Smeland et al. BMC Cancer (2019) 19:234

https://doi.org/10.1186/512885-019-5449-z B M C C ancer

RESEARCH ARTICLE Open Access

Stromal integrin a11-deficiency reduces ®
interstitial fluid pressure and perturbs
collagen structure in triple-negative breast
xenograft tumors

Hilde Ytre-Hauge Smeland'?'®, Ning Lu'?, Tine V. Karlsen', Gerd Salvesen', Rolf K. Reed'? and Linda Stuhr'~

Check for
updates

Abstract

Background: Cancer progression is influenced by a pro-tumorigenic microenvironment. The aberrant tumor stroma
with increased collagen deposition, contractile fibroblasts and dysfunctional vessels has a major impact on the interstitial
fluid pressure (PIF) in most solid tumors. An increased tumor PIF is a barrier to the transport of interstitial fluid into and
within the tumor. Therefore, understanding the mechanisms that regulate pressure homeostasis can lead to new insight
into breast tumor progression, invasion and response to therapy. The collagen binding integrin a11B1 is upregulated
during myofibroblast differentiation and expressed on fibroblasts in the tumor stroma. As a collagen organizer and a
probable link between contractile fibroblasts and the complex collagen network in tumors, integrin a1131 could be a
potential regulator of tumor PIF.

Methods: We investigated the effect of stromal integrin a11-deficiency on pressure homeostasis, collagen organization
and tumor growth using orthotopic and ectopic triple-negative breast cancer xenografts (MDA-MB-231 and MDA-MB-
468) in wild type and integrin al1-deficient mice. PIF was measured by the wick-in-needle technique, collagen by
Picrosirius Red staining and electron microscopy, and uptake of radioactively labeled 5FU by microdialysis. Further, PIF in
heterospheroids composed of MDA-MB-231 cells and wild type or integrin al1-deficient fibroblasts was measured by
micropuncture.

Results: Stromal integrin a1 1-deficiency decreased PIF in both the orthotopic breast cancer models. A concomitant
perturbed collagen structure was seen, with fewer aligned and thinner fibrils. Integrin a11-deficiency also impeded
MDA-MB-231 breast tumor growth, but no effect was observed on drug uptake. No effects were seen in the ectopic
model. By investigating the isolated effect of integrin al1-positive fibroblasts on MDA-MB-231 cells in vitro, we provide
evidence that PIF regulation was mediated by integrin al1-positive fibroblasts.

Conclusion: We hereby show the importance of integrin al1B1 in pressure homeostasis in triple-negative breast tumors,
indicating a new role for integrin a11(31 in the tumor microenvironment. Our data suggest that integrin a1131 has a
pro-tumorigenic effect on triple-negative breast cancer growth in vivo. The significance of the local microenvironment is
shown by the different effects of integrin a11B1 in the orthotopic and ectopic models, underlining the importance of
choosing an appropriate preclinical model.
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Background

Triple-negative breast cancer (TNBC) is defined by the
absence of estrogen receptors, progesterone receptors and
HER-2 amplification and represents an aggressive breast
cancer subtype. Despite significant advancements in the
treatment of other breast cancer subtypes, there is still no
licensed targeted therapy available for the treatment of
TNBC, and therefore little improvement in survival has
been observed for this patient population over the last
years [1, 2]. This highlights the need for better understand-
ing of TNBC and identification of mechanisms involved in
disease progression and treatment response.

It is now well recognized that breast cancer progression
can be influenced by a pro-tumorigenic microenvironment
surrounding the malignant epithelial cells. This environ-
ment consists of a heterogeneous mixture of stromal cells,
including a diversity of cancer associated fibroblasts
(CAFs), a biological active network comprising the extra-
cellular matrix (ECM), in addition to the interstitial fluid
and its solutes [3, 4]. New knowledge about the compo-
nents of the microenvironment and how they interact with
tumor cells can hopefully identify new biomarkers or
potential targets in TNBC.

The aberrant stroma affects the physiological forces
within the tumor. Indeed, the hydrostatic pressure in the
tumor interstitium, known as interstitial fluid pressure
(PIF), is considerably increased in the majority of solid
tumors [5], including human breast cancer [6, 7], and
this poses a major physiological barrier to transport of
soluble factors within the tumor [8].

Increased PIF has been shown to predict poor prognosis
in some solid tumors [9, 10], and can also hinder effective
delivery of drugs into the tumor [11-13]. Finding ways to
lower tumor PIF may therefore increase efficiency of
cancer therapy.

