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Infection of susceptible cells by herpes simplex virus (HSV) requires the interaction of the HSV gD glycoprotein with one of two
principal entry receptors, herpes virus entry mediator (HVEM) or nectins. HVEM naturally functions in immune signaling, and
the gD-HVEM interaction alters innate signaling early after mucosal infection. We investigated whether the gD-HVEM interaction
during priming changes lymphocyte recall responses in the murine intravaginal model. Mice were primed with attenuated HSV-2
expressing wild-type gD or mutant gD unable to engage HVEM and challenged 32 days later with virulent HSV-2 expressing wild-
type gD. HSV-specific CD8+ T cells were decreased at the genital mucosa during the recall response after priming with virus unable
to engage HVEM but did not differ in draining lymph nodes. CD4+ T cells, which are critical for entry of HSV-specific CD8+ T
cells into mucosa in acute infection, did not differ between the two groups in either tissue. An inverse association between Foxp3+

CD4+ regulatory T cells and CD8+ infiltration into the mucosa was not statistically significant. CXCR3 surface expression was not
significantly different among different lymphocyte subsets. We conclude that engagement of HVEM during the acute phase of HSV
infection influences the antiviral CD8+ recall response by an unexplained mechanism.

1. Introduction

Herpes simplex virus type 2 (HSV-2) is a common cause
of infection, with 17% of American adults seropositive [1].
HSV-2 is most commonly associated with genital infection,
and spread of the virus within the population generally
results from reactivation of latent infection and subsequent
viral shedding [2].

Infection of susceptible human and mouse cells by HSV
requires binding of the viral glycoprotein gD with one of
its cell surface receptors [3, 4]. HSV gD binds to three
general classes of surface receptors, including herpesvirus
entry mediator (HVEM), nectin-1 and -2, and specific sites
in heparan sulfate [3]. Of these, HVEM and nectin-1 appear
to mediate viral entry most efficiently in both humans and
mice [5, 6]. The, mouse receptors are orthologous to the
human receptors and HSV disease in mice resembles that in
humans, allowing application of mouse models to the study
of HSV pathogenesis in humans.

HVEM is a member of the tumor necrosis factor (TNF)
receptor superfamily of proteins [7]. HVEM is expressed
in many tissues, but its principal natural function appears
to be in regulating immune responses through interactions
with the activating ligand LIGHT or the attenuating binding
partners B and T lymphocyte attenuator (BTLA) or CD160
[8]. Although lymphocytes are not thought to be significant
targets of HSV infection, since these natural HVEM ligands
can either enhance or inhibit lymphocyte activation, it
has been suggested that the gD-HVEM interaction could
influence lymphocyte-mediated immunity to HSV. The
immunologic effects of gD binding to HVEM during HSV
infection have not been elucidated in detail, and although
our prior work in a murine intravaginal challenge model
identified differences in chemokine responses at the mucosa
depending on whether virus could engage HVEM, acute
cellular responses were not appreciably affected [9].

The possibility that engagement of HVEM by gD can
influence memory cellular immune responses to HSV is
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raised by recent studies of candidate DNA vaccines encoding
fusion proteins consisting of viral antigens combined with
HSV gD. The results showed that protective antigen-specific
CD8+ T-cell responses were enhanced by the presence of
gD sequences, providing the domain required for binding to
HVEM was functional [10–12].

Although most immune cells express HVEM, in the cur-
rent study we focused on lymphocytes, including regulatory
T cells (Tregs). Expression levels of HVEM on immune
cells vary at different times in the immune response. Naı̈ve
and some memory CD4+ and CD8+ lymphocytes consti-
tutively express HVEM, but expression is downregulated
after activation [13, 14]. In mice, lack of HVEM or BTLA
expression leads to an increased population of circulating
CD8+ T cells with an activated memory phenotype [14].
Optimal activation of dendritic cells (DCs) by CD4+ memory
T cells is dependent on the expression of LIGHT [15]. B
cell responses may also be potentiated by HVEM/LIGHT
interactions [16]. In contrast to effector lymphocytes, Tregs
increase HVEM expression after activation [17]. Optimal
effector responses of Tregs require both HVEM and BTLA
[17]. Intriguingly, HVEM is not expressed on T cells of mice
that lack Foxp3 [17], a transcription factor which defines the
major Treg subset [18]. Together, these observations suggest
an important role for HVEM in the generation and function
of effector memory lymphocytes and in the function of Tregs.

