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An urban built environment is an important part of the daily lives of urban residents.

Correspondingly, a poor design can lead to psychological stress, which can be harmful

to their psychological and physical well-being. The relationship between the urban built

environment and the perceived psychological stress of residents is a significant in many

disciplines. Further research is needed to determine the stress level experienced by

residents in the built environment on a large scale and identify the relationship between

the visual components of the built environment and perceived psychological stress.

Recent developments in big data and deep learning technology mean that the technical

support required to measure the perceived psychological stress of residents has now

become available. In this context, this study explored amethod for a rapid and large-scale

determination of the perceived psychological stress among urban residents through

a deep learning approach. An empirical study was conducted in Gangnam District,

Seoul, South Korea, and the SegNet deep learning algorithm was used to segment and

classify the visual elements of street views. In addition, a human–machine adversarial

model using random forest as a framework was employed to score the perception of

the perceived psychological stress in the built environment. Consequently, we found

a strong spatial autocorrelation in the perceived psychological stress in space, with

more low-low clusters in the urban traffic arteries and riverine areas in Gangnam district

and more high-high clusters in the commercial and residential areas. We also analyzed

the street view images for three types of stress perception (i.e., low, medium and

high) and obtained the percentage of each street view element combination under

different stresses. Using multiple linear regression, we found that walls and buildings

cause psychological stress, whereas sky, trees and roads relieve it. Our analytical study

integrates street view big data with deep learning and proposes an innovative method

for measuring the perceived psychological stress of residents in the built environment.

The research methodology and results can be a reference for urban planning and design

from a human centered perspective.
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INTRODUCTION

In contrast to the natural ecological environment, a built
environment is a man-made environment characterized by land
use, urban planning, and urban transport planning, including
the building intensity and density, land use mix, street scale
and articulation, and aesthetic quality of the urban landscape
(1). In 2003, the American Journal of Public Health published a
special issue on the “Built Environment and Health” theme (2).
In the same year, the American Journal of Health Promotion also
published a special edition on “Health Promoting Community
Design” (3). This focus on health and the built environment
by two leading journals in the health research field clearly
indicates that the urban built environment is highly relevant
to human health. Behavioral and temporal geography suggest
the existence of a complex spatial relationship between daily
human activity and the built environment. They imply that
the perceived psychological stress and behavior of residents
are conditioned and influenced by external spatial conditions
(4, 5). Persistent stress can lead to anxiety, insomnia, and in
some cases, psychological and physical illnesses. Stress-induced
mental illnesses can be difficult to detect at first; however, if left
unchecked, they can eventually have a significant impact on the
body (6). A high-quality urban built environment helps promote
outdoor activities, which lead to improved physical fitness,
greater mental invigoration, psychological stress reduction, and
fewer negative emotions and effectively reduce the incidence of
many chronic diseases (7). The fact that a high-quality urban
built environment reduces psychological stress and generates
many other positive consequences has led academics and urban
planners to focus more on the creation of high-quality people-
centered built environments (8). However, this effort requires
the measurement of the perceived psychological stress within a
built environment; therefore, a method for quickly and effectively
measuring this perception on a large-scale must be explored.

Several researchers from various fields have attempted to
measure the perceived psychological stress of urban residents
in a built environment (9–11). Using questionnaires to measure
psychological stress is the most widely used approach because a
traditional questionnaire design is based on various psychological
theories (12). However, human psychological stress can also
be monitored using specialized instruments. The physical
appearance of an individual (e.g., facial expression and eye and
head movements) can be employed as an indicator of his/her
stress level, and individual perceived stress levels can be recorded
with a high degree of confidence through human response
monitoring and measurement (13). These methods can measure
the perceived psychological stress in a built environment, but
are not suitable for daily psychological stress monitoring because
they are time consuming, costly, and inefficient. They also have
a small sample size, and hence, are only suitable for small-scale
studies rather than large-scale built environments.

The emergence of crowdsourced mapping services and
geotagged imagery containing a wealth of visual information
[e.g., Baidu Street View, Tencent Street View, and Google
Street View (GSV)] provides a usable source of big data.
Mapping services provide academics and researchers with an

application programming interface (API) for extracting high-
spatial resolution images of streets and communities to reflect a
built environment as its residents see it (14). GSV is now available
in many countries and cities around the world, becoming a
scholarly tool for studying the built environment of cities because
of its wide coverage and high accuracy. Moreover, with the
rapid development of the computer technology, the use of deep
learning is becoming increasingly widespread. Accordingly, a
greater number of researchers are using deep learning to study
the urban built environment and understand the street quality
(15, 16).

In this work, the study area is Gangnam District in Seoul,
South Korea. Google Maps has a better coverage of Korea than
domestic companies like Kakao and Naver Maps; thus, it can be
used to study Gangnam in more detail. We use GSV as the data
source to determine the perceived stress levels in an urban built
environment and achieve two main objectives. First, we employ
deep learning to construct a SegNet architecture with a fully
convolutional neural network to allow the pixelated semantic
segmentation of street images from Gangnam and categorize
the semantic segmentation results into visual elements used as
explanatory variables for the perceived psychological stress in
the built environment. Second, a random forest-based human–
machine adversarial model is used to quickly score the perceived
psychological stress of residents in the built environment within
Gangnam on a large-scale, and stress distribution is investigated
using an autocorrelation analysis. Three levels of perceived
psychological stress (i.e., low, medium, and high) are identified
in the GSV images. The relative abundance of specific visual
constituents is measured to investigate the perceived stress
characteristics in each GSV image. The relationship between
the visual constituents of the urban built environment and the
perceived psychological stress is assessed using multiple linear
regression analysis. The positive and negative elements affecting
the perceived psychological stress are identified. This analysis of
street-view big data using deep learning can provide researchers
and urban planners with more targeted data related to urban
street perception, encouraging higher-quality urban planning.

