)
upregulation and modulated secretion of cytokines including: increased IL-6 and CXCL12, activation
of the TGF-β and inhibition of various signaling pathways, such as the PI3K-AKT pathways [2,3,21].
Various miRs interfere with multiple cellular functions and therefore be found at different point in the
subsequent listing.

An overview about the miRs with altered expression in CAFs is provided in Table 2 (extended data
are available in Supplemental (Table S1) showing that various miRs occur up- and downregulated even
within the same tumor entity, such as miR-101, miR-200a and miR-200b. It appears quite interesting,
that those miRs (except miR-101) belong to the miR-200 family, which is clustered at chromosomes 1
and 12. Similar observations have been summarized recently for the miR23~24~27 clusters in
cancer cells [8].

4.1. EMT/MET Switch

The known functions of miR-200 family members in the EMT/MET switch (targeting ZEB1, ZEB2;
E-cadherin expression) can also be found in CAFs [2]. MiR-146b inhibition is sufficient to transactivate
NFs into CAFs, which promote EMT transition in breast cancer cells in a paracrine manner [41]. In a
similar manner miR-148a targets genes of the WNT family, WNT1 and WNT10b with comparable
cellular effects [10]. Furthermore, miR-21 overexpression was associated with enhanced ERK1 signaling
and EMT in liver fibrosis via direct suppression of SPRY2 and HNF4α expression [28]. Promotion of
tumor induction and EMT was also induced by ectopic expression of miR-409 (member of a very large
cluster) in prostate NFs conferring a CAF-like phenotype and leading to the release of miR-409 via
extracellular vesicles. This miR also enhanced tumorigenesis through repression of tumor suppressor
genes such as Ras suppressor-1 (RSU-1) and stromal antigen 2 (STAG2) [19]. Additional targets were
observed that are also involved in both processes, including Fli-1 (directly regulated by miR-200c),
TCF12 (directly targeted by miR-141) [3], SIP1 (by promoter methylation via miR200a/b) [16] and Flt-1
(directly targeted by miR-200b) [42]. CAF exosomes and NF exosomes transfected with miRs-21, -378e,
and -143 promoted the stemness and EMT phenotype of breast cancer cells [43].

4.2. TGF-β Signaling

A relatively large body of data has been published for miR-21 (chromosome 17q23.2) which is
one of the few non-clustered miRs that have been found to be relevant in CAFs. This miR may be
an important factor in “activating” NFs into CAFs and its expression is mostly confined to cancer
stroma [4,17]. Via direct targeting miR-21 is a negative regulator of programmed cell death protein
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4/activation protein-1 (PDCD4/AP-1) in cancer cells [27] and HSCs [29]. This appears to be based on a
miR-21 feedback loop with these signaling pathways promoting fibrogenesis and the TGF-β signaling
pathway underlying HSC activation [29].

MiR-145 is inducible by treatment with TGF-β leading to enhanced α-SMA expression in normal
gastric fibroblasts and CAFs [25]. MiR-27a/b-transfected normal fibroblast showed α-SMA expression
and increased production of TGF-β as typical characteristics of CAFs [26]. In addition, miR-126 can
support TNFα induced TGF-β1 expression [44]. MiR-205 has been observed as most downregulated
miR in prostate cancer cells upon CAF stimulation due to direct transcriptional repression by HIF-1α,
a known redox-sensitive transcription factor [45]. In addition, miR-127 is the best described member
of a large cluster of miRs on chromosome 14 that also act as key modulators of TGF-related cellular
senescence by targeting critical regulators of the senescence pathways. This miR is upregulated
in senescent fibroblasts and may function as tumor suppressor and inhibitor of breast cancer cell
proliferation by modulating the BCL-6 oncogene [46].

Functional data for members of the three miR-17-92 clusters in cancer are almost lacking.
For fibrotic progression, however, various investigations showed the importance of these cluster
members for intensive interactions with TGF-β signaling. For example, HSC activation is a pivotal
event in initiation and progression of hepatic fibrosis and a major contributor to collagen deposition
driven by TGF-β. In animal models miR-19b showed the highest fold-change of the cluster members.
Its mimic negatively regulated TGF-β signaling components including decreased TGF-β receptor
II (TGF-βRII) (by direct binding) and SMAD3 reduced expression of type I collagen and blockage
of TGF-β-induced expression of α1(I) and α2(I) procollagen mRNAs. Similarly, enhanced miR-17
expression was observed in rat liver fibrosis. Its inhibition also led to suppression of HSC proliferation
induced by TGF-β1 without affecting cellular apoptosis, but with significant association of type I
collagen and α-SMA expression in HSC [38].

