Association between modifiable lifestyle and the prevalence of atrial fibrillation in a Chinese population: Based on the cardiovascular health score

Yiheng Yang ${ }^{1} \mid X u$ Han ${ }^{1} \mid$ Yue Chen ${ }^{1} \mid$ Lianjun Gao ${ }^{1} \mid X i a o m e n g$ Yin $^{1} \mid$ Huihua $L^{2}{ }^{2} \mid$ Jing Qiu ${ }^{3}$ | Youxin Wang ${ }^{4}$ | Yong Zhou ${ }^{5}$ | Yunlong Xia ${ }^{1}$ ©

${ }^{1}$ Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
${ }^{2}$ Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
${ }^{3}$ Human Resource, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
${ }^{4}$ Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
${ }^{5}$ Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China

Correspondence

Yunlong Xia, MD, Zhongshan Road 222, First Affiliated Hospital of Dalian Medical
University, Dalian, China 116011
Email: yunlong_xia@126.com

Funding information

This study was supported by research grants from the National 12th Five-Year Major Projects of China (2012BAI37B03) and the Recovery Medical Science Foundation.

Abstract

Background: The Cardiovascular Health (CVH) Score was comprised of a series of modifiable lifestyle and health factors, which was published by American Heart Association in 2010. Its relationship with atrial fibrillation (AF) remains unclear.

Hypothesis: Individuals with a higher CVH Score had a lower risk of AF. Methods: Participants ≥ 40 years of age were recruited from the Jidong community. Information regarding the following 7 CVH metrics, including smoking, body mass index, diet, physical activity, total cholesterol, and fasting blood glucose, were collected. AF was confirmed with a standard 12lead electrocardiography or based on the patients' medical histories. A multivariable logistic regression model was used to evaluate the relationship between ideal CVH and AF prevalence. Results: This study included 4477 individuals, among whom 48 had AF (1.07\%). Overall, participants with higher ideal components scores had a lower risk of AF (odds ratio [OR]: 0.78; 95\% confidence intervals [CI]: 0.62-0.97; P trend $=0.024$). Subgroup analyses showed that the trend was consistent in the male participants ages 40 to 60 years. Moreover, patients with 5 to 7 ideal components or 3 to 4 ideal components were associated with 57% and 59% reduced risks for AF, respectively. We also detected a significant association between ideal health factors and the prevalence of AF (OR: $0.79 ; 95 \% \mathrm{CI}: 0.68-0.93 ; P=0.004$). Conclusions: Ideal health behavior and factors are associated with lower prevalence of AF in a community-based population. Improving healthy behavior and these factors may be beneficial to decrease the prevalence of AF.

KEYWORDS

Atrial Fibrillation, Cardiovascular Health, Cross-Sectional Study

1 | INTRODUCTION

Atrial fibrillation (AF) is the most common arrhythmia in the clinic, and comorbidities with AF have been associated with an increased risk of morbidity and mortality. ${ }^{1}$ AF may cause many fatal complications such as thromboembolic events and heart failure. Notably, patients with AF are associated with an approximately 5 -fold increase in the risk of stroke. ${ }^{2}$ Therefore, the early identification of patients at risk for AF is of important significance for the prophylaxis of AF and related complications. Although there are many factors, such as an
unhealthy diet, obesity, inactivity and smoking, ${ }^{3,4}$ the overall associations between healthy behavior and factors are rarely reported.

The American Heart Association (AHA) recently established the concept of ideal cardiovascular health (CVH) metrics based on 4 healthy behavior metrics (nonsmoking, normal weight, moderate physical activity, and a healthy diet) and health factors (normal cholesterol, blood pressure, and fasting blood glucose [FBG]). ${ }^{5}$ Each of these metrics could be applied to categorize the individuals into 3 levels, namely ideal, intermediate, or poor, scored with 2, 1, or 0 points, respectively. ${ }^{6}$ Therefore, the CVH metric is accordingly

[^0]© 2017 The Authors. Clinical Cardiology published by Wiley Periodicals, Inc.

2.2 | Smoking

According to the AHA guidelines, we classified smoking as ideal (never or quit smoking >12 months previously), intermediate (former smoking within the previous 12 months), or poor (current smoking).