RELATED WORK

Traditional Methods for Assessing the
Perceived Psychological Stress in an
Urban Built Environment
Existing measures for perceived psychological stress tend to
monitor changes in psychological perceptions and physiological
signals in response to different stressors (17, 18). In an
earlier study, experiments were conducted with a small number
of subjects on the sensations of “oppression” and “release”
experienced when moving through external urban spaces, and
the results were examined and discussed by comparing changes
in the environmental visual information of the surrounding
scenes along the way (19). In traditional psychological research,
psychological stress is measured using self-report questionnaires
or by administering psychological scales. Peacock (20) used
single-item, multi-question scales to measure the perceived
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psychological stress of a population in relation to specific
stressors. A few scholars also scored the perceived psychological
stress using expert interviews (21). These subjective measures are
simple and easy to use, but susceptible to bias due to external
interference and only somewhat reflective of an individual’s
psychological stress. When people experience external stress,
changes in the brain signals and the nervous system lead
to the release of hormones affecting physiological responses
(e.g., heart rate, breathing, and blood pressure). In other
words, the measurement of brain signals, stress hormones,
and cardiovascular changes can provide an objective and real-
time reflection of psychological stress (22). The development
of science and technology has made it possible to employ
brain wave detection, eye tracking, magnetic resonance imaging,
and electrophysiological assessment to measure the perceived
psychological stress in individuals, and these techniques have
received extensive attention in psychological and sociological
research. Aspinall et al. (23) conducted a series of experiments
using mobile brainwave analysis to record and analyzes changes
in the perceived psychological stress of urban residents in an
urban street environment. Kacha et al. (24) used the Epoc Emotiv
neuroheadset to conduct an exploration of electrobiological
psychology based on the perceived complexity of street
environments. Physiological signal detection is also widely used
to measure psychological stress and avoid the limitations of
the previous methods (e.g., questionnaires), indicating that
the systemic changes in human psychological stress can be
objectively represented (25). Although both physiological signal
detection and traditional questionnaires can be used to measure
the perceived psychological stress, they can be inefficient and
time consuming, making them less useful for urban built
environments over wide areas.

Assessment of the Perceived Stress Based
on Street-View Images and Deep Learning
Many international mapping services have made street-view
data accessible to users through an API. The most popular
mainstream mapping services used in research are Google Maps,
TencentMaps, and BaiduMaps (26–28). As interactive electronic
maps, street views provide users with a panoramic view of the
urban built environment at a low cost with high accessibility,
high resolution, and wide coverage; thus, street-view images
have become a very important new data source for urban built
environment research (29–31). Salesses et al. (32) used thousands
of geotagged urban street-view images to explore the perceived
safety, class, and uniqueness of the built environment in the
streets of Boston and New York in the United States and Linz
and Salzburg in Austria. Li et al. (33) proved the potential of
GSV imagery in depicting the built environment of cities to
obtain a psychological perception consistent with that of city
residents. The use of street-view images helps better explain the
urban built environment characteristics and increases the level of
understanding of this environment.

In recent years, many researchers have begun to use
street-view images combined with deep learning algorithms to
investigate the elements that most strongly affect urban street

perception (30, 31). Deep learning algorithms, such as FCN,
Resnet, and SegNet, use a deep convolutional neural network
to process visual information within images, leading to an
accurate identification of various visual features that include
lanes, buildings, the sky, sidewalks, trees, and greenery and
laying a solid foundation for better research on the quality of
urban streets and human perception (34–36). Ordonez and Berg
(37) collected a street-view image dataset from four cities and
used deep learning models to explore a joint model of wealth,
uniqueness, and perceived safety on a city scale. Meanwhile,
in the Place Pulse project run by the MIT Media Lab, data
from the collected street images were compared by visitors to
an online website (http://pulse.media.mit.edu) on the evaluation
dimensions of safety, liveliness, and wealth. This resulted in a
deep learning dataset that is applicable to street measurements
within a built environment (38). Tian et al. (39) extracted 30
street features from GSV and used deep learning algorithms to
evaluate eight perceptual qualities, including ecology, closure,
and accessibility.

Previous studies used big data from street-view images
extracted using deep learning techniques to effectively measure
the quality of an urban built environment. Attempts to link the
visual elements of urban streets with the perceived stress of the
residents have also been made. However, a complete research
process for systematically analyzing the relationship between an
urban built environment and the perceived psychological stress
of residents or determining the autocorrelation of the perceived
stress in space and the intrinsic mechanisms influencing this has
not yet been developed.

METHODOLOGY

An effective methodology for data collection, processing, and
analysis was developed herein to meet the research objective of
analyzing the relationship between an urban built environment
and the perceived stress of residents. A systematic approach to the
measurement of the perceived stress in urban environments was
established using various techniques, such as automated street-
view data collection and deep learning-based image semantic
segmentation, which allowed the collection of accurate urban
streetscape data and the analysis of perceived stress.

Research Framework
The research methodology consisted of three major stages
(Figure 1). In the first stage, precise data for the street network
of Gangnam were collected using OpenStreetMap (OSM). In
ArcGIS, the road network data were employed to generate
streetscape collection points at 50m intervals. A Python program
was then created to use Google Maps API to collect GSV
images. In the second stage, a neural network model for semantic
image segmentation was constructed using the Python-based
TensorFlow framework. Accordingly, a full segmentation of
the visual elements in the GSV images was conducted. The
GSV images were processed using a human–machine adversarial
model. Twenty volunteers were recruited to score the perceived
psychological stress for the selected street scenes. In this case,
the human–machine adversarial model predicted the remaining
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FIGURE 1 | Analytical framework for the measurement of perceived stress in an urban built environment.

images to score the perceived psychological stress. The scores
from each volunteer were weighted and averaged as the final
score for the perceived psychological stress. The perceived
psychological stress was then visualized in a map. In the third
stage, a spatial correlation analysis of the perceived psychological
stress in the urban built environment was conducted. A multiple
linear regression analysis of the spatial visual elements of the
built environment of streets was also performed to determine
the positive and negative visual elements associated with the
perceived psychological stress.