Fibroblasts can actively modify PIF and transcapillary
fluid exchange (reviewed in [8, 14, 15]) and the molecular
mechanisms are outlined by collagen contraction assays
[16, 17] and heterospheroids [18—20], as well as parallel in
vivo experiments [21-23]. Dysfunctional blood and lymph
vessels will lead to fluid accumulation in the tumor inter-
stitium, and swelling of hyaluronan and proteoglycans
would in normal conditions hinder an increase in PIF [8,
24]. Tension exerted by fibroblasts and collagen network
can probably counteract this swelling, resulting in a per-
sistent increased PIF [14]. However, although
fibroblast-mediated contraction has previous been shown
to be dependent on Pl-integrins [21], fibroblast-mediated
PIF influence is still not fully understood.

Integrin allfpl is a collagen binding integrin expressed
during differentiation of myofibroblasts [25-27] and is in-
volved in collagen organization [17, 28] and tumor stiffness
[28]. As a collagen organizer and a link between contractile
fibroblasts and the complex collagen network, integrin
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allPl could be a regulator of tumor PIF. Although a few
studies indicate that it has a physiological role in the regu-
lation of PIF in dermis [29, 30], its influence on PIF in tu-
mors remains to be demonstrated. A better understanding
of the mechanisms that regulate pressure homeostasis
within a tumor, can probably lead to a new insight into
breast carcinogenesis, and we therefore investigated the ef-
fect of stromal integrin all-deficiency on pressure homeo-
stasis, ECM organization and tumor growth using two
human TNBC xenograft models.

Methods

Cell lines

MDA-MB-231 (ATCC® HTB-26") was provided by Profes-
sor James Lorens (University of Bergen, Bergen, Norway),
and MDA-MB-468 (ATCC® HTB-132") was obtained from
the American Type Culture Collection (Manassas, VA,
USA). The MDA-MB-231 cells were fingerprinted before
use and matched with the cell line MDA-MB-231 (ATCC®
HTB-26™) in the ATCC database. MDA-MB-231 was used
at passage number five to nine, while the MDA-MB-468
cells were used at passage number two to five. These TNBC
cell lines have high tumor take in SCID mice and slowly
forming tumors, which may be more stromal dependent
than more rapidly growing xenografts. Wild type (WT) and
integrin  all-deficient («11-KO) mouse embryonic
fibroblasts (MEFs) were obtained from mouse embryos of
embryonic day 14.5 as described previously [31]. In order
to obtain immortalized MEFs, primary MEF cultures were
infected with recombinant retrovirus-transducing simian
virus 40 (SV40) [32]. All cell lines were grown in Nutrient
Mixture F-12 Ham (Sigma-Aldrich, Steinheim, Germany)
supplemented with 10% Foetal Bovine Serum, 100 units/ml
penicillin, 100 pg/ml streptomycin, and 1-2% L-glutamine
(all from Sigma-Aldrich). The cells were grown as single
monolayers in a humidified incubator at 37 °C in 5% CO,
and in all experiments used at log phase. All cell lines
tested negative for mycoplasma contamination.

Xenograft models
The integrin all-deficient heterozygous SCID mouse
strain was generated as previously described [28]. PCR-
genotyping was performed on DNA extracted from ear
biopsies [32]. The animals were kept in individually venti-
lated cages, cared for regularly and efforts were made to
age- and weight match the animals. All animal experiments
were approved by the Norwegian Food Safety Authority
(Permit Number 20168751) which is the competent body
responsible for authorizing research projects in animals in
Norway. This is in accordance with the EU directive 2010/
63 article 36.

A total of 5x 10> MDA-MB-231 or 1.5x10° MDA-
MB-468 tumor cells in 0.15ml PBS were injected into
the fourth mammary fat pad (orthotopic), and for the
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MDA-MB-231 also subcutaneously on the mouse flank
(ectopic). Tumor size was measured using a caliper. The
tumor volume was calculated using the formula; tumor
volume (mm®) = (1/6) x a® x b, where a represents the
shortest diameter and b represents the longest diameter
of the tumor. All animals were anesthetized using Iso-
fluran (Isoba®vet. 100%, Schering-Plough A/S, Farum,
Denmark) and eventually sacrificed by cervical disloca-
tion under deep anesthesia. For investigation of the pri-
mary tumor, all the MDA-MB-231 injected mice were
sacrificed day 57 post injection. For the MDA-MB-468
injected mice, some of the tumors showed tendency to
ulcerate the skin, and these mice were sacrificed imme-
diately. To make the groups comparable, one mouse
from the opposite group and with similar tumor load
was sacrificed on the same day.

To evaluate metastatic spread to the lungs, they were
processed and fixed as previously described [33] (n=5 WT
and 5 a11-KO and #=5 WT and 4 al1-KO for the MDA-
MB-231 and MDA-MB-468 injected mice, respectively).

