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 Introduction 

 Alzheimer’s disease (AD) was first described by the 
German psychiatrist, Alois Alzheimer, in the early 1900s 
 [1]  and is now considered the most prevalent progressive 
neurodegenerative disorder, responsible for 75% of all de-
mentia cases  [2, 3] . It affects approximately 35.6 million 
people worldwide. This will increase with population aging 
 [4]  and will probably affect nearly 106.8 million people by 
2050  [5] . It causes mental and cognitive deficits such as 
impaired memory, intellect and personality disorder in 
people older than 65 years of age  [6, 7] . In the advanced 
stages of the disease central sensory procedures, including 
the visual system, get affected, too  [8] . Collectively, AD-
associated problems decrease life expectancy, reduce qual-
ity of life, cause physical disability  [3] , and eventually lead 
to serious problems in daily life activities such as social and 
occupational functions  [9] . To reduce the social and eco-
nomic costs and the burden of the disease on patients and 
their families, some remarkable efforts have lately been 
made to find diagnostic markers which predict the disease 
earlier  [5] . Neuroimaging methods such as magnetic reso-
nance imaging and positron emission tomography have 
been developed to enable researchers to diagnose AD in its 
early stages  [10, 11] . Also, several biomarkers, which are 
crucial in detecting pathological features of AD, have been 
found in cerebrospinal fluid (CSF) and can be assessed 
 [12] . From a histological viewpoint, the progression of AD 
is associated with 3 cardinal neuropathological features: 
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 Abstract 

 Alzheimer’s disease (AD) is the most prevalent form of de-
mentia which affects people older than 60 years of age. In 
AD, the dysregulation of the amyloid-beta (Aβ) level leads to 
the appearance of senile plaques which contain Aβ deposi-
tions. Aβ is a complex biological molecule which interacts 
with many types of receptors and/or forms insoluble assem-
blies and, eventually, its nonphysiological depositions alter-
nate with the normal neuronal conditions. In this situation, 
AD signs appear and the patients experience marked cogni-
tional disabilities. In general, intellect, social skills, personal-
ity, and memory are influenced by this disease and, in the 
long run, it leads to a reduction in quality of life and life ex-
pectancy. Due to the pivotal role of Aβ in the pathobiology 
of AD, a great deal of effort has been made to reveal its exact 
role in neuronal dysfunctions and to finding efficacious ther-
apeutic strategies against its adverse neuronal outcomes. 
Hence, the determination of its different molecular assem-
blies and the mechanisms underlying its pathological effects 
are of interest. In the present paper, some of the well-estab-
lished structural forms of Aβ, its interactions with various re-
ceptors and possible molecular and cellular mechanisms un-
derlying its neurotoxicity are discussed. In addition, several 
Aβ-based rodent models of AD are reviewed. 
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the accumulation of extracellular senile plaques which is 
mediated by amyloid-beta (Aβ), intracellular neurofibril-
lary tangles (NFT) and synaptic degeneration ( fig. 1 )  [13, 
14] . These events mainly occur in the neocortex, hippo-
campus, and other subcortical regions which are necessary 
for cognitive function  [15] . The appearance of these mark-
ers apparently occurs many years prior to the clinical signs 
and symptoms of the disease, hence they could be good 
markers for AD prediction  [5] . Meanwhile, Aβ peptide is 
an important risk factor and has a central role in the onset 
and progression of AD  [16] . Aβ is produced in normal in-
dividuals but, under certain circumstances, this molecule 
may aggregate and start disease progression. There is a 
large body of evidence emphasizing that Aβ oligomers play 
the main role in neuronal dysfunction and AD  [17, 18] . In 
this article, the points that link AD to various aspects of Aβ 
pathoneurobiology are reviewed, which may help us un-
derstand the process of the disease more clearly.

  Generation and Clearance of Aβ 

 Amyloid precursor protein (APP) is a single-pass 
transmembrane protein which is expressed at high levels 
in the brain and metabolized in a rapid and highly com-

plex fashion  [19] . The APP is cleaved by two pathways. In 
the nonamyloidogenic pathway, the full-length APP is 
cleaved by α- and γ-secretases. Cleavage via the β- and 
γ-secretases can be promiscuous and produces several 
species of Aβ fragments.

  β-Site APP-cleaving enzyme 1 (BACE1) is the major 
β-secretase in the brain  [20] . Neurotoxic forms of Aβ cre-
ated by cleavage of APP initially by BACE1 produce the 
C99 fragment and soluble APPβ, and the C99 is then 
cleaved by γ-secretase to produce Aβ ( fig.  1 a)  [21–23] . 
Moreover, both presenilin 1 (PSEN1) and 2 (PSEN2) reg-
ulate the proteolytic function of γ-secretase, and muta-
tions in these proteins can change the activity of γ-secretase 
and increase the ratio of Aβ in early-onset forms of AD 
 [24] .