Study Area
Our research was performed in Gangnam District, Seoul, South
Korea (Figure 2). South Korea is located in the Korean Peninsula
in East Asia, with Seoul as its capital city. Gangnam serves as an
important commercial and residential area for the city’s medium
and upper classes. It is located south of the Han River and covers
an area of 39.55 km2 with approximately 6,00,000 people. As
one of the fastest-growing economic regions in Korea, Gangnam
is ahead of other regions in Korea in terms of urban spatial
regeneration. Due to its economic advantage, Gangnam has a
representative urban built environment of a Korean metropolis.
An empirical study of the Gangnam district can provide a
preview of the perceived psychological stress problems that other
Korean cities may face in their future development, and advices
to other regions on the path toward urbanization to reduce
residents’ stress in urban construction. Therefore, Gangnam was
selected as the case for this study on the perceived psychological
stress of urban residents.

GSV Image Collection
The use of streetscape images to analyze urban environments
and various environmental psychological elements has become a
common method in urban science research. These images allow
for a quantitative measurement of a city from the perspective
of an urban user. In addition to providing online street map
services, most mapping service providers (e.g., Google) have
released an API that allows the bulk customization of access
parameters for street-view images.

For a complete recreation of the built environment in the
streets of Gangnam District, panoramic GSV image collection
points were set up and generated at 50m intervals along
the road network downloaded from the OSM. Consequently,
35,619 sample acquisition points were generated for the OSM
street network in Gangnam. Figure 3 presents a portion of the
Gangnam street network and an example sample point. The API
was used to return the GSV images from the corresponding
acquisition point as an HTTP URL. Static GSV images that
matched the direction and angle of the human view within
a limited range were obtained by adjusting the API and
URL parameters for a standard HTTP request. In the GSV
parameter settings, “location” represents the geographic latitude
and longitude coordinates of the street-view capture point. We
set the size of the obtainable image (Size) to a maximum of 640×
640 px. The width of the field of view (Fov) representing a person
was set to 90◦. The street images were taken from four different
angles (Heading). The field pitch angle (Pitch) was set to 6◦ to
simulate the human perspective. Four GSV images (640× 640 px
each) were stitched together to provide a complete representation
of the surrounding environment (bottom of Figure 3). The
coordinates of the sampled points were input into a Python
program that downloaded and stored 1,42,476 GSV images. The
blank street-view images with invalid coordinate points were
removed. This street-view data were used for image semantic
segmentation and perceived stress calculations.

Image Semantic Segmentation Based on
Deep Learning
The Cityscapes dataset containing 34 types of objects from
everyday life (e.g., sky, roads, autos, and plants) was chosen as the
training dataset. Cityscapes contains urban street scenes from 50
different German cities, including Zurich, Hamburg, andAachen.
It comprises 5,000 high-quality pixel level annotated images of
urban driving scenes (2,975 for training, 500 for validation, and
1,525 for testing, with 19 classes turned on by default for training
in the dataset used for the study).
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FIGURE 2 | Study area: Gangnam District, Seoul, South Korea.

FIGURE 3 | Example of a panoramic street-view image using Google Maps API.
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FIGURE 4 | Visual elements extraction from urban street images using the SegNet image semantic segmentation model.

This study employed a classical image semantic segmentation
method based on the SegNet codec structure, which is an open-
source image segmentation project developed and published in
2015 by a team at the University of Cambridge. This deep
learning algorithm can classify the semantics of objects in
an image (e.g., sky, roads, and buildings) to the pixel level
(40). SegNet consists of two main elements: an encoder and a
decoder. The encoder primarily compresses and extracts object
information. The decoder condenses the extracted semantic
information to the input image size. Each pixel can be classified
as the color of its corresponding object information.

In the SegNet network structure, several deep learning
processing techniques are used to extract the streetscape
image features. The images are resized to 416 × 416 using
Reshape. The RGB values of the input image are employed for
a feature three-dimension. The image two-dimensional (2D)
matrix is padded with zeros to indicate rows and columns using
ZeroPadding2D, which allows for better control over the feature
map size and efficient feature extraction of the convolution
kernel. The convolutional kernel Conv2D is employed to extract
features from input high-dimensional arrays. Each feature
map for the convolutional kernel output represents a filter,
and the number of filters determines the number and depth
of features extracted by the kernel. BatchNormalization has
been proposed in (41) to normalize feature data to speed up
gradient descent solutions, improve the network training speed,
and increase the generalization ability. Activation introduces
an activation function that gives the neural network a non-
linear learning capability and enhances its ability to learn
feature representations. Meanwhile, MaxPooling2D only uses
operations in the encoder to dimensionalize the image and

reduce the computational load. UpSampling2D is employed with
the decoder to insert new numerical elements between pixel
points, restoring the image to its original size. Reshape remaps
the image to the size it was when input into the encoder. Softmax
presents the results of multiple classifications as probabilities,
calculating a specific semantic classification probability for each
pixel across 19 categories.

Figure 4 displays the original GSV images and the results of
the segmented visual elements. The color matrix at the bottom
represents the segmentation semantics corresponding to the
extracted visual elements. The image semantic segmentation
process using SegNet is also illustrated via a multi-level
representation of the neural network structure, including the
feature size of the codec neural network (“Feature shape”), visual
representation of the neural network structure (“Visualization”),
and image processing (“Procession”). The final image size and
dimensionality are reduced, and a mapping classification of the
specific semantics for the image is provided.