All measurements and analysis in this study were per-
formed blinded to genotype.

Measurement of interstitial fluid pressure

The wick-in-needle technique was used to measure the
tumor PIF [34]. Briefly, a standard 23-gauge needle with a
side hole filled with nylon floss and saline was connected
to a PE-50 catheter, a pressure transducer and a computer
for pressure registrations, using the software Powerlab
chart (version 5, PowerLab/ssp. AD instruments, Dunedin,
New Zealand). The needle was inserted into the central
part of the tumor after calibration. After a period of stable
pressure measurements, the fluid communication was
tested by clamping the catheter which shall cause a transi-
ent rise and then return to pressure prior to clamping.
Measurements were accepted if the pre- to post-clamping
value was within +1 mmHg.

PIF in heterospheroids was measured with the micro-
puncture technique described previously [18]. Briefly, the
spheroids were collected and transferred to 10-cm
Lysine-coated cell culture dishes (Nunc, Thermo Fisher,
Waltham, MA., USA) and left to attach for 2 h at 37 °C. PIF
was measured using sharpened glass capillaries (tip diam-
eter 3-5um) connected to a servo-controlled counter
pressure system. The glass capillaries were filled with
hypertonic saline (0.5 M) colored with Evans blue dye and
inserted into the central parts of the spheroid with the help
of a stereomicroscope (Wild M5, Heerbrugg, Switzerland).
PIF in the cell culture medium directly outside the spheroid
was defined as the zero reference pressure.

Electron microscopy of collagen fibrils in the tumor
Tumor samples were taken from the tumor periphery
and were fixed and processed as previously described
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[33]. A JEM-1230 Transmission Electron Microscope
(TEM) (Jeol, Tokyo, Japan) was used to measure the
diameter and organization of the collagen fibrils, and
images from four to six different areas of the tissue were
analyzed. Pictures were captured at x 100,000 magnifica-
tion and analyzed using Image ] 1.46 (National Institute
of Health, Bethesda, MD., USA) to measure the fibril
diameter. To investigate the organization of the collagen
fibrils, pictures were captured at x 30,000 magnification
and scored from one to four considering collagen fibril
organization and alignment within the collagen fibers.

A JSM-7400F Scanning Electron microscope (Jeol) was
used to study the tumor collagen fibril scaffold architec-
ture. Five images from different areas of the tumor were
captured from each tumor at x 10,000 magnification.

Immunostaining and Picrosirius-red staining
Histological analysis was performed on both paraffin
embedded sections and cryosections. For paraffin
embedded sections, 5pm thick sections were deparaffi-
nizated and rehydrated, followed by heat induced
antigen retrieval at pH6 (#S1699, Dako, Agilent, Santa
Clara, CA., USA) for Ki67 (100°C, 20 min) and aSMA
(100°C, 25 min), pH 9 (#2367, Dako) for Coll III (100 °C,
25 min) or pH 10 (#T6455, Sigma Aldrich) for PDGEFRpB
(110°C, 5 min). After antigen retrieval, the sections were
incubated with peroxidase block (#K006, Dako) and then
primary antibody. Envision+ System-HRP (#K4006 or
#K4010, Dako) was used as secondary antibody, in
addition to rabbit anti-goat for collagen III (1:1000,
#6164—01, Southern Biotech, Birmingham, AL., USA),
and DAB was used as chromogen, except for aSMA
staining, where a FITC-conjugated antibody was used.
Analysis of immunohistochemistry was performed using
Leica DN 2000 Led (Leica Microsystems, Wetzlar,
Germany). The following primary antibodies were used
on paraffin sections: rabbit anti-mouse PDGFRP mAb
(1:100, #3169, Cell Signaling Technology, Danvers, MA.,
USA), goat anti-mouse Type III Collagen pAb (1:100,
#1330—08, Southern Biotech), anti-mouse aSMA mAb
(F3777, dilution 1:200, Sigma Aldrich) and mouse
anti-human Ki67 mAb (1:100, #M7240, Dako).
Cryosections with a thickness of 6 um were fixed in
ice-cold methanol (- 20 °C, 8 min) and rehydrated with PBS,
followed by blocking with 10% goat serum. Afterwards, the
following primary antibodies were supplied: rabbit anti-
mouse integrin all pAb (1:200, custom-made, Innovagen
AB, Lund, Sweden, [31]), mouse anti-human cytokerain
AE1/AE3 mAb (1:200, #M3515, Dako) and mouse anti
aSMA mAb (1:200, #A5228, Sigma Aldrich). Goat anti-
rabbit Alexa 594 (1:400, #111-585-144, Jackson ImmunoRe-
search, Ink., West Grove, PA., USA) and goat anti-mouse
Alexa 488 (1:400, #315-545-045, Jackson ImmunoResearch)
were used as secondary antibodies. Mounting was done with
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ProLong Gold Antifade Mountant with DAPI (#P36934,
ThermoFisher). The staining results were evaluated under
an Axioscope fluorescence microscope and micrographs
were acquired using a digital AxioCam MRm camera (Zeiss,
Oberkochen, Germany).