2.3 | Physical activity

Based on a self-report, physical activity was classified as ideal ($\geq 150 \mathrm{~min} / \mathrm{wk}$ of moderate intensity or $\geq 75 \mathrm{~min} / \mathrm{wk}$ of vigorous intensity), intermediate ($1-149 \mathrm{~min} / \mathrm{wk}$ of moderate intensity or $1-74 \mathrm{~min} / \mathrm{wk}$ of vigorous intensity), or poor (none), which was defined in our previous publication. ${ }^{10}$

2.4 | Body mass index

$\mathrm{BMI}\left(\mathrm{kg} / \mathrm{m}^{2}\right)$ was calculated as the body weight (accurate to 0.1 kg) divided by the square of the height (accurate to 0.1 m). For the BMI , ideal, intermediate, and poor were defined as $\mathrm{BMI}<25 \mathrm{~kg} / \mathrm{m}^{2}, 25$ to $29.9 \mathrm{~kg} / \mathrm{m}^{2}$, and $\geq 30 \mathrm{~kg} / \mathrm{m}^{2}$, respectively.

2.5 | Diet

Dietary intake was assessed with a questionnaire on food consumption frequency. ${ }^{11,12}$ All of the participants were asked about the frequencies and quantities of the consumption of major food items during past year, including fiber-rich whole grains, vegetables, fruits, eggs, red meat (beef, lamb, and pork), seafood, milk, soybean products, nuts, sugar/sweet drinks, and tea. Salt intake was assessed according to a self-report. The healthy components of dietary intake were defined as follows: 4.5 or more servings per day of fruits and vegetables, 3 or more servings per day of fiber-rich grains, 2 or more servings per week of fish or shellfish, salt intake below 6 g per day, and a sugary drink consumption of once per week or less. We classified dietary intake as ideal (4-5 components), intermediate ($2-3$ components), or poor ($0-1$ components) according to the AHA definition.

2.6 | Blood pressure, total cholesterol, and fasting blood glucose

Blood pressure was measured using a mercury sphygmomanometer. Two readings of the systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured at a 5-min interval with the participants resting in a chair, and the averages of the readings were used for the analyses. We classified blood pressure as ideal (SBP $<120 \mathrm{mmHg}$ and DBP <80 mmHg and untreated), intermediate (SBP $120-139 \mathrm{mmHg}$ or DBP $80-89 \mathrm{mmHg}$ or treated to goal), or poor (SBP $>140 \mathrm{mmHg}$ or DBP $\geq 90 \mathrm{mmHg}$). FBG was classified as ideal ($<100 \mathrm{mg} / \mathrm{dL}$ and untreated), intermediate (100-125 mg/dL or treated to goal), or poor ($\geq 126 \mathrm{mg} / \mathrm{dL}$). Total cholesterol status was defined as ideal ($<200 \mathrm{mg} / \mathrm{dL}$ and untreated), intermediate (200-239 mg/dL or treated to goal), or poor ($\geq 240 \mathrm{mg} / \mathrm{dL}$). All of these classifications were according to the AHA definition.

2.7 | Clinical assessment

The participants underwent a physician-administrator clinical interview, a medical history collection, and a physical examination by a well-trained physician at our medical center. AF was diagnosed by a standard 12-lead ECG or a Holter report. Participants who did not exhibit AF on the ECG test but had a history of AF/atrial flutter based on all available medical records were also diagnosed with AF. The participants who were deemed to have experienced paroxys$\mathrm{mal} /$ persistent AF or an atrial flutter were verified upon review by another cardiology physician who was informed of all of the baseline recruitments. Diagnosis of heart failure, stroke, and myocardial infarction were determined by cardiology physicians according to the established major and minor criteria ${ }^{13-15}$ or determined by a selfreport history. Alcohol consumption was defined as the consumption of 2 standard units (1 standard unit: 120 mL of wine, 360 mL of beer, 45 mL of spirits/day) or more. To evaluate the overall influence of the CVH metrics, we created a dichotomized variable for each component of the CVH metrics. "Ideal" was coded as 1 , and "nonideal" (the "intermediate" and "poor" categories combined) was coded as 0.