Determining Perceived Psychological
Stress Based on a Human–Machine
Adversarial Model
We used the scoring framework for the human–machine
adversarial model proposed by Yao et al. (42) to explore
the perceived psychological stress of urban residents in a
built environment. This deep learning framework utilizes a
combination of iterative feedback and recommendation scores
used to effectively assess the perceived psychological stress of
the built environment in Gangnam. At the preliminary data
preparation stage, we used Google Maps API to download the
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FIGURE 5 | Perceived stress calculation for urban streets based on a human–machine adversarial model.

GSV images of Gangnam, processed the street-view images
using the SegNet image semantic segmentationmethod, obtained
the percentage coverage of the visual elements for each street-
view image, and developed a 19-dimensional visual element
feature vector for the human–machine adversarial model. To
accommodate the scoring process, in which users scored parts
of the street-view images, the human–machine adversarial model
created a random forest (RF) dataset. In the RF model, a
bootstrapping process randomly selects two-thirds of the sample
for data fitting or classification. The remaining one-third is
defined as out-of-bag (OOB) data used to reduce the overall
model error and improve the variable importance. If Xj is used
as an input variable, calculating the importance of Xj in the Nth
tree VIn will require the use of the sample data drawn from the
bootstrapping process to create a regression tree model Tn. This
will be followed by the prediction error calculation for the OOB
data, which eventually replaces the observations for variable Xj

at random. Model T
′

n is rebuilt, and the prediction error for the
OOB

′
data is calculated. The mean of all regression tree results

represents the importance of variable Xj in the Nth random tree
VIn(Xj) after processing the prediction error of the two OOB
datasets (43):

VIn
(

Xj

)

=

{

NOOB
∑

i=1

I
[

f (Xi) = fn (Xi)
]

−
NOOB
∑

i=1

I
[

f (Xi) = fn

(

X
′

i

)]

}

/NOOB

Humans have superior image recognition capabilities (44), that
provides theoretical support for the use of human–machine
adversarial models. Twenty Korean university students and

staff were recruited as study volunteers (approximately 1:1
male : female ratio; age range: 19–52 years old) to measure
the perceived psychological stress in the built environment in
Gangnam. Volunteers accessed a human–machine confrontation
model through the Tencent Cloud server to score the perceived
psychological stress in the urban built environment. We require
15 s for each image to be displayed on the screen according
to the standard of previous scholars for scoring time in image
experiments (45, 46), during this period volunteers are able to
perceive the content of the pictures deeply. We categorized the
volunteers’ perceived level of psychological stress when they saw
the street view images, using numbers to quantify the criteria,
scores from 0 to 100. Specifically, the street view produced a
score of 100 for extremely high stress perception and a score
of 0 for an extremely relaxed psychological state. These scores
were used to measure the perception of urban stress. We used
a non-complete random order for image extraction scoring to
reduce the dataset error to some extent. Each volunteer rated
the perceived psychological stress of 50 street-view images, and
the results of which were recorded by the model. Subsquently,
an RF dataset was created. Starting with the 51st street image,
themodel predicted the volunteer’s perceived psychological stress
score based on the relationship between the volunteer’s previous
scores and the corresponding street elements. If a difference is
found between the score recommended by the model and the
volunteer’s subjective score, the model continues learning. If the
error between the recommended score of six street-view images
in a row and the subjective score of the volunteer exceeds 10, the
model re-collects the volunteers’ scoring features and continues
the learning process until the error between the recommendation
and subjective intention scores becomes < 10. The adversarial
scoring between humans and a model represents a more stable
algorithmic training approach. Figure 5 presents a schematic
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diagram of the evaluation process of the perceived psychological
stress in an urban built environment using a human–machine
adversarial model.

Spatial Autocorrelation Analysis of the
Perceived Psychological Stress in an
Urban Built Environment
In the first law of geography, objects that are closer together
are more strongly interconnected than those that are further
away (47). Global spatial autocorrelation is defined as the
characterization of a geographic attribute across a regional space
and is used to measure the degree of association between spatial
objects across a study area to determine whether there is a
significant spatial distribution pattern exists for these objects.
Statistics, such as global Moran’s I, global Gear’s C, and global
Getis-Ord G are commonly used for this analysis (48). The
present study employed global Moran’s I to measure the global
autocorrelation of the perceived psychological stress in the built
environment in Gangnam using the following equation:

I = n

n
∑

i=1

m
∑

j=1

wij (xi − x)
(

xj − x
)

/

n
∑

i=1

m
∑

j=1

wij (xi − x)2

Standardized Z values were used to test the significance level of
global Moran’s I based on the following equation:

Z =
I − E(I)
√
VAR(I)

where I is the global Moran index; n is the total number of the
study sites; x is the mean perceived psychological stress score;
xi and xj are the perceived psychological stress score for regions
i and j, respectively; and wij is the spatial weighting coefficient
for regions xi and xj, which reflects the relationship between
regions i and j in space. If the regions are adjacent, wij = 1;
otherwise, wij = 0. E(I) and VAR(I) denote the expected value
and the variance of Moran’s I, respectively. Global Moran’s I has
a range of [−1, 1]. A global Moran’s I > 0 (p < 0.05) indicates a
positive spatial correlation, that is, the high (or low) values for the
perceived psychological stress are spatially significantly clustered.
If it is equal to or close to 0, no spatial autocorrelation exists
in the adjacent regions. In other words, psychological stress is
randomly distributed. If it is lower than 0 (p < 0.05), a negative
spatial correlation exists (i.e., the perceived psychological stress in
adjacent areas is vastly different). At a significance level of 0.05,
|Z|>1.96 means that global Moran’s I is significant (49). Table 1
summarizes the relationship among the Z- and p-values and the
significance level.