Picrosirius-red stain (Polysciences inc, Warrington,
FL., USA) was used for a semi-quantitative measurement
of collagen type I and III as previously described [33].

Evaluation of the staining

For Picrosirius-red, collagen III, PDGFRB and aSMA, a
total of four to six pictures were captured from each
tumor with x 100 magnification. Images were taken in the
tumor periphery in order to avoid the necrotic central
area. The software Image ] 1.46 (National Institute of
Health, Bethesda, MD., USA) was used to identify the
amount of positive pixels.

For Ki67, the tumors were examined using light micros-
copy with an eye-piece grid at x 630 magnification. A total
of 500 tumor cells from the tumor periphery were evalu-
ated, and distinct nuclear staining regardless of intensity
was registered as positive. Areas with necrosis, bleeding or
inflammation were avoided.

Microdialysis

Microdialysis was performed as previously described [35]
on the MDA-MB-231 mammary fat pad tumors. Briefly,
after anesthesia with Ketalar (Pfizer Inc., NY., USA) and
Dormitor (Orin Pharma AS, Espoo, Finland), one microdi-
alysis probe was placed in the MDA-MB-231 mammary
fat pad tumor (CMA12 Elite Microdialysis probe, ref.nr
8,010,434) and one in the jugular vein (CMA12 Elite
Metal free, ref.nr 80,111,204). The probes were connected
to a PE-50 catheter, perfused by a pump (CMA100 Micro-
injection pump, ref.nr 8,210,040) at a rate of 1 ul/min and
left to stabilize for 30 min. After intravenous injection of
0.15ml 0.65 MBq *H-5FU (Nycomed Amersham, Buck-
inghamshire, UK), dialysate was sampled and pooled every
10min for a total of 90min. Scintillation counting
solution (Optiphase Hisafe 3, PerkinElmer, Inc., Waltham,
MA., USA) was added, and the radioactivity measured
using a liquid scintillation analyzer (Tri-Carb 2900TR,
PerkinElmer, Inc.). The probes and pump were delivered
by CMA Microdialysis AB, Kista, Sweden.

The area under the curve (AUC) for the plasma and
tumor was calculated with Graph Pad Prism 7 (GraphPad
Software Inc., La Jolla, CA., USA) as the total radioactivity
collected, i.e. as the product of radioactivity (counts per
minute) and time. Finally, transport of *H-5FU was
expressed as AUC tumor divided by AUC plasma.

After each experiment, the probes were tested in sa-
line with a known amount of *H-5FU, and experiments
with probes that differed more than 15% in permeabil-
ity were excluded.
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Heterospheroids

Heterospheroids containing a mixture of SV40-immortal-
ized MEFs and MDA-MB-231 cells were prepared using
the hanging drop method as described previously [19].
Briefly, sub-confluent cells were trypsinized and sus-
pended in culture medium to a concentration of 1 x 10°/
ml. The MEFs (WT or integrin al11-KO MEFs) and
MDA-MB-231 cell suspensions were then mixed at a ratio
of 4:1 to make WT MEFs + MDA-MB-231 and al1-KO
MEFs + MDA-MB-231 spheroids. Approximately 40
drops (25 pl/ drop, 2.5 x 10* cells/drop) were dispensed
onto a lid of a cell culture dish. The lid was then inverted
and placed over a cell culture dish containing medium for
humidity, and cultured in a humidified incubator at 37 °C
in 5% CO, for 5 days.

Statistical analysis

Sigmaplot 13.0 (Systat Software Inc., Chicago, IL., USA)
and Graph Pad Prism 7 (GraphPad Software) were used
for statistical analysis. Either the unpaired two-tailed
t-test or the Mann- Whitney U test, was used to analyze
statistical differences between the two groups. Results
were accepted as statistically different when p < 0.05. Data
are given as mean * SD, and number of measurements (n)
refers to number of tumors or heterospheroids unless
otherwise specified.