2.8 | Statistical analyses

Descriptive analyses were used to summarize the baseline characteristics of the participants based on the presence of AF. Continuous variables were described by the mean (standard deviation) and were compared using analysis of variance. Categorical variables were described with percentages and were compared using χ^{2} tests. Logistic regression was used to evaluate the relationships between the prevalence of AF and each of the components of the CVH metrics using odds ratio (OR) and 95\% confidence interval (CI); ideal behavior and health factors were also separately evaluated. The model was adjusted for age, sex, alcohol consumption, previous heart failure, myocardial infarction, and stroke because these factors are known or possible risk factors for AF. We estimated the associations between the CVH metrics and AF stratified by sex and age, as well as the total number of ideal behavior/health factors combined. All statistical tests were 2 -sided with a significance level of $P \leq 0.05$. All analyses were performed using SAS 9.3 (SAS Institute, Cary, NC).

3 | RESULTS

We identified 55 cases of AF (0.61%) among 9078 participants (4768 men and 4310 women). After excluding the participants with missing data and those under the age of 40 years, 48 cases of AF (1.07\%) were identified in the final sample of 4477 individuals (2216 men and 2259 women); the prevalence in men and women were 1.4% and

TABLE 2 Baseline clinical characteristics of participants stratified by AF status

Characteristic	AF Group	Non-AF Group	P Value
No.	48	4429	
Age, y	58.5 ± 9.4	52.9 ± 8.7	<0.001
Gender, male, no. (\%)	32 (66.7)	2184 (49.3)	
Alcohol consumption, no. (\%)	17 (35.4)	1313 (29.6)	0.384
Myocardial infarction, no. (\%)	3 (6.3)	37 (0.8)	0.009
Stroke, no. (\%)	4 (8.3)	111 (2.5)	0.034
Heart failure, no. (\%)	1 (2.1)	5 (0.1)	0.063
Blood pressure, no. (\%)			0.357
Nonideal	39 (81.3)	3344 (75.5)	
Ideal	9 (18.8)	1085 (24.5)	
Fasting blood glucose, no. (\%)			0.007
Nonideal	23 (47.9)	1328 (30.0)	
Ideal	25 (52.1)	3101 (70.0)	
Diet, no. (\%)			0.182
Nonideal	39 (81.3)	3216 (72.6)	
Ideal	9 (18.8)	1213 (27.4)	
Physical activity, no. (\%)			0.168
Nonideal	23 (47.9)	1692 (38.2)	
Ideal	25 (52.1)	2737 (61.8)	
Smoking, no. (\%)			0.236
Nonideal	16 (33.3)	1143 (25.8)	
Ideal	32 (66.7)	3286 (74.2)	
BMI, no. (\%)			0.067
Nonideal	29 (60.4)	2088 (47.1)	
Ideal	19 (39.6)	2341 (52.9)	
Total cholesterol, no. (\%)			0.279
Nonideal	17 (35.4)	1255 (28.3)	
Ideal	31 (64.6)	3174 (71.7)	

Abbreviations: AF, atrial fibrillation; BMI, body mass index.
Sample size: $N=4477$. Data are presented as mean \pm standard deviation or number (n). Differences between the groups were tested by the unpaired t test (for continuous variables) and the χ^{2} or the Fisher exact test (for categorical variables) when appropriate.
0.71%, respectively. We reported age-stratified prevalence of AF (Table 1), and found that the prevalence of AF in the elder is significantly higher in both sexes. Table 2 provides the baseline characteristics of the individuals with and without AF. Men accounted for a larger proportion (66.7%) of the AF group than women ($P<0.05$). The participants with AF were older and tended to have previous myocardial infarction, stroke, and heart failure. Regarding CVH metrics, the participants with AF had significantly lower FBG levels. No differences in the other ideal CVH metrics were found between participants with and without AF.

TABLE 1 The age-stratified prevalence of AF in men and women

	Men		P Value	Women		P Value
	Age 40-59 Years	Age ≥ 60 Years		Age 40-59 Years	Age ≥ 60 Years	
AF	12 (0.76\%)	20 (3.10\%)	<0.0001	9 (0.52\%)	7 (1.29\%)	0.0629
Non-AF	1558 (99.24\%)	626 (96.9\%)		1710 (99.48\%)	535 (98.71\%)	

Abbreviations: AF, atrial fibrillation.
metrics and AF prevalence did not reach the level of significance in females and those ≥ 60 years (Table 4).