Global spatial autocorrelation can be used to describe the
degree of autocorrelation for the perceived psychological stress
in the built environment across the entire Gangnam District,
but it cannot effectively express the spatial autocorrelation of
different spatial units in Gangnam with adjacent areas. In 1995,
Anselin (50) proposed the Local Indicators of Spatial Association
(LISA) to examine the local spatial autocorrelation of individual
spatial units. The LISA decomposes global Moran’s I into spatial

TABLE 1 | Z- and P-values, and significance level.

Z P Significance level

Z < −1.65 or Z > 1.65 <0.10 90%

Z < −1.96 or Z > 1.96 <0.05 95%

Z < −2.58 or Z > 2.58 <0.01 99%

elements and forms a LISA aggregation map via Z-tests. The
map reflects the specific locations where the spatial aggregation
or divergence of variables within the study area occurs, thereby
identifying areas with a strong influence on global associations
as follows:

Ii =
(xi − x)

S2

∑

j

wij

(

xj − x
)

EXPERIMENTS AND RESULTS

In this section, we will first introduce the parameters of the
platform on which deep learning techniques operate, such that
other researchers can use it as a reference for their experiments.
The deep learning training model records the number of training
rounds and the dataset accuracy and validates the model’s
feasibility in image semantic segmentation by assessing various
metrics. The index assessment also validates the RF scoring
procedure, which is based on the human–machine adversarial
model. The results reflect the perceived psychological stress of
urban residents. The final perceived psychological stress scores
in the urban built environment are spatially mapped.

Image Semantic Segmentation Model
Training Results
For the training and implementation of the deep learning and
machine learning methods used in this study, the computer
training variables were made consistent, and the training was
conducted on the same Windows computer with an NVDIA
GeForce GTX1070 graphics card, an AMD Ryzen5 2600X Six-
Core Processor, 3.60 GHz, and 16 GB of RAM.

The Cityscapes dataset used to train the network has 2,975 and
500 images for training and validation, respectively. The batch
size for each input was set to 2 to prevent memory overflow.
Transfer learning was utilized in the training phase, in which
the image feature extraction capabilities acquired while learning
other tasks were transferred to help solve new problems (51).
This method is widely used in the processing of remotely sensed
(52), natural (53), and medical (54) images. Transfer learning
significantly reduces training time, improves network model
generalization, and prevents overfitting by sharing the learned
image representation between models. The transfer learning
model used herein had a weighting base of ResNet50 and was
configured to first freeze the neural network at layer 142 and
earlier (representing the transfer learning training phase), train
for 20 rounds, and then unfreeze all network layers and continue
with global training for 40 rounds, totaling to 60 training rounds.
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FIGURE 6 | Transfer learning training accuracy. The number of epochs was set at 20. The graph on the left presents early stopping at epoch 12. The graph on the

right shows a maximum accuracy of 77.2%.

FIGURE 7 | Global learning training accuracy. The number of epochs was set at 60. The graph on the left presents early stopping at epoch 49. The graph on the right

shows a maximum accuracy of 89.95%.

The input image remapping window was set to 416
× 416 px for the neural network. The learning rate is
reduced by half if no reduction in the loss happens after
three rounds. The earl-stopping training method was used
to stop network training when no reduction in the loss is
observed over 10 rounds. In the transfer learning training
phase, the Adam optimizer (55) was used with 0.001 learning
rate. The same optimizer was used in the global learning
training phase with 0.0001 learning rate. We employed the
TensorBoard module in Keras to record the training data.
Accordingly, 113min was required for transfer learning training,
and 281min was required for the global learning training,
accounting for a total of 6 h and 34min of training completion.
The code used for the experiment can be downloaded
from GitHub (https://github.com/landscapewl/Segnet-Transfer-
Learning).

The trained SegNet exhibited a better natural image scene
segmentation performance. Using the Cityscapes dataset, our
trained SegNet achieved 88.64% and 77.2% accuracies for

the training and validation datasets, respectively, during the
transfer learning phase (Figure 6). Figure 7 shows that the
training dataset was segmented at 90.83% accuracy compared
to 89.95% for the validation dataset during the global training.
Figure 4 depicts the semantic segmentation results of the
streetscape images from Gangnam using the trained network.
The quality of the built environment in Gangnam greatly varied
from the areas under construction to those with high-quality
infrastructure; however, the model we trained demonstrated
a satisfactory generalization in segmenting and resolving the
complex arrangement of visual elements within the Gangnam
street-view images.

Accuracy Testing of the Human–Machine
Adversarial Model
66.7% of the data scored by the volunteers was used to train the
random forest model. The remaining 33.3% was used to detect
the accuracy. The average error of the urban built environment
psychological stress perception results was 1.33%. The RMSE
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was 2.86, the OOB error was 5.02%, and the OOB RMSE
was 7.22. It can be seen that the accuracy of the random-
forest-based estimation of the psychological stress perception
for the urban built environment was over 95%, proving its
excellent performance of the proposed model in predicting
human perception.

Perceived Psychological Stress in the Built
Environment in Gangnam
After data cleaning, the invalid coordinate point crawl of the
streetscape blank map was eliminated, leaving behind 31,378
coordinate points of the streetscape images. To more clearly
show the stress perception level of Jiangnan District, the natural
breakpoint method (56) was used to divide the psychological
stress perception scores into six intervals (Table 2).

TABLE 2 | Statistical summary of the perceived stress scores for 31,378

street-view image acquisition points from Gangnam.