Results

Effect of stromal integrin a11B1 on breast tumor growth
MDA-MB-231 and MDA-MB-468 tumor cells were
injected into WT and oll-KO mice. As expected, we
found that integrin all was expressed in the tumor stroma
in WT mice, but not in al1-KO mice (Fig. 1d). Further-
more, the immunofluorescent staining of integrin a1l (Fig.
1d) did not show differences in the amount of integrin o11
expression between the MDA-MB-231 orthotropic and
subcutaneous model (#=3-5). The tumor volumes in
MDA-MB-231 mammary fat pad tumors were significantly
reduced (p<0.01) in all-KO mice compared to tumors
grown in WT mice during their 57 days growth period
(Fig. 1a). A clear tendency towards reduced MDA-MB-468
mammary fat pad tumor growth was also seen, but this did
not reach statistical significance (p =0.059) (Fig. 1b). Of
note, there was no difference in MDA-MB-231 tumor
growth when the cells were injected subcutaneously on the
back (Fig. 1c).

In the MDA-MB-231 mammary fat pad tumors, there
was a slight, but statistically significant difference in the
number of proliferating tumor cells, indicated by posi-
tive Ki67 staining (Fig. 2a and d). However, in the two
other tumor models, there were no significant differ-
ences in number of proliferating tumor cells (Fig. 2b-d).
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Fig. 1 Tumor growth. The growth of MDA-MB-231 and MDA-MB-468 xenograft tumors (a-c) in WT and a11-KO mice. A total of 5x 10° MDA-MB-
231 and 1.5 x 10° MDA-MB-468 cells were injected into the mammary fat pad, and for MDA-MB-231, also subcutaneously (s.c.) on the back. All
MDA-MB-231 injected mice were sacrificed at day 57 post injection. The MDA-MB-468 injected mice were sacrificed at different time points
starting with n =20 WT and n=16 a11-KO. Mean + SEM. ** p < 0.01. Immunofluorescence staining of integrin a1l (red), cytokeratin AE1/AE3
(green) and DAPI (blue) in MDA-MB-231 and MDA-MB-468 xenograft tumors (d) in WT and a11-KO mice. Scale bars indicate 50 um
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Integrin a11-deficiency reduces tumor interstitial fluid
pressure

The tumor PIF was measured by the wick-in-needle
method. PIF was significantly reduced in both MDA-
MB-231 and MDA-MB-468 mammary fat pad tumors
grown in all-KO mice compared to WT (Fig. 3a-b). No
difference in PIF was seen in the MDA-MB-231 subcuta-
neous tumors (Fig. 3c).

Integrin a11-deficiency perturbs collagen structure
Picrosirius-red and collagen III staining did not demon-
strate differences in the amount of collagen in either of the
tumor models (Fig. 4a-c and Additional file 1: Figure S1).
Collagen fibril organization and structure in the xeno-
graft tumors were investigated using TEM. As seen in
Fig. 5a-b and d, integrin a11-deficiency lead to more disor-
ganized collagen fibril architecture with fewer aligned col-
lagen fibrils in both the MDA-MB-231 and MDA-MB-468
mammary fat pad tumor models. In these tumors, there
was also a shift towards thinner collagen fibrils in a11-KO
compared to WT mice (Fig. 6a-b and d). No difference was
seen in either collagen fibril alignment or collagen fibril
diameter in the MDA-MB-231 subcutaneous tumors when
comparing all-KO mice with WT (Figs. 5c and 6c¢). In
addition, SEM did not demonstrate visual differences in

the collagen fibril structure between tumors grown in
a11-KO mice versus WT (Fig. 7).

Immunostaining of aSMA and PDGFRp, common
markers of activated fibroblasts and pericytes, was used to
quantify the relative amount of activated fibroblasts in the
tumor stroma. Although integrin all partially co-localized
with aSMA in xenograft tumors in WT mice (Fig. 8c), no
significant differences in the amount of PDGFRp or a«SMA
expression (Fig. 8a-b and Additional file 1: Figure S1) in
tumors in al1-KO compared to WT mice were found.

Integrin a11B1 does not affect uptake of *H-5FU

The reduced tumor PIF found in MDA-MB-231 mam-
mary fat pad tumors in a11-KO mice was not associated
with increased uptake of *H-5FU measured by microdi-
alysis (Fig. 9).

Pressure homeostasis and integrin a11B1 in
heterospheroids

Since the in vivo results demonstrate that stromal integrin
allPl has a role in maintaining pressure homeostasis in
triple-negative breast xenograft tumors, we also investi-
gated the isolated effect of integrin all-positive fibroblasts
on tumor PIF in a simplified system. Spheroids composed



Smeland et al. BMC Cancer (2019) 19:234

Page 6 of 13

>

MDA-MB-231 mammary fat pad

*

3
?