In this study, we apply a murine intravaginal model
of HSV-2 infection to investigate a role for engagement of
HVEM in influencing recall immune responses. We observe
differences in the HSV-specific CD8+ T-cell recall response
at the genital mucosa based on the gD-HVEM interaction
during priming. Differences in replication of the priming
virus at the mucosa do not explain the observed differences in
CD8+ T-cell infiltration, and neither CD4+ T cell frequency
nor CXCR3 expression on responding cells differ for the
two conditions. Although we observed a trend suggesting an
inverse association with CD4+ Foxp3+ Tregs, we are unable
to clearly implicate these cells as contributing to the different
CD8+ T-cell recall responses we observed. We conclude that
the interaction of gD and HVEM during acute infection
with HSV may influence the magnitude and quality of the
subsequent recall response at the genital mucosa, though the
mechanism remains to be elucidated.

2. Materials and Methods

2.1. Animal Experimentation Guidelines. Animal care and
use in this study were in accordance with institutional and
NIH guidelines.

2.2. Cells and Viruses. Vero cells were cultured in Dulbecco’s
modification of Eagle’s (DME) medium plus 10% fetal
bovine serum (FBS) and 1% penicillin-streptomycin and
were used for the propagation and titering of virus. Plaque
titrations were performed by standard methods.

HSV-2 strain 333 was originally isolated from a genital
lesion and underwent limited passage in human cells [19].
The virus was plaque-purified and passaged no more than

three times in Vero cells. Modifications to the glycoprotein
gD of HSV-2(333) were previously described [9]. The viru-
lent strain HSV-2(333)/gD used for this study contains wild-
type gD flanked by FRT recombination sites. Attenuated
versions of HSV-2(333) were created by insertion of a
lacZ expression cassette (which results in expression of β-
galactosidase) in the UL3-4 intergenic region, as described
previously for wild-type HSV-2(333) [20]. Two versions of
attenuated virus were used: one contains the wild-type gD
flanked by FRT sites (designated HSV-2(333)/gD-βgal) and
the second contains a mutant form of gD lacking amino acids
7-15, rendering it unable to engage HVEM (designated HSV-
2(333)/Δ7-15-βgal). Prior studies (unpublished) established
that these viruses could infect mice but did not lead to
mortality or significant clinical symptoms compared to
infection with wild-type viruses at the inocula used. The Δ7-
15 mutation introduced into the gD gene had only minor
effects on mucosal replication relative to virus with wild-type
gD in our prior studies [9].

2.3. Animal Procedures. Female C57BL/6 mice between 6–
10 weeks of age were purchased from Jackson Labs and
maintained in specific-pathogen-free conditions until inoc-
ulation. Mice were transferred to a containment facility
for inoculation, which occurred before 12 weeks of age.
Susceptibility of mice to intravaginal infection was ensured
by subcutaneous injection 6 days prior to inoculation
with 2.5 mg of medroxyprogesterone acetate (Depo-Provera,
Pharmacia) in phosphate-buffered saline (PBS) [21]. At the
time of inoculation, mice were anesthetized with ketamine-
xylazine, vaginas were swabbed to clear secretions, and
virus was delivered intravaginally via micropipette in 20 mL
total volume. Virus was diluted in PBS containing 1%
inactivated calf serum and 0.1% glucose to deliver 6 ×
105 PFU/mouse. All mice first received inoculation with
attenuated viruses (“priming”) and were challenged with
virulent HSV-2(333)/gD 32 days after priming (“challenge”).
Mice were sacrificed 3 days after challenge for evaluation
of cellular immune responses. Clinical symptoms were
generally not observed after either inoculation, though
sporadically individual mice primed with attenuated viruses
had perivaginal hair loss or mild lesions which resolved prior
to challenge.

2.4. Measurement of Viral Replication in the Vaginal Tract. To
assess replication of the attenuated virus in the vaginal tract,
secretions were collected from infected mice at indicated
times. Sterile PBS was instilled intravaginally in a 40 μL
volume and pipetted in and out 2-3 times (see e.g., [22]).
This was repeated twice and samples pooled for analysis by
standard plaque assay. Samples were stored at −70◦C until
analysis.