Level Stress Score Number of Percentage

classification range (%) acquisition points of dataset

1 Low 10.00 to 35.00 6210 19.79% 34.82%

2 35.10 to 40.00 4717 15.03%

3 Medium 40.10 to 45.00 6820 21.73% 33.96%

4 45.10 to 50.00 3840 12.23%

5 High 50.10 to 55.00 4265 13.59% 31.18%

6 55.10 to 86.00 5520 17.59%

The Figure 8 legend depicts a gradual change from green
to red showing the change in the pressure perception in
GangnamDistrict. The stress perception distribution on this map
significantly varied across different parts of Seoul. We connected
the city stress perception score sampling points to a hexagonal
grid because a hexagonal cell grid shares more adjacent edges
than a quadrilateral, and the distances between the centers of
mass of adjacent cells are equal. This allows the hexagonal
grid to be more flexible in setting its parameters (e.g., radius)
and for smoother transitions when representing the pressure-
aware attribute distribution in urban space. The distribution
of high stress perceptions is more mainly concentrated in
the northwestern area of Jiangnan District. These areas are
mostly residential and commercial sites. The small spacing
between buildings and the lack of sufficient greenery planting
in some streets may have contributed to the high perception of
psychological stress among residents in this area. Medium to
low stress perceptions are mainly found in the northern riverside
areas and most of the southern areas. The northern riverside area
is a high-class residential area and a green park with a higher
degree of greenery and scenic beauty than the general residential
area. This attribute may contribute to the low perception of
stress among residents in this area. The southern region is
more mountainous without many high-rise buildings and has
a beautiful natural environment; therefore it does not generate
too high a perception of psychological stress. To a certain extent,
being close to nature helps reduce the perception of urban stress.

Figure 9 illustrates the average urban perceived stress
by administrative division within the Gangnam district. By

FIGURE 8 | Urban spatial mapping of the perceived stress scores in Gangnam.
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FIGURE 9 | Urban spatial mapping of perceived stress for Gangnam administrative divisions.

studying the heterogeneity of the perceived stress for an urban
built environment in this form, it is possible to distinguish
administrative districts with high perceived stress from those
with low perceived stress. Four administrative areas with high-
perceived stress were identified: Sinsa-dong, Cheongdam-dong,
Non-hyeon-dong, and Yeoksam-dong. Four administrative
areas with medium-perceived stress were also determined:
Samseong-dong, Daechi-dong, Dogok-dong, and Gaepo-dong.
The remaining six administrative areas had low perceived
stress: Apgujeong-dong, Irwon-dong, Suseo-dong, Jagok-dong,
Yulhyeon-dong, and Segok-dong. The results thus show that the
perceived level of stress in the central area of Gangnam was
significantly higher than the surrounding areas. Similarly, the
areas with low perceived stress were clustered in the southern
region of Gangnam.

Spatial Autocorrelation Analysis of the
Perceived Psychological Stress
Most previous studies on perceived psychological stress in a
built environment have focused on small areas due to the
limitations of their research methodology. Knowledge of the
distribution of perceived psychological stress in large-scale built
environments is relevant for urban planning, urban regeneration,
and urban management. Therefore, it is particularly important
to visualize the spatial distribution of perceived psychological
stress. Spatial autocorrelation models can measure the potential
interdependence between point data at one location and other
neighboring locations, enabling more effective statistical analysis
of spatial data and the exploration of correlations between

TABLE 3 | Summary of the data processing information for global Moran’s I.

Specification Implementation

Conceptualization of spatial relationships Fixed_distance

Distance method Manhattan

Standardization Row

Distance threshold 85.7369 m

elements, which can help urban planners to take specific
measures to address high perceived psychological stress in
certain areas.

The global spatial autocorrelation analysis was performed
here using the spatial autocorrelation function in ArcGIS.
Table 3 summarizes the specific implementation methods. The
FIXED_DISTANCE approach analyzed each element in the
neighborhood. The proximity elements within the distance
threshold were assigned a weight of 1 and affected the target
element calculation. By contrast, the proximity elements outside
the distance threshold were assigned a weight of 0 and did not
affect the target element. The MANHATTAN distance method
was used to measure the distance between two points along the
vertical axis by summing the difference between the x and y
coordinates. ROW normalization was conducted by dividing the
weights by the sum of the weights of the neighboring elements,
thereby reducing the potential for error. The minimum distance
that ensured each element had at least one neighborhood was
used as the threshold distance (85.7369 m).
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FIGURE 10 | Left: bar chart of the number of perceived psychological stress neighbors. Right: Moran’sIscatter plot.

FIGURE 11 | Spatially localized autocorrelation distribution map for Gangnam.

Based on global Moran’s I analysis, a Moran’s I scatter plot
and bar chart showing the number of perceived psychological
stress neighbors was obtained (Figure 10). Most of the points in
the scatter plot were distributed in quadrants 1 and 3, indicating
that there was a positive spatial autocorrelation in the perceived
psychological stress. The bar chart shows that the frequency of
the number of neighbors was roughly in line with a normal
distribution, indicating that the points are in space in line with
the general statistics of the thing. In the global Moran’ s I

aggregate, the Moran’ s I index was 0.655442. The Z value was
331.348650 (p-value < 0.01). There was 99% certainty that there
was spatial autocorrelation in psychological stress perception
and that psychological stress perception values were significantly
clustered spatially. However, how the perceived psychological
stress is clustered in space and what the distribution patterns are
need to be addressed using local spatial autocorrelation.

Figure 11 visualizes the results of the spatial local
autocorrelation analysis of the perceived psychological stress in
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TABLE 4 | Statistics for the segmented results of the top eight GSVIs.

Number Visual element Mean Max Min S.D.