  It has also been suggested that increased levels of free 
cholesterol in neuronal cell membranes may provoke Aβ 
formation  [25] . Both clinical and genetic data emphasize 
the unique role of Aβ in the pathogenesis of AD  [26] .

  Based on etiological, pathological, genetic, and bio-
chemical aspects of the disease, AD is divided into two 
major forms: familial and sporadic  [6, 27] . It has been 
known that mutations within the APP gene result in the 
appearance of familial-type (early-onset autosomal-dom-
inant) AD. On the other hand, the existence of an extra 
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  Fig. 1.  The 3 major features of AD within the neuronal system.  a  Cleavage of APP, and formation and accumulation of extraneuronal 
Aβ.  b  Formation and deposition of intraneuronal NFTs.  c  Synaptic dysfunction due to Aβ accumulation and its interaction with recep-
tors. AICD = APP intracellular domain. 
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copy of the APP gene, as in patients with Down’s syn-
drome, predominantly leads to the development of AD in 
the fifth decade of life  [28] . In young brains and under 
normal conditions, there is an equilibrium between the 
production and elimination of Aβ that maintains Aβ at 
constant levels, which is known as steady state  [29] . How-
ever, in aging and pathological conditions such as meta-
bolic disorders and excitotoxicity, the formation and 
clearance of Aβ have disturbances  [21]  that lead to an ac-
cumulation of Aβ and senile plaque formation  [3] .

  The imbalance of the Aβ level in AD may be due to its 
production and clearance in the brain. There are different 
pathways such as the activation of degrading enzymes, re-
ceptor-mediated cellular and vascular clearance and other 
mechanisms by which Aβ is cleared in the brain  [30–33] . 
Some receptors such as low-density lipoprotein receptor-
related protein 1 (LRP1) play an important role in the re-
ceptor-mediated clearance of Aβ  [30] . Studies have shown 
that conditional knockout of LRP1 in mouse forebrain 
neurons increased brain Aβ levels and exacerbated amy-
loid plaque deposition selectively in the cortex  [30] . Also, 
P-glycoprotein has been suggested to be involved in Aβ 
clearance as an Aβ efflux pump at the blood-brain barrier 
(BBB)  [31] . Experimental studies have shown that the ab-
lation of P-glycoprotein at the BBB enhanced Aβ deposi-
tion in the brain of an AD mouse model  [32] .

  Furthermore, Aβ is degraded by several peptidases, 
principally two zinc metalloendopeptidases referred to as 
neprilysin and insulin-degrading enzyme  [33] . Studies 
have shown that neprilysin knockout mice have increased 
levels of Aβ peptides in the brain. Moreover, the activity 
of neprilysin is reduced in the cortex and hippocampus of 
AD patients  [34] . Insulin-degrading enzyme is another 
regulator of Aβ levels in neuronal cells. Genetic studies 
have shown that insulin-degrading enzyme gene varia-
tions are associated with the clinical symptoms of AD 
 [35] . Endothelin-converting enzyme is another degrading 
enzyme which is expressed in neural tissues, cleaves ‘big 
endothelin’ to produce the vasoconstrictor endothelin-1 
and has a principal role in the degradation of Aβ  [36] .

  Population studies have demonstrated that apolipo-
protein E (ApoE) ε4 allele is a strong risk factor for late-
onset AD  [27] . ApoE, the dominant cholesterol and lipid 
carrier in the brain, is critical for Aβ catabolism. Also, 
ApoE receptors have been implicated in the clearance of 
Aβ across the BBB in AD  [37] . Impaired clearance of Aβ 
may also cause sporadic AD through interactions with 
ApoE4, decreased catabolism of Aβ via reduced proteo-
lytic enzymes, impaired transport across the BBB, or im-
paired CSF transport  [38] .

  Concentration-Related Behavior of Aβ 

 Interestingly, it should be pointed out that a very low 
amount of Aβ may have a role in neural development  [39]  
and in the regulation of cholinergic neurotransmission 
 [21] . It has been demonstrated that Aβ 1–40  at a nanomolar 
concentration inhibits the oxidation of CSF and plasma 
lipoproteins  [40] . Besides, neurons in response to oxida-
tive conditions overexpress Aβ to attenuate oxidative 
stress outcomes. The in vitro evaluations of the antioxi-
dant activity of Aβ have demonstrated that it is able to 
protect neurons from neurotoxicity in a concentration-
dependent manner  [28] . Aβ that accumulates along cere-
bral blood vessels is known as cerebral amyloid angiopa-
thy. This is frequently seen in AD cases and represents 
one of AD’s histopathological hallmarks.  [41] . It causes 
vasoconstriction and dysregulation of vascular tone.

  Hence, it appears that Aβ in higher concentrations, be-
sides neurotoxicity, impairs blood flow within the cere-
bral structure and accelerates neuronal dysfunction.