2.5. Isolation of Lymphocytes. Lymphocytes were isolated
from draining lymph nodes (DLN) and vaginal tissue. DLNs
from each mouse were separately homogenized in RPMI-
1640 with 2% heat-inactivated FBS. Red blood cells were
lysed with ACK buffer, and cells were washed, counted, and
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maintained in complete medium (RPMI-1640, 10% FBS,
1 mM sodium pyruvate, 0.1 mM nonessential amino acids,
1% penicillin-streptomycin, and 20 mM β-mercaptoethanol)
prior to labeling for flow cytometric evaluation.

Vaginal tissue was processed by a similar protocol we pre-
viously used [9], based on method described by Gierynska
et al. [23]. Briefly, isolated tissue was washed in Hanks
balanced salt solution (HBSS), cut into small pieces, and
incubated in HBSS with collagenase D (1 mg/mL) for 1 hour
at 37◦C with gentle agitation. Digested tissue was pressed
through a cell strainer, washed in RPMI-1640 with 2% heat-
inactivated FBS, and the cells counted and resuspended in
complete medium. There were no differences between the
groups in the overall numbers of cells recovered from any
tissue.

2.6. Measurement of Murine T-Cell Responses by Flow Cytom-
etry. Isolated cells were washed and resuspended in FACS
buffer. Surface labeling included fluorescently conjugated
antibodies to murine CD4, CD8, CXCR3, and DimerX-
PE reagent (BD Biosciences) preloaded with the gB496–503

peptide according to the manufacturer’s instructions. A
cell permeabilization kit was used for intracellular labeling
with fluorescently conjugated antibody to murine Foxp3
(BD Biosciences). Cells were analyzed using an LSR II
flow cytometer (Becton-Dickinson) and FloJo software
(TreeStar). Lymphocytes were gated based on forward and
side-scatter characteristics, with isotype control antibodies
used to determine the threshold for positive labeling with
Foxp3 and CXCR3. Lymphocytes from uninfected mice were
used for negative control labeling with the DimerX reagent. A
minimum of 10000 events were collected for each condition
analyzed. Percentages in different subsets were measured
based on fluorescence detected at relevant wavelengths.

2.7. Statistical Tests. Mean percentages of fluorescently la-
beled cells within a population were compared between ex-
perimental groups using the unpaired Student’s t-test.

3. Results

3.1. Replication of the Virus within the Murine Vaginal Tract
Is Only Minimally Affected by the Ability of the Virus to
Interact with HVEM. Our prior studies had noted only
minor differences in viral replication in the vaginal tract after
infection with the virulent strains HSV-2(333)/gD and HSV-
2(333)/Δ7-15 [9]. To confirm that the attenuated strains of
these viruses (HSV-2(333)/gD-βgal and HSV-2(333)/Δ7-15-
βgal, resp.) also had similar replication kinetics in the vaginal
tract, we inoculated groups of mice with the two attenuated
viruses and measured viral titers in vaginal secretions over
time (Figure 1). The strain of virus unable to engage HVEM
was about 0.5 log lower in titer on day 1 (P = 0.05), but there
were no statistical differences in titer on subsequent days. We
conclude that the Δ7-15 deletion in gD, which abrogates the
ability of the virus to use HVEM as an entry receptor without
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Figure 1: HSV-2 titers in the vaginal tract after infection with the
attenuated viruses HSV-2(333)/gD-βgal or HSV-2(333)/Δ7-15-βgal
are only minimally affected by engagement of HVEM. Viral titers
were measured in vaginal secretions on the days indicated after virus
inoculation. Five mice per group were inoculated intravaginally
with 6 × 105 PFU of HSV-2(333)/gD-βgal (open circles) or HSV-
2(333)/Δ7-15-βgal (filled triangles). Symbols denote mean titers
(±standard deviation) for each group. There was a statistically
significant difference (P = 0.05) in mean titer on day 1, with
approximately 0.5 log lower titer of HSV-2(333)/Δ7-15-βgal at
this time point. Measured titers were statistically equivalent at
subsequent time points.

altering its ability to use nectin-1, does not greatly alter in
vivo replication of the attenuated virus strains.