1 Road 0.304 0.480 0.001 0.105

2 Sky 0.293 0.495 0.001 0.090

3 Building 0.150 0.560 0.001 0.108

4 Vegetation 0.068 0.496 0.001 0.073

5 Sidewalk 0.053 0.449 0.001 0.059

6 Auto 0.022 0.291 0.001 0.026

7 Wall 0.008 0.313 0.001 0.025

8 Grass 0.003 0.162 0.001 0.008

the built environment. The street acquisition points that were not
spatially autocorrelated were excluded. The points with spatial
aggregation relationships were classified into four categories
of high–high, high–low, low–high, and low–low clusters. The
high–high perceived stress clusters were clearly distributed in
the northern area bounded by Yangjae River, which is mostly
a residential area. This may be because the high land prices in
Gangnam, which is one of the most developed areas in South
Korea, make the residential areas more crowded. Moreover,
the spaces between houses are narrow. The architectural style
also does not reflect the local characteristics, and one can see
the lack of a rational division of group architecture and spatial
hierarchy, as well as of sufficient greenery to ensure the needs of
the residents. The south shows low–low clusters along the main
traffic routes, which may be due to the many mountainous areas
with a beautiful natural scenery in the south, and the many parks
in Gangnam that are located alongside the rivers and streams,
where residents can go for walks, rest, and engage in other daily
activities.

Percentage Coverage of Visual Elements in
Images From Low-, Medium-, and
High-Stress Areas
Table 4 lists the eight visual elements from the image
segmentation process that had the highest impact on the
perception of psychological stress in the built environment.

In Figure 12, the perceived stress scores were divided into
high, medium, and low to better understand the relationship
between the proportional coverage of the visual elements and
perceived stress. As the stress level increased, the average
coverage of buildings in the images rose from 5.1 to 26.4%. An
increase in building coverage constricts the street space, and the
more enclosed space may oppress the residents. More buildings
will inevitably crowd out the sky, roads, and vegetation, thus
generating negative emotions. In addition, the percentage of both
walls and sidewalks showed a small percentage increase from 0.4
to 1.4% and 2.3 to 7.2%, respectively. This is closely related to
the laws of urban construction, with more buildings leading to
more walls dividing the space and sidewalks connecting traffic.
In contrast, as stress levels rose, there was a clear decrease in the
percentage coverage of the sky and roads from 37.5 to 23.4% and
from 37.4 to 25.1%, respectively. This means that an open sky and

spacious roads cause human to feel more relaxed. Interestingly,
the percentage coverage of vegetation increased from 7.7 to 10.1%
when moving from low to medium stress and then decreased to
1.3% with high stress. This suggests that the relationship between
perceived stress and vegetation is not linear and that there is a
specific amount of vegetation that minimizes perceived stress.
This is worth investigating in future research.

Figure 13 presents a selection of street-view images
representing different perceived stress levels. The accompanying
radar maps clearly show that the proportion of visual elements
significant influences the stress levels. The proportion of auto,
buildings, the sky, and roads significantly change between areas
with low and high stress levels. In contrast, the percentage
coverage of grass, sidewalks, and auto was relatively stable.

Multiple Linear Regression Analysis of the
Perceived Psychological Stress
The perceived psychological stress in urban built environments
is often influenced by a combination of factors. Estimating and
estimating a dependent variable using the optimal combination
of multiple independent variables is more realistic than using a
single independent variable. In short, multiple linear regression
models are of greater practical relevance.

We employed the eight most influential visual elements
in the street-view images as the explanatory variables for
the perceived psychological stress of the built environment
in Gangnam. The blue bars in Figure 14 represent positive
correlations with perceived stress increase. The red bars depict
negative correlations. The bar length represents the value of the
standardized beta coefficient, and ∗ represents the significance
level. The multiple linear regression model yielded an R2 of 0.844
and an adjusted R2 of 0.843, indicating that the model explains
84.3% of the variation in the perceived psychological stress. In
addition, the influence of all eight visual elements on the changes
in the perceived psychological stress was significant (p < 0.05),
while the VIFs of the model were all < 5, indicating the absence
of a collinearity problem. The D–W was close to 2 (1.765),
indicating the lack of autocorrelation problems and the good
construction of the model. The beta coefficients for the walls and
the buildings were> 0, showing that these visual elements caused
urban residents to perceive psychological stress. The coefficients
for the sky, vegetation, roads, grass, sidewalks, and auto were
lower than 0, indicating that they lowered the psychological stress
perception among urban residents.

Our research corroborated the previous researchers’ findings
obtained using other modalities. Using street videos and expert
evaluations, a previous study concluded that the walkability of
urban streets is negatively correlated with the sense of enclosure
arising from the building envelope (57). The heat island effect
in cities also affects the perceived stress. However, it is often
difficult for urban planners to account for it because thermal
comfort is generally an important factor in perceived stress
(58, 59). In addition, the vegetation in urban centers in developed
countries reduces the sky coverage by an average of 18.52%
(60). Consequently, vegetation and sky can be considered highly
correlated factors, whose influence on the perceived stress can
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FIGURE 12 | Proportional coverage of visual elements in images with low, medium, and high perceived stress.

be controlled at the urban planning level. The vegetation on the
street can release oxygen and ions through respiration. These
ions can regulate the function of the human cerebral cortex,
such that excitation and inhibition mechanisms are balanced;
fatigue is eliminated; the spirit is invigorated; and work efficiency
is improved (43). This beneficial effect of vegetation on the
body reduces the perception of negative emotions. Therefore, the
perceived stress in urban built environments must be reduced
by increasing the openness of the sky and the vegetation
through regulations and micro-behavioral measures, weakening
the influence of urban buildings.