-MB-231 mammary fat pad

% Ki67-positive tumor cells

MDA:

wWT a11-KO

MDA-MB-468 mammary fat pad
NS

A © © 9
S © o o
e T T T

n
=3
¥

o
®
a

8
>
&
£
£
9
£

o

©

hi

oo}

=

<

S5

=

% Ki67-positive tumor cells

o
T

WT o11-KO

MDA-MB-231 s.c. back
NS

(@)

o
=3

% Ki67-positive tumor cells
n » [} -]
8 & &8 8

o

wWT a11-KO

Fig. 2 Tumor cell proliferation. The fraction of Ki67-positive tumor cells in MDA-MB-231 and MDA-MB-468 xenograft tumors (a-c). Reduced
percentage of Ki67-positive tumor cells was only seen in MDA-MB-231 mammary fat pad tumors in a11-KO mice compared to WT (n =7 for
MDA-MB-231 and MDA-MB-468 mammary fat pad tumors, and n=4 WT and n=5 a11-KO for MDA-MB-231 subcutaneous tumors). Mean + SD. *
p < 0.05. Representative images of Ki67 staining of sections from all xenograft tumors in WT and a11-KO mice (d). Scale bars indicate 100 um

of fibroblasts lacking integrin all grown together
with MDA-MB-231 cells had significantly lower PIF
compared to spheroids with MDA-MB-231 cells and
WT fibroblasts (Fig. 10a-b). These data indicate that
the difference in PIF is, at least in part, due to integ-
rin all-positive fibroblasts.

Tumor metastases
No lung metastases were seen when investigating
coronal HE stained sections from lungs at end stage.

Discussion

Integrins are essential adhesion receptors necessary for
intercellular communication, attachment of cells to the
ECM and modulation of the tumor microenvironment
[36-39]. In this study, we have demonstrated that stromal
integrin all-deficiency markedly decreased PIF in vivo
using two orthotopic human triple-negative breast cancer
cell lines. A perturbed collagen structure was seen, with
fewer aligned and thinner collagen fibrils. Furthermore,
integrin al11-deficiency impeded orthotopic breast tumor
growth in the MDA-MB-231 model, and the same trend
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Fig. 3 Tumor interstitial fluid pressure. The individual interstitial fluid pressures (PIF) in MDA-MB-231 and MDA-MB-468 xenograft tumors (a-c) in
WT and a11-KO mice. The horizontal lines indicate the mean values. Reduced tumor PIF was seen in MDA-MB-231 and MDA-MB-468 mammary
fat pad tumors in a11-KO mice compared to WT, but no difference was seen in the MDA-MB-231 subcutaneous tumors. * p < 0.05
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Integrin al1Pl has arisen as a possible marker of a
pro-tumorigenic subset of CAFs in the tumor micro-

was also found in the MDA-MB-468 orthotopic model. By
investigating the isolated effect of integrin all-positive

fibroblasts on MDA-MB-231 tumor cells in vitro, we pro-
vide here evidence that PIF regulation is, at least partly,
mediated by integrin al1-positive fibroblasts.

environment [40, 41]. It has been found to be overex-
pressed in the stroma of lung cancer and head and neck
cancer [40, 42]. Further, it stimulates lung cancer cell
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subcutaneous tumors (c) (n=5). Mean + SD. * p < 0.05, ** p < 0.01. Examples of the different scoring values from MDA-MB-468 tumors are shown
in (d) (1- highly disorganized, 2-moderately disorganized, 3-moderately organized and 4-highly organized). Scale bars indicate 0.5 um
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Fig. 6 Collagen fibril diameter. Transmission electron microscopy (TEM) was used to analyze collagen fibrils. Collagen fibril diameter distribution
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thinner fibrils in a11-KO mice compared to WT. No difference was seen in MDA-MB-231 subcutaneous tumors (c) (n =5). Mean + SD. * p < 0.05.
Representative TEM images of collagen fibrils in MDA-MB-231 and MDA-MB-468 mammary fat pad tumors in both genotypes (d). Scale bars
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growth in vitro [20], and lung and prostate cancer
growth in vivo [28, 33]. However, its role in tumor
growth and progression is still not clear, especially in
breast tumors where we recently reported that it did not
affect the growth of the murine TNBC cell line 4 T1 in
vivo [33].