3.2. HSV-Specific CD8+ T-Cell Mucosal Recall Responses Are
Diminished by HSV-2 Interaction with HVEM during Prim-
ing. Female mice were primed with either HSV-2(333)/gD-
βgal or HSV-2(333)/Δ7-15-βgal and challenged with HSV-
2(333)/gD (Figure 2(a)). Studies of the CD8+ T-cell immune
response after HSV infection of C57BL/6 mice have identi-
fied an immunodominant H-2Kb-restricted epitope in the
gB glycoprotein (gB496–503), which accounts for >70% of
the CD8+ cellular immune response [24, 25], allowing
measurement of HSV-specific responses using fluorescently
labeled MHC dimers loaded with the dominant peptide
[26]. HSV-specific CD8+ lymphocytes were present at a
significantly greater frequency in vaginal mucosa three days
after challenge with HSV-2(333)/gD in animals which were
previously primed with HSV-2(333)/gD-βgal, compared to
those primed with HSV-2(333)/Δ7-15-βgal (Figures 2(b)
and 3).

Priming with virus able to engage HVEM led to more
than twofold increase in the mean percentage of HSV-
specific CD8+ T cells recovered at the vaginal mucosa
compared to priming with virus unable to engage HVEM.
No differences were seen in the frequency of HSV-specific
CD8+ lymphocytes isolated from DLN (Figures 2(b) and 3).
There were also no differences found in the mean percentage
of CD8+ T cells (independent of gB496–503 antigen specificity)
isolated from vaginal mucosa or DLN between the two
groups (data not shown). We conclude that the interaction
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Figure 2: (a) Schematic of experimental design. (b) The HSV-specific CD8+ T cell response at the vaginal mucosa in individual mice differs
in the recall phase depending on whether HVEM was engaged during priming. Representative examples from individual mice within each
condition analyzed using identical gating strategies are shown.

of HSV gD with HVEM during initial infection of C57BL/6
mice results in an increased frequency of HSV-specific CD8+

T cells at the mucosa but not the DLN during the recall
response after challenge with virulent HSV-2 expressing
wild-type gD.

3.3. Engagement of HVEM during Priming Does Not Alter
CD4+ T-Cell Frequencies in the DLN or Vaginal Mucosa
during the Recall Response. Prior investigators have demon-
strated a crucial role for CD4+ T cells to direct entry of
virus-specific CD8+ T cells into mucosal tissue after acute
HSV infection via secretion of interferon-γ (IFN-γ) and
induction of chemokine production [27]. Our previous
study detected no differences in the frequencies of IFN-γ
producing CD4+ T cells after acute infection using viruses

that were or were not able to engage HVEM [9]. Since
differences in the frequencies of CD4+ T cells (and by
inference the amount of IFN-γ produced) in the vaginal
tissue during the recall response could explain differences
in the frequencies of infiltrating virus-specific CD8+ T cells,
we measured CD4+ T-cell infiltration into mucosal tissue
and DLN during the recall response (Figure 4). In contrast
to the results for HSV-specific CD8+ T cells, no differences
in the frequencies of infiltrating CD4+ T cells were seen
in the vaginal mucosa or DLN of mice primed with HSV-
2(333)/Δ7-15-βgal compared to those primed with HSV-
2(333)/gD-βgal. We conclude that the initial interaction of
HSV with gD during the priming phase of the immune
response in C57BL/6 mice does not alter the CD4+ T-cell
response in DLN or vaginal mucosa during the challenge
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Figure 3: HSV-specific CD8+ T cell frequencies do not differ
in lymphocytes isolated from (a) draining lymph nodes from
groups of mice primed with viruses than can (HSV-2/gD-βgal,
left, open circles) or cannot (HSV-2/gD-Δ7-15-βgal, right, filled
triangles) engage HVEM, but are significantly different at the (b)
vaginal mucosa. Symbols show data from individual mice, with the
horizontal line designating the mean for each experimental group.
Data are pooled from three independent experiments with 3-4 mice
per group.

phase. However, our data cannot rule out differences in
IFN-γ production by responding CD4+ T cells in the recall
response.