The association between ideal CVH and the odds of AF was also separately observed according to the number of behavior and health factors (Table 5). We found that the participants who achieved 3 to 4 or 5 to 7 ideal CVH components exhibited 58% (OR: 0.42 ; $95 \% \mathrm{Cl}$: $0.22-0.80$) and 56% (OR: $0.44 ; 95 \% \mathrm{CI}: 0.20-0.98$) reductions in the odds of AF, respectively. After adjusting for age, sex, potential confounders for the risk of AF, and the other 3 component factors, we determined that a combination of 3 to 4 ideal behavior metrics decreased the odds of AF by 57% compared with 0 to 1 ideal behavior metric (OR: $0.43 ; 95 \% \mathrm{Cl}: 0.20-0.94$). A similar relationship was detected when the number of ideal health factors was analyzed (OR: 0.79 ; $95 \% \mathrm{Cl}: 0.68-0.93, P=0.004$).

4 DISCUSSION

The participants ages ≥ 40 years with ideal CVH component scores were associated with a lower prevalence of AF in this community population. This inverse association remained significant in men and participants <60 years. As expected, the behavior and health factors of ideal physical activity, dietary intake, and FBG played crucial roles. These results indicated that participants with lower CVH metrics scores may be at an increased risk for AF. Prospective cohort and interventional studies are needed to confirm our results.

TABLE 3 Odds ratios with 95% confidence intervals of the ideal and nonideal group in each cardiovascular health metric for $\mathrm{AF}^{\text {a }}$

Metrics	Total	Gender		Age, y	
		Male	Female	40-59	≥ 60
Case/participants	48/4477	32/2216	16/2261	21/3289	27/1188
Ideal smoking					
OR (95\% CI)	0.87 (0.42-1.78)	0.93 (0.47-1.85)	0.29 (0.05-1.58)	0.47 (0.16-1.36)	1.11 (0.46-2.67)
P value	0.70	0.83	0.15	0.16	0.82
Ideal BMI					
OR (95\% CI)	0.78 (0.42-1.46)	0.72 (0.35-1.49)	1.00 (0.38-2.6)	0.70 (0.30-1.63)	0.87 (0.41-1.86)
P value	0.44	0.38	0.99	0.41	0.72
Ideal physical activity					
OR (95\% CI)	0.55 (0.31-0.99)	0.68 (0.35-1.34)	0.38 (0.15-0.93)	0.79 (0.37-1.72)	0.45 (0.22-0.93)
P value	0.046	0.27	0.03	0.56	0.03
Ideal diet					
OR (95\% CI)	0.70 (0.33-1.46)	0.27 (0.08-0.90)	2.11 (0.87-5.1)	0.97 (0.40-2.35)	0.60 (0.23-1.54)
P value	0.34	0.03	0.10	0.94	0.29
Ideal blood pressure					
OR (95\% CI)	1.30 (0.60-2.84)	0.81 (0.27-2.4)	2.13 (0.79-5.75)	2.06 (0.84-5.06)	0.72 (0.21-2.54)
P value	0.51	0.70	0.13	0.11	0.61
Ideal total cholesterol					
OR (95\% CI)	0.88 (0.47-1.63)	0.60 (0.31-1.19)	1.85 (0.65-5.25)	0.79 (0.35-1.80)	0.87 (0.4-1.87)
P value	0.68	0.15	0.25	0.58	0.71
Ideal FBG					
OR (95\% CI)	0.66 (0.36-1.21)	0.80 (0.41-1.56)	0.44 (0.17-1.13)	0.35 (0.16-0.79)	1.01 (0.49-2.12)
P value	0.18	0.51	0.09	0.01	0.97

Abbreviations: AF, atrial fibrillation; BMI, body mass index; CI , confidence interval; FBG, fasting blood glucose; OR, odds ratio.
${ }^{\text {a }}$ The reference group includes participants with a nonideal metric of cardiovascular health, and the following potential confounders were adjusted for each OR: age, sex, drinking, previous heart failure, stroke, and myocardial infarction.