Comparable to the tumor environment expression levels of fibrosis related genes in HSCs were
increased by overexpression of miR-200 family members (miR-200a, and 200b) [37]. For example,
miR-200a was decreased in TGF-β1-induced HSC activation and induced liver fibrosis. Overexpression
of miR-200a in HSCs inhibited α-SMA activity and proliferation. In addition, β-catenin and TGF-β2
were confirmed as two functional downstream targets of miR-200a in the fibrotic framework [47].
Divergent roles of miR-181 cluster members in HSCs have been reported. MiR-181b but not miR-181a
could promote HSC proliferation induced by TGF-β1 through regulation of cell cycle (targeting
p27Kip1) [39]. Similarly, the X-chromosomal miR-221/222 is increased in liver fibrosis models
(stimulated by TGF-α or TNF-α). MiR-222 can bind to CDKN1B in HSCs and its induction can
be suppressed by NF-κB inhibitor [32].

Downregulated miR-101 appears to increase CAF-promoted vascular mimicry formation in vitro
and in vivo. Gain- and loss-of-function analyses revealed that the miR-101-TGF-β/SDF1-VE-cadherin/
MMP2/LAMC2 network mediates this formation of vascular-like channels [48]. Members of the
miR-101 family (miR-101a/b) can act as suppressors of TGFβ signaling by directly targeting TGF-βRI
and its transcriptional activator Kruppel-like factor 6 (KLF6) during liver fibrogenesis where these
miRs are reduced in activated HSCs. Meanwhile, upregulation of TGF-βRI/KLF6 was observed in the
fibrotic liver [49].

4.3. Extracellular Matrix, Migration and Invasion

MiR-122 overexpression also led to decreased collagen maturation and ECM production [50]
whereas miR-126 [44] and miR-17-92 cluster members [38] induced type 1 collagen expression. Reduced
expression of miR-335 during HSC activation promotes their cell migration via targeting tenascin-C and
enhanced expression of α-SMA and type 1 collagen [51]. Furthermore, miR-19b blunted the activated
HSC phenotype by morphological assessment and decreased α-SMA expression [33]. In HSCs another
cluster member, miR-133a, is downregulated by TGF-β with subsequent stimulated expression of
collagens [35]. The expression levels of fibrosis related genes (TIMP-1, MMP13, α1-procollagen) in
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HSCs were increased by overexpression of other members of the miR-214 cluster (miR-199a, 199a*) [37].
Moreover, miR-200b appears to enhance expression of matrix metalloproteinase-2 (MMP-2), which may
increase the migration of HSCs during liver fibrosis progression [31]. MiR-31 may also mediate liver
fibrosis by promoting HSC activation and enhancing MMP-2 expression. Functionally this appears to
be mediated via FIH1, a suppressor of hypoxia-inducible factor (HIF-1) [52].

Among others, miR-200 family members were identified as potential direct mediators of NF
reprogramming into CAFs and of ECM remodeling. NFs with downregulated miR-200s displayed
the traits of activated CAFs, including accelerated migration and invasion [3]. Overexpression of
miR-200b can enhance migration and proliferation of fibrotic HSCs; this is accompanied by stimulated
phosphorylation of Akt, a downstream effector of phosphatidyl-inositol 3-Kinase (PI3K). Within this
PI3K/Akt pathway FOG2 is an additional target of miR-200b that directly binds to p85α inhibiting
activation of the signaling. In fibroblasts with amplification of miR-92 expression an enhanced
invasive capacity of breast cancer cells was reported [13]. CAFs with downregulated miR-106b
could significantly inhibit gastric cancer cell migration and invasion by targeting PTEN [23]. Similarly,
miR-335 interferes with a senescence-associated secretory phenotype of CAF via modulating PTEN [53].
In addition, miR-21 can play a role in expression and activity of MMP2 and HSC activation through
PTEN/Akt pathway [54]. Furthermore, miR-7 in NFs significantly increased the migration activity
and growth rates of cancer cells in co-culture experiments which seems to be mainly mediated by the
RASSF2-PAR-4 axis [55].