3.4. Regulatory T-Cell Infiltration into Infected Tissue during
the Recall Response May Be Altered by Prior Engagement of
HVEM. Tregs have an important role in directing the acute
cellular immune response to mucosal HSV infection in mice
by altering the chemokine and cytokine gradient between
the infected tissue and draining lymph nodes [28]. Since
alterations in Treg frequencies in different tissues during the
recall response could lead to the differences we observed
in antiviral CD8+ T cell frequencies, we assessed Treg
frequency during the recall response in our infection model.
Foxp3+ CD4+ Tregs were detected at a lower frequency in
vaginal mucosa of mice primed with HSV-2(333)/Δ7-15-
βgal compared to mice primed with HSV-2(333)/gD-βgal
(Figure 5); however, this difference did not reach statistical
significance. No differences were detected in Foxp3+CD4+
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Figure 4: CD4+ T cell frequencies do not differ in draining lymph
nodes (a) or vaginal mucosa (b) among lymphocytes isolated from
groups of mice primed with viruses that can (HSV-2/gD-βgal,
left, open circles) or cannot (HSV-2/gD-Δ7-15-βgal, right, filled
triangles) engage HVEM. Symbols show data from individual mice,
with the horizontal line designating the mean for each experimental
group. Data are pooled from three independent experiments with
3-4 mice per group.

Tregs in DLN between the different experimental groups.
Although the trend observed for Treg infiltration into vaginal
mucosa during the recall response was inversely related to the
infiltration of HSV-specific CD8+ T cells, due to the lack of
statistical significance we are unable to firmly implicate a role
for Tregs in directing this response.

3.5. Homing Receptor Expression on HSV-Specific T Cells dur-
ing the Recall Response Is Not Affected by Prior Engagement of
HVEM. Recruitment of effector T cells to infected mucosal
tissue is dependent on expression of CXCR3 [27], which
is the receptor for the chemokines CXCL9 and CXCL10.
We previously observed that levels of both CXCL9 and
CXCL10 were affected in the acute phase of HSV infection
based on whether the virus could engage HVEM [9].
CXCR3 is important in priming T cell responses and has a
potential role in inducing T cell memory [29], and a possible
explanation for the differences in CD8+ T cell infiltration
we observed could be related to expression of this homing
receptor. Accordingly, we assayed the expression of CXCR3
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Figure 5: Foxp3+CD4+T cell frequencies do not significantly
differ in draining lymph nodes (a) or vaginal mucosa (b) among
lymphocytes isolated from groups of mice primed with viruses
that can (HSV-2/gD-βgal, left, open circles) or cannot (HSV-2/gD-
Δ7-15-βgal, right, filled triangles) engage HVEM. Symbols show
data from individual mice, with the horizontal line designating the
mean for each experimental group. Data are pooled from three
independent experiments with 3-4 mice per group.

on different subsets of lymphocytes in draining lymph
nodes and vaginal tissue during the recall response. Mean
fluorescence intensity of CXCR3 expression on CD8+, CD4+,
and Foxp3+CD4+T cells did not differ based on whether
the priming virus was able to engage HVEM (Figure 6). We
conclude that despite our prior observation of differences in
chemokine production based on HVEM expression in the
acute response [9], no measurable differences in chemokine
receptor expression may be demonstrated during the recall
response on the basis of gD interactions with HVEM during
priming.

4. Discussion

Our study describes a role for the acute interaction of HSV-
2 gD with HVEM in modifying the antiviral recall immune
response after intravaginal infection of mice. Our principal
observation was that engagement of HVEM during acute
infection (priming) increased the HSV-specific CD8+ T-cell
response at the mucosa during rechallenge. We investigated

several possible contributing factors for this observation,
but were unable to clearly demonstrate roles for CD4+ T-
cells, Foxp3+CD4+ Tregs, or expression of the chemokine
receptor CXCR3 on responding cells in relation to whether
the priming virus was able to engage HVEM.