TABLE 4 Odds ratio and 95\% confidence interval for AF according to number of ideal cardiovascular health metrics

	Total	Gender		Age, y	
		Male	Female	40-59	≥ 60
Model 1					
P for trend	0.016	0.003	0.939	0.069	0.061
OR (95\% CI)	0.766 (0.618-0.951)	0.663 (0.507-0.868)	0.985 (0.668-1.452)	0.745 (0.543-1.023)	0.748 (0.552-1.014)
Model 2					
P for trend	0.024	0.003	0.951	0.0497	0.097
OR (95\% CI)	0.777 (0.624-0.967)	0.671 (0.515-0.873)	1.013 (0.681-1.506)	0.743 (0.552-1.000)	0.769(0.564-1.049)

Abbreviations: AF, atrial fibrillation; Cl , confidence interval; OR , odds ratio.
Model 1: adjusted for age and sex. Model 2: adjusted for age, sex, drinking, previous heart failure, stroke, myocardial infarction.

4.1 | Behavior

Other studies have also examined the relationships between AF and individual modifiable components. ${ }^{16,17}$ A prospective study of 36513 women with a median follow-up of 12 years found that moderate ($>4 \mathrm{~h}$ weekly) physical activity reduces the risk of AF by 15% versus $<1 \mathrm{~h}$ of exercise weekly. Moreover, participants with moderateintensity physical activities exhibit a reduction in the incidence of AF by 28% compared with the no-exercise group according to the Cardiovascular Health Study. ${ }^{18}$ Moderate exercise may reduce the risk of AF by preventing dyslipidemia and diabetes. ${ }^{19,20}$ Regarding dietary intake, 1 study suggested that the amount of fish intake decreases the risk of AF due to the consumption of fish oil, and docosahexaenoic acid may play an crucial role in this effect. ${ }^{21}$ The development of AF is moderately associated with the intake of ions, which may be influenced by dietary intake (soybean, grains, peanuts, and some specific vegetables and fruits). ${ }^{22}$ Interestingly, our study indicated that participants who keep a balanced diet are associated with a reduced
prevalence of AF, which may be independent of the contributions of other cardiovascular risk factors.

A significant inverse relationship between current smoking and AF was proposed in previous studies. ${ }^{23}$ However, we did not observe an association between current smoking and AF prevalence in our cohort. Similarly, in a previous study in the Framingham cohort, current smoking was not found to be a significant determinant of AF risk, ${ }^{24}$ which may partially support our results. The relationship between smoking and AF remains controversial. Furthermore, no relationship was detected between BMI and AF prevalence, which may also be different from other studies conducted outside of China. ${ }^{25,26}$ Interestingly, a previous study of 3922 elderly Chinese people indicated no association between obesity and AF prevalence ($P>0.05$). ${ }^{27}$ Recent studies reported that the prevalence of AF varies according to race, ${ }^{28}$ which may partly explain the difference in prevalence of AF observed in studies from China and those from Western countries.

TABLE 5 Odds ratio and 95\% confidence interval for AF by number of components of ideal cardiovascular health metrics

	No. of Participants	No. of Events (\%)	OR (95\% CI)	P Value
All 7 components ${ }^{\text {a }}$				
0-2 ideal components	830	19 (2.29)	1	
3-4 ideal components	2164	19 (0.88)	0.414 (0.215-0.798)	0.009
5-7 ideal components	1483	10 (0.67)	0.436 (0.195-0.979)	0.044
P for liner trend			0.613 (0.396-0.947)	0.028
Behavior ${ }^{\text {b }}$				
0-1 ideal components	1157	20 (1.73)	1	
2 ideal components	1624	16 (0.99)	0.532 (0.265-1.067)	0.076
3-4 ideal components	1696	12 (0.71)	0.432 (0.199-0.936)	0.034
P for liner trend			0.646 (0.435-0.961)	0.031
Factors ${ }^{\text {c }}$				
0-1 ideal components	1824	27 (1.48)	1	
2 ideal components	1908	17 (0.89)	0.759 (0.615-0.937)	0.010
3 ideal components	745	4 (0.54)	0.671 (0.462-0.974)	0.025
P for liner trend			0.793 (0.676-0.930)	0.004

[^1]
5 | CONCLUSION

Ideal healthy behavior and factors are associated with lower prevalence of AF in a community-based population. Improving healthy behavior and factors may be beneficial to decrease the prevalence of AF.

ACKNOWLEDGMENTS

The authors appreciate all of the participants, their families, and the members of the survey team from the Jidong community. The authors thank the staff of Recovery Medical Technology Development Co., Ltd. for their important efforts.