Intercellular communication between ER-positive breast cancer cells and CAFs reduced miR-26b
expression in CAF but enhanced cancer cell migration and invasion. Pathway analyses of differentially
expressed proteins revealed that glycolysis/TCA cycle and cytoskeletal regulation by Rho GTPases
are downstream of miR-26b. In addition, its targets (TNKS1BP1, CPSF7, COL12A1) were identified
and their expression in cancer stroma was shown to be significantly associated with breast cancer
recurrence [12]. Both, miRNA-150 and miRNA-194 inhibit HSC activation and ECM production,
at least in part, via inhibition of c-MyB and Rac-1 expression [56].

In fibrotic stromal reaction of pancreatic cancer [57] and in liver fibrosis [58] members of the miR-29
cluster (miR-29a) are significantly decreased. This loss influences the activation of CAFs/PSCs/HSCs
and is correlated with increase in extracellular matrix (ECM) deposition including type I collagen-α1.
This profibrogenic phenotype is likely caused by inhibition of HDAC4 function including histone
acetylation and mediated by SMAD3 dependent TGF-β1 activation. In contrast to other family
members miR-146a (chromosome 5) has been found downregulated in liver fibrotic tissues [59]
and in HSCs in response to TGF-β1 or TNF-α stimulation with subsequent α-SMA/type 1 collagen
expression and attenuated HSC apoptosis via direct targeting of TIMP-3 [60], Wnt1 and Wnt5a [58].
In vitro, miR-210 was identified as upregulated in and secreted by PSCs inducing activated ERK and
Akt, but not hypoxia-inducible factor-1α (HIF-1α) pathway in effector cancer cells. Subsequently,
this stimulated migration, expression of vimentin and Snail-1, and blocked membrane-associated
expression of β-catenin [61].

4.4. Soluble Factors

Interactions between CAFs and cancer cells by soluble factors appears to induce most of the
transcriptional changes characteristic for patient-derived CAFs. For example, miR-15/miR-16 cluster
members (chromosomes 3 & 13) and their correlated growth factor targets, such as fibroblast growth
factor-2 (FGF-2) and its receptor FGFR-1, seem to promote tumor expansion and invasiveness through
the concurrent activity on stromal and cancer cells. Similarly, miR-483 members act together to target
two pro-fibrosis factors, platelet-derived growth factor B (PDGF-B) and TIMP-2, which can suppress
activation of HSCs and their overexpression can reduce liver fibrosis in vivo [62]. In the opposite
regulatory direction, among a panel of soluble growth factors only TGF-β remarkably increased miR-31
expression in these cells by direct binding of SMAD3 to miR-31’s promoter suggesting regulatory
counteraction of both molecules [52]. Treatment of HSCs with PDGF-B stimulated a1(I) collagen
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mRNA synthesis and the protein expression of α-SMA in a miR-21 dependent manner, which both are
characteristics of HSC activation and simultaneously increased miR-21 expression [54]. This suggests
feedback loops of activation.

Comparably, miR-133b (member of the miR-133 cluster) interferes with paracrine communication
of CAFs by interleukin-6 (IL-6) that can promote tumor progression [22]. Mediated by miR-146b
(chromosome 10) and by repression of IL-6 secretion the tumor suppressor p16INK4A protein inhibits
the pro-carcinogenic effects of breast stromal fibroblasts. In addition, miR-205 blocks tumor-driven
activation of surrounding CAFs by reducing pro-inflammatory cytokine secretion and vice versa
prevents CAF-induced EMT in cancer cells in vitro [45]. The miR-193b/-365a cluster is also involved
in cytokine related cell-cell communication. TGF-β-dependent downregulation has been identified
involving Snail-1, an important regulator of extracellular matrix in HSCs [34]. Suppressed NF-κB
dependent p65 activation inhibits miR-365 expression with resulting increased IL-6 secretion within
the cancer environment [63].

Furthermore, the miR-reprogrammed normal fibroblasts and patient-derived CAFs shared a large
number of upregulated genes highly enriched in chemokines, which are known to be important for
CAF function. The most highly upregulated chemokine, CCL5, (C-C motif ligand 5) was found to
be a direct target of miR-214 [5]. Similarly, estradiol (E2) as another soluble environmental factor
and a major determinant of gender-based differences in the development of hepatic fibrosis was
modulated by miR-19b in regulation of HSC proliferation via direct interference with GABA (B)
receptor GRB2 [64].

The role of other forms of miR-involvement in cell-cell communication has been recently
introduced. Pancreatic cancer cells can reprogram adjacent NFs into CAFs by means of secreted
microvesicles containing miR-155 likely to be considered as exosomal miR transfer [65]. Comparably,
miR-21 release from fibroblasts appears to influence migration and invasion capacity of cancer cells [27].