We used the well-established murine intravaginal chal-
lenge model for these studies [21] to investigate the antiviral
cellular recall response at the mucosa. This model is limited
for studying HSV-2 pathogenesis in mice by mortality in
productively infected animals when wild-type virus is used,
requiring us to generate initial antiviral immune responses
by priming with an attenuated virus. Mice can be protected
against disease after intravaginal challenge with wild-type
virus by a variety of means, including passive antibody
transfer [30] and by generation of HSV-specific cellular
responses [23, 31, 32], and from preliminary studies we knew
that our attenuated viruses could provide protection against
subsequent wild-type HSV challenge. We did not formally
demonstrate the mechanism for this protection, but we
expect that priming with either virus leads to both humoral
and cellular immunity capable of mediating protection.
Since our prior work [9] and current data (Figure 1) also
demonstrate that mutation of gD to abrogate interaction
with HVEM has only minor effects on local viral replication
in the intravaginal model, we believe our results reflect an
effect that is primarily attributable to the relative ability of the
priming viruses to engage HVEM. Memory T cell responses
are generated from a minor population within the effector
pool of CD8+ T cells [33], and antiviral T cell activation and
expansion are barely underway 24 hours after infection [34].
Also, the numbers of memory T cells generated following
resolution of an acute infection are thought to depend at
least in part on the peak response during the effector phase
of the cellular immune response [34]; our prior data did
not identify differences in the peak HSV-specific CD8+ T
cell response on the basis of viral engagement of HVEM [9].
Therefore, the small replication difference between the two
viruses one day after inoculation (0.5 log PFU/mL) would be
unlikely to explain the more than twofold difference in recall
response at the mucosa.

A second potential alternative explanation for our find-
ings is that the gB-specific recall response is specifically
altered by engagement of HVEM during priming, leading to
a recall response that is perhaps HSV-specific but involves
subdominant epitopes. Consistent with this possibility is our
observation that overall CD8+ T cell frequencies in mucosal
tissue were unaltered in the recall response. However,
our prior findings of no differences in the acute CD8+

T cell response to gB496–503 after challenge with virulent
HSV-2(333)/gD compared to HSV-2(333)/Δ7-15, combined
with the understanding that memory responses are partly
dependent on peak responses [34], suggest against this
possibility. Nevertheless, we are unable to completely rule out
this alternative explanation with our data.

HVEM is a member of the TNF receptor family, which is
broadly expressed in hematopoietic cells [35, 36]. Signaling
through HVEM results in different responses in immune
cells depending on the context in which it is engaged
[8]. Engagement of HVEM by LIGHT or lymphotoxin-α
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Figure 6: CXCR3 expression on CD8+, CD4+, and Foxp3+ CD4+ T cells does not statistically differ between groups of mice primed with
viruses that can (HSV-2/gD-βgal, black bars) or cannot (HSV-2/gD-Δ7-15-βgal, stippled bars) engage HVEM. Gates were chosen to exclude
nonspecifically labeled cells based on isotype control antibody staining. Data are expressed as mean fluorescence intensity (MFI) of the
indicated cell population from 3-4 mice per condition, plus the standard deviation. P values reflect differences in mean CXCR3 MFI for each
cell population between groups of mice primed with the different viruses.

increases T-cell activation [35], while BTLA [37, 38] and
CD160 [39] attenuate T-cell activation and proliferation
upon interaction with HVEM. Although lymphocytes are
not generally considered to be targets of infection with HSV
in vivo, the interaction of HSV gD on the viral envelope and
on infected cells may modulate lymphocyte activity through
an interaction with HVEM. HSV gD binds to HVEM in
the same membrane-distal cysteine-rich domain (CRD1)
[40] as both BTLA [41] and CD160 [39], and soluble gD
competitively inhibits the BTLA-HVEM interaction [38].
The interaction of gD with HVEM can itself trigger NF-κB
activation [42]. Also, gD might competitively inhibit the
binding of HVEM to BTLA or CD160, with consequences
that depend on the effects of the HVEM-BTLA/CD160 inter-
actions. The HSV gD interactions with HVEM may also alter
responses of other (nonlymphocyte) immune cells which
express HVEM or its ligands, such as dendritic cells, whose
homeostasis is dependent on HVEM and BTLA signaling
[43], and NK cells, which may be activated by engagement
of CD160 [44].