In the present study, we found that stromal integrin
all-deficiency led to reduced tumor PIF in both ortho-
topic xenograft models. This demonstrates for the first
time that integrin allpl has a role in maintaining an
elevated PIF in solid tumors. A dense ECM, contractile
fibroblasts, leaky blood vessels and dysfunctional
lymphatic drainage are possible causes of increased PIF
in tumors [8]. PIF can be actively modulated through
interactions between contractile fibroblasts and ECM
molecules [8, 23], where fibroblasts have been proposed
to normally exert a tension on the collagen network
through collagen-binding integrins [14]. Furthermore,
integrin allPl contracts collagen matrices experimen-
tally [17], and we therefore suggest that integrin
allBl-mediated PIF modifications can involve a
contraction of the interstitial space mediated by direct
or indirect binding of integrin all-positive fibroblasts
to collagen.

The involvement of integrin all-positive fibroblasts in
tumor PIF homeostasis is supported by our study of het-
erospheroids, where we observed a similar PIF reduction
in spheroids composed of MDA-MB-231 cells and integ-
rin oll-deficient fibroblasts. This simplified system
allows us to investigate how fibroblasts grown together
with tumor cells can influence PIF [18-20]. In line with
our results, a similar integrin a11f1 function in pressure
regulation has previously been shown in fibroblasts/lung
cancer heterospheroids [20]. However, although these
avascular spheroid studies indicate that the pressure
regulatory abilities of integrin all1p1 is, at least in part,
mediated by integrin a11-positive fibroblasts, the mech-
anisms behind integrin all-mediated effect on PIF in
heterospheroids are not investigated in detail in this
study. In addition, we cannot exclude additional factors
in the more complex in vivo system, such as influence of
the tumor vasculature, which has been shown to have an
important impact on tumor PIF [13, 43—45].

Furthermore, integrin al1-deficiency led to less organized
and thinner collagen fibrils in the orthotopic models, which
could be a contributing factor to reduced tumor PIF. Al-
though it has been shown that the collagen-binding proteo-
glycan fibromodulin promotes the formation of a dense
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Fig. 7 Collagen fibril architecture. Representative scanning electron images of collagen fibrils in MDA-MB-231 and MDA-MB-468 mammary fat
pad tumors in WT and a11-KO mice (n=5 WT and n=4 a11-KO in both models). Scale bar indicates 1 um
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stroma and increased tumor PIF [46], it is nevertheless diffi-
cult to predict how different components in the extracellu-
lar matrix affect the hydraulic conductivity of tissues and
thereby fluid flow and PIF [47].

Although the present study is the first to identify in-
tegrin allfp1 as participating in regulation of pressure in

solid tumors, it is already known to maintain a homeo-
static PIF in dermis [29, 30]. Furthermore, we have pre-
viously demonstrated the function of B1l-integrins in the
regulation of dermal PIF by inhibiting f1-integrins [21].
Numerous studies have highlighted the role of CAFs
in tumor progression, invasion and metastasis, either
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Fig. 9 Microdialysis. Dialysate was sampled for 90 min after i.v.
injection of *H-5FU, and the ratio between *H-5FU level in plasma
and in MDA-MB-231 mammary fat pad tumor was calculated as Area
Under Curve (AUQ). There was no significant difference in uptake
when WT and a11-KO mice were compared (n = 5). Mean + SD

a11-KO

directly by stimulation of tumor cells via production of
pro-tumorigenic growth factors or indirectly by for ex-
ample remodeling the ECM (reviewed in [48]). Here we
show that integrin a11p1, known to be expressed during
myofibroblast differentiation [25, 26], seems to facilitate
breast tumor growth in vivo.

In previous studies, the pro-tumorigenic abilities of in-
tegrin a11B1 have been associated with increased matrix
stiffness, collagen reorganization and increased levels of
IGF-2 [28, 40]. In the present study, changes in pressure
homeostasis and collagen organization could both influ-
ence tumor growth and invasion. Of interest, increased
tumor PIF has been linked to tumor aggressiveness in
some human cancers [9, 49], and is an independent poor
prognostic factor in cervical cancer [10, 50].

There have been reports suggesting that increased tumor
PIF can both facilitate and inhibit tumor progression. First,
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major pressure gradients due to increased tumor PIF can
enhance interstitial fluid flow at and lymph drainage from
the tumor margins, which probably increase the risk of
cancer cells leaving the tumor. Increased flow can also fa-
cilitate tumor progression indirectly by either mechano-
modulation of the tumor stroma or by changing the host
immune response and thereby promote immunological
tolerance (reviewed in [51, 52]). Further, in vitro elevation
of tumor PIF increased proliferation of human osteosar-
coma [53] and oral squamous cell carcinoma cells [54].
Similarly, in vivo lowering of tumor PIF, and thereby reduc-
tion of mechanical stretch for 24 h, reduced tumor cell
proliferation in vulva and lung xenograft tumors [55]. How-
ever, contrary to these findings, increased tumor PIF may
also limit uptake of nutrition and growth factors into the
tumor and thereby inhibit tumor cell progression [8]. In the
context of breast cancer, MDA-MB-231 cells have actually
been shown to invade towards regions of higher pressure in
vitro [56, 57], indicating that the elevated tumor PIF may in
fact restrain breast tumor invasion. In summary, these find-
ings demonstrate that maintenance of a high tumor PIF
may be a contributing factor to integrin allpl’s pro-
tumorigenic effects, but at the same time, it can have
opposite effects during tumorigenesis, pinpointing the need
for further preclinical investigation.