4.5. Cell Cycle and Proliferation

Downregulated miR-15a/miR-16-1 in CAFs can promote prostate cancer growth, progression
and cancer cell survival, proliferation and migration. Their reconstitution impaired tumor supportive
capability of these modified stromal cells [20]. In contrast, members of the paralog cluster
(miR-15b/miR-16-2) seem to induce apoptosis in activated PSC (targeting Bcl-2 [66]) and HSC
(cyclin D1 [67]) and their decreased expression can support pancreatic and liver fibrosis, respectively.
Downregulated miR-146a also attenuated HSC apoptosis via direct targeting of SMAD4 [68].

The synthesis pathways of various ECM proteins, especially collagens, is targeted by miRs in
fibroblasts and thereby enhancing the fibrotic phenotypes. For example, in vitro and in a mouse fibrosis
model miR-122 expression was reduced in activated HSCs supporting their proliferation which appears
to be mediated by direct targeting of prolyl 4-hydroxylase subunit alpha-1 (P4HA1). Binding activity
of CCAAT/enhancer binding protein alpha (C/EBPα) to the miR-122 promoter region was reduced
in these cells [49]. Furthermore, one member of the miR-33 family (miR-33a), which is located in
intronic regions within protein-coding genes for Sterol regulatory element-binding proteins (SREBP-2
and SREBP-1), is highly expressed during TGF-β1 induced activation of the PI3K/Akt pathway in
HSCs. This appears to result in expression of type 1 collagen (Col1A1) and α-SMA due to direct
targeting of peroxisome proliferator activated receptor-alpha (PPARα) [30]. Similarly, miR-34a has not
been described in CAFs yet, but in activated HSCs and liver fibrosis it was found to be upregulated,
regulating a plethora of target proteins involved in the cell cycle, apoptosis, differentiation and cellular
development, such as upregulated PPARγ and downregulated α-SMA [69]. PPARγ maintains HSCs
in a quiescent state, and its downregulation induces HSC activation. This appears to be related to
TGF-β1 induced enhanced expression of various members of the miR-130 precursor family (miR-130a,
miR-130b, miR-301a), miR-27b and miR-340 in liver fibrosis. Overexpression of miR-130a and miR-130b
enhanced cell proliferation involving Runx3 and upregulation of ECM genes [70]. Such quiescent
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HSC phenotype can also be stimulated by overexpression of miR23~24~27 cluster members (likely via
targeting retinoid X receptor) [19] and miR-146a with decreased cell proliferation [68].

Cellular senescence acts as a barrier to cancer progression, and non-clustered miR-22 is thought
to potentially regulate senescence due to growth suppression in human normal and cancer cells.
Its knockdown in pre-senescent fibroblasts decreased cell size, motility and invasion. This seems
to be mediated by direct targeting of CDK6, SIRT1, and Sp1, genes involved in the senescence
program [71]. Upregulation of miR-9a and downregulation of its target SIRT1 were observed in fibrotic
liver models. Overexpression of SIRT1 could partially abrogate the miR-9a mediated suppression of
HSCs proliferation, migration and activation [72].

A number of other transcription factors have been identified as miR-targets in fibroblasts.
For example, miR-200a can regulate the Keap1/Nrf2 pathway in HSCs and hepatic fibrosis through the
association of Nrf2 with Keap1, which results in cytoplasmic Nrf2 degradation and interference with
induction of genes that encode antioxidant enzymes, such as NQO1 [73]. In addition, in CAFs miR-31
is among the most downregulated miRs that directly targets the homeobox gene SATB2 relating to
chromatin remodeling and regulating of gene expression during CAF transition [1]. However, in
PSC upon activation, this miR was upregulated, among others [74]. In HSCs and PSCs reduced
miR-126 was observed [74] promoting the inhibition of NF-κB activation by upregulation of IκBα
protein expression.

5. MiR-Targeted Readouts for Cellular Functions

Since miR regulation is not limited to effector chains, linear regulation models and classical
feedback loops, we summarize the effects of miR-dysregulation on complex cellular functions in the
targeted CAFs. Importantly, the expression of many miRs that are deregulated in fibroblasts associated
with pathological conditions appear to be regulated themselves by soluble factors, including TGF-β as
main regulator, but also by other growth factors, IL-6, TNF-α and several chemokines. In addition, few
proteins (c/EBPα, SIRT1) were identified that bind to miR promotor regions hereby modulating miR
transcription. Furthermore, feedback loops have been described for TGF-α and IL-6 that appear to
modulate expression of a large variety of miRs.