Author contributions

Yiheng Yang and Xu Han contributed equally to this work. All authors had access to the data and a role in writing the article. Yiheng Yang, Xiaomeng Yin and Yunlong Xia designed this study. Yiheng Yang and Xu Han wrote the article. Jing Qiu and Yue Chen conducted the data analysis. Yong Zhou and Youxin Wang provided the database and reviewed the article. Huihua Li, Lianjun Gao, and Yunlong Xia conducted the quality assurance and reviewed and edited the article.

Conflicts of interest

The authors declare no potential conflict of interests.

REFERENCES

1. Vermond RA, Geelhoed B, Verweij N, et al. Incidence of atrial fibrillation and relationship with cardiovascular events, heart failure, and mortality: a community-based study from the Netherlands. J Am Coll Cardiol. 2015;66:1000-1007.
2. Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke. 1991;22: 983-988.
3. Menezes AR, Lavie CJ, De Schutter A, et al. Lifestyle modification in the prevention and treatment of atrial fibrillation. Prog Cardiovasc Dis. 2015;58:117-125.
4. Thompson PD. Physical fitness, physical activity, exercise training, and atrial fibrillation. J Am Coll Cardiol. 2015;66:997-999.
5. Lloyd-Jones DM, Hong Y, Labarthe D, et al. Defining and setting national goals for cardiovascular health promotion and disease reduction: the American Heart Association's strategic Impact Goal through 2020 and beyond. Circulation. 2010;121:586-613.
6. Huffman MD, Capewell S, Ning H, Shay CM, Ford ES, Lloyd-Jones DM. Cardiovascular health behavior and health factor changes (1988-2008) and projections to 2020: results from the National Health and Nutrition Examination Surveys. Circulation. 2012; 125:2595-2602.
7. Folsom AR, Yatsuya H, Nettleton JA, et al. Community prevalence of ideal cardiovascular health, by the American Heart Association definition, and relationship with cardiovascular disease incidence. J Am Coll Cardiol. 2011;57:1690-1696.
8. Miao C, Bao M, Xing A, et al. Cardiovascular Health Score and the Risk of Cardiovascular Diseases. PLoS One. 2015;10:e0131537.
9. Gao J, Bao M, Liu Y, et al. Changes in cardiovascular health score and atherosclerosis progression in middle-aged and older persons in China: a cohort study. BMJ Open. 2015;5:e007547.
10. Li Z, Yang X, Wang A, et al. Association between ideal cardiovascular health metrics and depression in Chinese population: a crosssectional study. Sci Rep. 2015;5:11564.
11. Li LM, Rao KQ, Kong LZ, et al. A description on the Chinese national nutrition and health survey in 2002 [in Chinese]. Zhonghua Liu Xing Bing Xue Za Zhi. 2005;26:478-484.
12. Zhuang M, Yuan Z, Lin L, et al. Reproducibility and relative validity of a food frequency questionnaire developed for adults in Taizhou, China. PLoS One. 2012;7:e48341.
13. Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62:e147-e239.
14. American College of Emergency Physicians; Society for Cardiovascular Angiography and Interventions, O'Gara PT, Kushner FG, Ascheim DD, et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;61:e78-e140.
15. Brott TG, Halperin JL, Abbara S, et al. 2011 ASA/ACCF/AHA/AANN/ AANS/ACR/ASNR/CNS/SAIP/SCAI/SIR/SNIS/SVM/SVS guideline on the management of patients with extracranial carotid and vertebral artery disease: executive summary. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, and the American Stroke Association, American Association of Neuroscience Nurses, American Association of Neurological Surgeons, American College of Radiology, American Society of Neuroradiology, Congress of Neurological Surgeons, Society of Atherosclerosis Imaging and Prevention, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Neurolnterventional Surgery, Society for Vascular Medicine, and Society for Vascular Surgery. Circulation. 2011;124:489-532.
16. Drca N, Wolk A, Jensen-Urstad M, Larsson SC. Physical activity is associated with a reduced risk of atrial fibrillation in middle-aged and elderly women. Heart. 2015;101:1627-1630.