Although increased tumor PIF can be a major barrier
in cancer treatment, lowering of tumor PIF by integrin
all-deficiency did not increase the uptake of the low
molecular weight drug *H-5FU into MDA-MB-231
tumor interstitium. Low molecular weight compounds
are transported by both diffusion and bulk flow/convec-
tion, and we have previously shown that reducing PIF
can increase the uptake of the small molecular weight
drugs *H-5FU [11, 58] and >'Cr-EDTA [12, 59] into the
tumor interstitium. However, in parallel with the results
in the present study, it is evident that lowering of PIF
will not always increase the uptake of low molecular
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Fig. 10 Heterospheroids. The individual interstitial fluid pressures (PIF) in heterospheroids containing a mixture of mouse embryonic fibroblasts
(MEFs) and MDA-MB-231 breast tumor cells (4:1) (@). a11-KO MEFs + MDA-MB-231 spheroids showed a significant reduction in PIF compared to
WT MEFs + MDA-MB-231 spheroids. *** p < 0.001. Transmission electron microscopy images show collagen fibrils in both heterospheroid
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weight drugs [35, 60]. Similarily, Flessner et al. showed
that decapsulation of ovarian xenografts markedly
decreased PIF to zero, but did not increase penetration
of the high molecular weight drug trastuzumab into the
tumor [61]. In summary, probably other features of the
tumor microenvironment can also contribute to the
failure of transport within solid tumors [5, 61].

Our data show that integrin all-deficiency leads to
thinner and less organized collagen fibrils in the orthoto-
pic tumor stroma. Changes in collagen composition and
organization are already known to influence tumorigenesis
and can predict breast cancer behavior [3]. For example,
progressive deposition of collagen [62] and increased col-
lagen fiber linearization [63, 64] are associated with breast
cancer aggressiveness.

While integrin al1-deficiency influenced tumor growth
and reduced PIF with concomitantly more disorganized
collagen fibrils in the orthotopic tumors, no effect was
seen in the MDA-MB-231 ectopic tumors. Interestingly,
there was similar amount of integrin al1p1 expression in
both the MDA-MB-231 models. In a previous study, we
also observed that while integrin ol1-deficiency reduced
RM11 tumor growth, but did not affect 4T1 tumor
growth, the integrin al11p1 expression was not higher in
RM11 than in 4T1 tumors [33]. Thus, differences in
integrin al1B1-expression cannot explain the contrasting
effect seen in these in vivo models.

The different effects seen between the MDA-MB-231
orthotopic and ectopic tumors show that tumor location
significantly influences the effect of integrin allfl in
vivo. The tumor microenvironment displays a significant
heterogeneity [65], and the subcutaneous location prob-
ably does not always give rise to a representative
tissue-specific stromal infiltration [66—68]. Supporting
the fact that the organ-specific fibroblasts influence
breast tumor growth differently, co-injection of breast
fibroblast with breast tumor cells increased tumor
growth, whereas no enhancement was seen with the
co-injection of skin fibroblasts [69]. The significance of
the local microenvironment illustrates the complexity of
in vivo studies, and may explain some of the discrepancies
seen with different mouse models. This underlines the im-
portance of choosing the appropriate preclinical model,
particularly when investigating the tumor microenviron-
ment. If possible, orthotopic models should be preferred
rather than ectopic ones.

Conclusion

Our findings indicate an important role for integrin
allPl in interstitial fluid pressure regulation in the
breast tumor microenvironment. Further, since integrin
allfpl seems to impede breast cancer growth, it may be
an interesting candidate for stromal targeted therapy.
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Additional file

Additional file 1: Figure S1. Collagen and activated fibroblasts in MDA-
MB-231 subcutaneous tumors. The total fraction of Picrosirius-red, aSMA
and PDGFR positive staining demonstrated no differences between
MDA-MB-231 subcutaneous tumors in WT and a11-KO mice (n=3 WT
and n=4 a11-KO). Mean + SD. (TIF 242 kb)
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