Most miR targets that have been found in CAFs/HSCs/PSCs can be grouped into various
functional complexes. These include transcriptional factors, extracellular matrix, cytoskeleton,
EMT/MET regulation, soluble factors, tyrosine kinase and G-protein signaling, apoptosis and cell
cycle & differentiation (Figure 1). However, as known for many miRs also in CAFs and related
cell types multiple (N-to-N) relationships can be preferably found resulting in a large network of
interactions. Considering the phenomenological appearance of desmoplastic reactions and fibrosis it is
not surprising, that many regulatory interactions of identified miRs focus at cytoskeleton, esp. α-SMA,
and ECM, esp. type 1 collagen.

The largest number of identified targets belongs to the transcriptional machinery with a high
variety of interactions. This appears to be relevant for the transition of NF into their pathological
counterparts with subsequent changes in the readout of many cell functions and modulated protein
expression profiles in CAFs/HSCs/PSCs and their microenvironment.
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Figure 1. Currently known miR target structures in CAF/HSC/PSC. Targets are grouped according
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MiR related epigenetic regulation should therefore be considered as key factor in the development
of cancer and fibrosis specific environment and both transitions have many epigenetic similarities.
Although many deregulated miRs in CAFs/HSCs/PSCs belong to miR clusters functionally different
consequences between clustered and non-clustered miRs cannot be attributed according to the currently
available literature (Table 3). However, due to the fact that about two third of the identified miRs belong
to clusters it seems to be likely that conjoint deregulation of clustered miRs might play important
roles in transforming NF into their pathological counterparts. In summary, deregulated miRs affect
various intracellular functional complexes, but also formation and composition of the extracellular
microenvironment. These processes result in the clinical appearance of desmoplasia involving CAFs
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and fibrosis characterized by deregulated stellate cells. In addition, modulated release of soluble factors
can act as (auto)activating feedback loop for transition of NFs into their pathological counterparts.
Furthermore, epigenetic communication between CAFs and cancer cells, for example via extracellular
microvesicles, may confer to cancer specific functional readouts (Figure 2).
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Figure 2. Deregulated miRs affect intracellular functional complexes in fibroblasts and formation
of surrounding ECM; thus supporting transition of NFs into their pathological counterparts and
development of desmoplasia and fibrosis. Modulation of soluble factors can act as (auto)activating
feedback loop. Epigenetic communication between CAFs and cancer cells, such as by extracellular
microvesicles, is likely, but rarely investigated. The most important targets affected by miRs within
fibroblasts are added in relation to involved cellular functions. (???: insufficient evidence available)
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Table 3. MiR families and clusters that have been identified as important in CAFs/HSCs/PSCs.

miR family 8 15 17 27 29 33 34 101

chromosomes 12 1 13 3 17 13 7 x 9 19 7 1 17 1 11 1 9

members of
miR-clusters

141
200c

200a
200b
429

15a,
16-1

15b,
16-2

195
497

17
18a
19a

19b-1
20a

92a-1

25
93

106b

18b
19b-2
20b

92a-2
106a
363

23b
24-1
27b
3074

23a
27a
24-2

29a
29b-1

29b-2
29c

33a
33b
6777

34a 34b
34c

101-1
3671

mir-101-
precursor-9

miR family 122 127 130 133 143/
145

144 154 181 214 221 342 365

chromosomes 18 14 11 22 18 20 6 5 17 14 1 9 1 x 14 16 17

members of
miR-clusters

122
3591

127
136
337
431
433
432
665

130a 130b
301b

1-2
133a-1

133a-2 133b
206

143
145

144
451a
451b
4732

134
154

323b
365
377
409
410
412
485
496
541
656

181a-1
181b-1

181a-2
181b-2

199a-2
214
3120

221
222

151b
342

193b
365a

365b
4725
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Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/9/6/54/s1.
Table S1: MiRs identified with specific roles in fibroblasts under pathological conditions (CAFs, HSCs, PSCs)OC
(Ovarian Cancer), EC (Endometial Cancer), BC (Breast Cancer), GC (Gastric Cancer), EOC (Esophageal Squamous
cell carcionoma), PaC (Pancreatic Carcinoma), CRC (Colorectal Cancer), PC (Prostate Cancer), LC (Lung Cancer).
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