DISCUSSION

Measuring Urban Stress Perception
Provides Scientific Help to Improve
Residents’ Health
Stress is a side effect of the urban construction process and
is an important indicator of human health in the context of
urbanization. According to research from a variety of disciplines,
there is a strong correlation between perceived stress, the urban
built environment, and socioeconomic conditions. However,
there has been a lack of suitable data sources and scientific
research methods for the quantitative analysis of the relationship
between the urban built environment and citizens’ perceived
stress. As a possible approach to overcome this issue, GSV

data currently covers a large area of most cities around the
world and has become a reliable source of information for built
environments. Based on this information, the perceived stress
levels of urban residents can be estimated. Our study proposes
a systematic approach that can effectively measure the perceived
psychological stress of residents in urban built environments.
This work is creating a relationship with urban planning
development decision makers and mental health researchers.
To collaborate research to reduce urban environmental stress.
Both researchers can collect data on a large scale to measure the
perception of urban stress and map the emotional distribution of
stress among urban residents. Reflects perceived autocorrelation
of stress in the study area. This will help urban planners to
identify areas with high values of perceived autocorrelation of
psychological stress. Enables researchers to provide solutions
for reducing the stress of city dwellers and building more
relaxing urban from the perspective of their respective disciplines
and industries.

Exploring Stress Perception Clustering
Features and Visual Element Influence
Mechanisms
In this study, we constructed a systematic methodological
framework using GSV data and deep learning techniques to
measure the state of psychological stress levels in urban spaces.
Compared to traditional processes and methods, the process
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FIGURE 13 | Representative images for different levels of perceived stress. The hexagon represents the eight image segmentation elements, clockwise from the

vertex: (1) walls, (2) buildings, (3) the sky, (4) vegetation, (5) roads, (6) grass, (7) sidewalks, and (8) auto.

FIGURE 14 | Results of linear regression analysis for perceived stress.

developed in this study is more streamlined and efficient. The
systematic and innovative nature of this approach is reflected in
the efficient collection of urban streetscape data through GSV

and the delimitation of district boundaries, the innovative use
of cloud services technology to measure the stress perception
of volunteers in urban spaces, and the prediction of stress
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perception in urban spaces using deep learning techniques. This
was followed by an empirical case study of stress perception
mapping in the Gangnam district and its various wards in
Seoul, Korea, to demonstrate the reliability and advantages of the
proposed approach. The results show that there is a strong spatial
autocorrelation in psychological stress perception in space. There
aremore low-low clusters in the urban traffic arteries and riverine
areas of Gangnam district, and more high-high clusters in the
commercial and residential areas. The analysis of the street view
images for low, medium and high stress perceptions yielded the
proportion of each streetscape element associated with each stress
level. Finally, using multiple linear regression, we found that
walls, buildings, and stress perceptions were positively correlated,
while the sky, trees, and roads were negatively correlated with
stress perceptions. Our work thus offers practical and innovative
contributions. The correlation between the street view data and
stress perceptions was validated, so we hope that the effects of
changes in the visual elements of urban streetscapes on stress
perceptions can be more clearly understood.

Limitations and Future Works
Although the present study has a number of strengths, some
elements should be refined in the future research. In this
work, we used GSV images from Gangnam District of Seoul.
However, larger scale data collection is needed to reduce the
error in results. Therefore, in the future research, we will seek
to gather complete streetscape data for one or more cities,
which would allow cross-sectional perceived stress comparisons
between cities in different countries. The increased data volume
will test the predictive efficiency of the designed model. In
this study, the human–machine adversarial model based on a
random forest framework required human intervention for data
calibration.We hope to develop deep learning tools that are based
on artificial neural networks. Global urban built environment
predictions can be made for the remaining data given a certain
amount of training data. This is vital for large-scale multi-city
perception studies.

Finally, the impact on perceived urban stress is a
multifaceted process influenced by a variety of factors.
Other factors influencing human’s perceived urban stress
should be thoroughly discussed. In the future, other
factors, including the distribution of businesses and urban
park point-of-interest data should be regressed against
the perceived stress scores in multi-scale geographically
weighted regression. This can be used to investigate
pathways to reduce the perceived urban stress from a
multi-source perspective.

CONCLUSION

With the continuous development of society, human’s
psychological health is receiving more and more attention
from academic community. Measuring the level of psychological
stress in urban built environment based on the human
perception perspective has also become a research hotspot.

Due to the limitations of previous research methods, it
is time-consuming and inefficient to conduct large-scale
psychological stress perception surveys. With the development
of computer technology, deep learning technology provides
help to explore the perception of psychological stress in urban
built environment. This study explores a method to describe
the level of psychological stress perception in streets from a
human–centered perspective by combining deep learning with
spatial autocorrelation analysis. The method can provide a
valid assessment of the perceived psychological stress in the
built environment of cities. We believe that this innovative
approach can support re-construction of the built environment
on the street by facilitating the link between psychological
stress perception studies and new data and technologies. It has
important implications for research related to stress perception
in the urban built environment.

AUTHOR’S NOTE

We used the latest 2021 data for the administrative divisions
of South Korea available from http://www.gisdeveloper.co.kr/?p=
2332.

OpenStreetMap road network data and Korean administrative
data were used to obtain road network data for GangnamDistrict
and create the GSV acquisition point coordinates. We have made
these data available for download from https://www.openicpsr.
org/openicpsr/project/159481/version/V1/view.

Cityscapes is an open data set that can be downloaded from
the official website (https://www.cityscapes-dataset.com/).

Our research team built the SegNet neural network in Section
4 based on the Python language, Keras deep learning framework,
transfer learning techniques, and TensorBoard module. The code
can be downloaded from our GitHub website (https://github.
com/landscapewl/Segnet-Transfer-Learning).
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