17. Han X, Yang Y, Chen Y, et al. Association between insomnia and atrial fibrillation in a Chinese population: a cross-sectional study [published online May 31, 2017]. Clin Cardiol. doi: https://doi.org/10.1002/clc. 22731.
18. Mozaffarian D, Furberg CD, Psaty BM, Siscovick D. Physical activity and incidence of atrial fibrillation in older adults: the Cardiovascular Health Study. Circulation. 2008;118:800-807.
19. Emerging Risk Factors Collaboration, Di Angelantonio E, Sarwar N, Perry P, et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA. 2009;302:1993-2000.
20. Schnabel RB, Yin X, Gona P, et al. 50 year trends in atrial fibrillation prevalence, incidence, risk factors, and mortality in the Framingham Heart Study: a cohort study. Lancet. 2015;386:154-162.
21. Kastner DW, Van Wagoner DR. Diet and atrial fibrillation: does alpha-linolenic acid, a plant derived essential fatty acid, have an impact? J Am Heart Assoc. 2013;2:e000030.
22. Khan AM, Lubitz SA, Sullivan LM, et al. Low serum magnesium and the development of atrial fibrillation in the community: the Framingham Heart Study. Circulation. 2013;127:33-38.
23. Heeringa J, Kors JA, Hofman A, van Rooij FJ, Witteman JC. Cigarette smoking and risk of atrial fibrillation: the Rotterdam Study. Am Heart J. 2008;156:1163-1169.
24. Schnabel RB, Sullivan LM, Levy D, et al. Development of a risk score for atrial fibrillation (Framingham Heart Study): a community-based cohort study. Lancet. 2009;373:739-745.
25. Wang TJ, Parise H, Levy D, et al. Obesity and the risk of new-onset atrial fibrillation. JAMA. 2004;292:2471-2477.
26. Frost L, Hune LJ, Vestergaard P. Overweight and obesity as risk factors for atrial fibrillation or flutter: the Danish Diet, Cancer, and Health Study. Am J Med. 2005;118:489-495.
27. Li LH, Sheng CS, Hu BC, et al. The prevalence, incidence, management and risks of atrial fibrillation in an elderly Chinese population: a prospective study. BMC Cardiovasc Disord. 2015;15:31.
28. Borzecki AM, Bridgers DK, Liebschutz JM, Kader B, Kazis LE, Berlowitz DR. Racial differences in the prevalence of atrial fibrillation among males. J Natl Med Assoc. 2008;100:237-245.
29. Benjamin EJ, Levy D, Vaziri SM, D'Agostino RB, Belanger AJ, Wolf PA. Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study. JAMA. 1994;271:840-844.
30. Stewart S, Hart CL, Hole DJ, McMurray JJ. Population prevalence, incidence, and predictors of atrial fibrillation in the Renfrew/Paisley study. Heart. 2001;86:516-521.
31. Pallisgaard JL, Schjerning AM, Lindhardt TB, et al. Risk of atrial fibrillation in diabetes mellitus: a nationwide cohort study. Eur J Prev Cardiol. 2016;23:621-627.
32. Alonso A, Yin X, Roetker NS, et al. Blood lipids and the incidence of atrial fibrillation: the Multi-Ethnic Study of Atherosclerosis and the Framingham Heart Study. J Am Heart Assoc. 2014;3:e001211.
33. Lloyd-Jones DM, Wang TJ, Leip EP, et al. Lifetime risk for development of atrial fibrillation: the Framingham Heart Study. Circulation. 2004;110:1042-1046.
34. Zhou Z, Hu D. An epidemiological study on the prevalence of atrial fibrillation in the Chinese population of mainland China. J Epidemiol. 2008;18:209-216.

How to cite this article: Yang Y, Han X, Chen Y et al. Association between modifiable lifestyle and the prevalence of atrial fibrillation in a Chinese population: Based on the cardiovascular health score. Clin Cardiol. 2017;40:1061-1067. https://doi. org/10.1002/clc. 22771

[^0]: work is properly cited, the use is non-commercial and no modifications or adaptations are made.

[^1]: Abbreviations: AF , atrial fibrillation; Cl , confidence interval; OR , odds ratio.
 ${ }^{a}$ Adjusted for age, sex, drinking, previous heart failure, stroke, and myocardial infarction.
 ${ }^{\mathrm{b}}$ Adjusted for age, sex, drinking, previous heart failure, stroke, and myocardial infarction, plus total cholesterol, fast blood glucose, systolic blood pressure, and diastolic blood pressure.
 ${ }^{c}$ Adjusted for age, sex, drinking, previous heart failure, stroke, and myocardial infarction, plus current smoking, body mass index, ideal physical activity, and ideal diet.