Given the multiple combinations for binding between
HVEM and its multiple ligands, between LIGHT and its
binding partners HVEM and the lymphotoxin-β receptor
(LT-βR), and the differential regulation of expression of
these molecules on different cell types during an inflam-
matory response, a mechanism by which any of the above
interactions would be altered by gD to affect memory T-
cell responses is not immediately obvious. Prior studies
in BTLA-deficient mice show increased differentiation of
naı̈ve CD8+ T cells into central memory cells in the
absence of BTLA [14], suggesting that our results could
be explained by interference of HVEM-BTLA signaling by
gD during acute infection. Optimal Treg responses are also
dependent on the HVEM-BTLA signaling pathway [17];
upregulation of HVEM by Tregs and BTLA by effector T
cells after TCR stimulation suggests the hypothesis that the

level of Treg signaling to effector T cells through HVEM-
BTLA during the acute response may program subsequent
memory cell differentiation, controlling either the numbers
or other characteristics of the memory cell population (e.g.,
migratory characteristics might be altered by effects on
chemokine receptor expression). However, as other cell types
also express HVEM and BTLA, including DCs and NK cells,
a role for HVEM signaling by these cells in the shaping of the
memory immune response is also possible.

Several lines of evidence suggest possible ways that the
chemokine and cytokine environment within which the
acute immune response is developing may influence the
generation and persistence of memory cells. Antigen-specific
CD4+ T cells have recently been shown to require expression
of both LIGHT and HVEM to persist as memory cells [45].
Expression of the chemokine receptor CXCR3 on T cells
in DLNs has also been implicated in induction of T-cell
memory [29]. Any modulation of HVEM-LIGHT signaling
by gD could affect either or both of these pathways. It is
also possible that memory cell generation and persistence
is not affected by the initial gD-HVEM interaction, but
subsequent chemokine production or chemokine receptor
expression by memory cells is programmed in some man-
ner by the initial context of HVEM signaling, leading to
changes in chemokine gradients during the recall response,
which change the relative infiltration of different memory
lymphocytes. We did not measure the chemokine response
in the challenge phase in these experiments, and CXCR3
measurements did not reveal a role for expression of this
receptor in the response we observed. Further work on
defining the underlying mechanism for our observations is
ongoing, including evaluation of different time points and
experiments using adoptive transfer and HVEM knockout
mice.

To our knowledge, this study is the first to show an influ-
ence of the HSV gD-HVEM interaction on recall immune
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responses in an HSV infection model. However, an influence
of the gD-HVEM interaction on memory immunity is not
entirely unexpected based on prior vaccine studies [10–12].
In these investigations, candidate vaccines were constructed
to express different viral antigens fused to the C-terminal
domain of HSV-1 gD and delivered intramuscularly to mice.
These constructs induced stronger immune responses than
those which lacked either the gD fusion or in which gD
was unable to interact with HVEM. The authors attributed
this observation primarily to interference by gD with coin-
hibitory signaling by the natural BTLA-HVEM interaction.

Among the many questions left unanswered by our
work is whether any advantage is conferred to the virus
by manipulation of HVEM signaling pathways. It seems
counterintuitive that HSV evolved to use a receptor that
ultimately leads to a stronger recall response at the site of
initial infection than if a different entry receptor had been
used. One possibility is that initial establishment of infection
is favored by the use of gD to disrupt HVEM signaling [9]. If
virus is able to reactivate and shed even in the presence of a
strong recall response, it is possible that there is no significant
selection pressure against this effect. Further investigation
into the pleiotropic functions of HVEM in immunity may
shed light on this question.

Finally, it is worth commenting further on the impli-
cations of this observation on pathogenesis of HSV disease
and possible therapeutics, including vaccination. Studies of
human trigeminal ganglia and skin biopsy samples strongly
support the concept that memory CD8+ T-cell responses are
critical for the control of recurrent infection [46, 47]. Manip-
ulation of HVEM signaling to properly direct these responses
to relevant tissues could benefit therapeutic vaccine strategies
[11]. There may also be implications for disease recurrence.
Although a prior study of individuals with HSV-specific
cellular immunity but no serologic or clinical evidence of
infection failed to identify HVEM polymorphisms which
altered viral entry into cells [48], it is possible that HVEM
variants may lead to signaling differences that either promote
or diminish effective mucosal cellular immune responses
during viral reactivation. A similar survey of HVEM variants
in patients with frequent recurrences has not been com-
pleted.

5. Conclusions

We have described a role for the initial interaction of HSV
gD with HVEM in shaping the antiviral CD8+ T cell recall
response at the mucosa. Further studies are needed to
elucidate the mechanism behind this effect, and how it may
contribute to HSV pathogenesis and perhaps influence the
design of therapeutic interventions, including vaccines.
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