  Structure-Related Toxicity 

 Aβ assemblies are divided into three distinct groups 
(based on length, molecular weight, and microscopic di-
mensions) as follows: (1) very short oligomers, (2) Aβ-
derived diffusible ligands and (3) protofibrils. Very short 
oligomers of Aβ are referred to as dimmer and hexamer 
forms of Aβ. Aβ-derived diffusible ligands are small 
oligomers and their molecular weights range from 17 to 
42 kDa  [26] . Finally, protofibrils are transient structures 
which appear prior to the formation of mature amyloid 
fibrils and can be named prefibrillar assemblies  [29] .

  In their aggregated form, these peptides are able to in-
duce neurotoxicity  [15] . This ability, along with the ap-
pearance of novel structures, disrupts synaptic functions 
 [29] . Aβ in its specific structural forms provokes nitric 
oxide formation and an influx of calcium ions which 
might eventually lead to the formation of peroxynitrite 
radicals and cell death  [42] .

  It is to be noted that the accumulation of soluble oligo-
mers (nonfibrillar), but not of monomers or insoluble as-
semblies, has the same neurotoxic effects  [43, 44] . Interest-
ingly, some studies have indicated that soluble forms of Aβ 
can impair long-term potentiation and avoidance learning 
in animal models  [45] . Moreover, some of the biological 
events such as the production of new proteins and the gen-
eration of dendritic spines which are involved in memory 
functions are influenced by the soluble form of Aβ  [46] . 
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Therefore, neurodegeneration in AD is mediated in part 
through soluble forms of Aβ. This form of Aβ is increased 
in the brain of AD patients  [44]  and is detectable in their 
CSF and plasma  [47] . Some studies have demonstrated 
that soluble Aβ concentration correlates with cognitive de-
cline in AD-affected individuals  [43] . Hence, it may be 
considered as a reliable predictor of AD  [28] . This idea is 
also supported by animal studies  [48, 49] , in which soluble 
forms of Aβ levels correlate with AD progress in the trans-
genic mouse model of AD but plaque numbers or insolu-
ble Aβ levels have no significant relationship with the se-
verity of AD  [48] . Based on these findings, some recent 
studies have shown that Aβ dimers isolated from human 
brains are the most toxic species of peptide  [49, 50] .

  Overall, aggregated forms, soluble oligomers and in-
soluble assemblies of Aβ impair synaptic activity and in-
duce neuritis as well as triggering neurodegeneration  [50]  
and alternating synaptic proteins in AD  [43] .

  Aβ Interactions with Receptors 

 Ryanodine receptors are expressed in the soma, prox-
imal dendrites, and distal processes and spines of neuro-
nal cells  [51] . It has been shown that Aβ increases the 
expression and activity of ryanodine receptor 3 and sub-
sequently these receptors disrupt intracellular Ca 2+  levels. 
The disruption of intracellular Ca 2+  homeostasis may 
have a role in AD pathology  [52] .

  Also, N-methyl- D -aspartate (NMDA) receptor stimu-
lation and intracellular signaling of AMPA (α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid) receptor 
trafficking are influenced by the soluble form of Aβ  [46] . 
Aβ interacts with NMDA receptors, which are responsi-
ble for maintaining glutamate homeostasis within the 
neurons. Dysregulation of this hemostasis may lead to ex-
citotoxicity and impacts on the neuronal plasticity  [53] .

  LRP1 is a transmembrane protein which acts as a sig-
naling receptor and cargo transporter. It has some essen-
tial neural functions, including the process of APP and 
modulation of the toxicity of the resulting Aβ. Further-
more, LPR1 modulates NMDA receptor function  [54] . 
LRP1 and its ligands, ApoE and α 2 -macroglobulin, are 
involved in Aβ deposition through sequestration and re-
moval of its soluble forms  [55] .

  Sorting protein-related receptor (sorLA) is another 
low-density lipoprotein receptor family which is ex-
pressed in neurons and controls APP trafficking/process-
ing and regulates its conversion to Aβ  [56] . AD progres-
sion disrupts the expression of sorLA and its regulatory 

function  [57] . sorLA gene-inherited variants may regu-
late the tissue-specific expression of sorLA, which may be 
associated with late-onset AD  [58] .

  CD36 is an innate immunity receptor which is present 
in endothelial cells and microglia. It binds to Aβ and ac-
tivates reactive oxygen species production, vasoconstric-
tion, and vascular tone dysregulation. Collectively, these 
events may provoke neuronal damage in disease progress 
 [59] .

  N-formyl peptide receptor like-1 (FPRL-1) is a seven-
transmembrane, G-protein-coupled receptor. It is ex-
pressed on human mononuclear monocytes like microg-
lia. Aβ 1–42  is a chemotactic agonist for this receptor. Fol-
lowing infiltrating senile plaques in the brain of AD 
patients, its expression is increased in inflammatory cells. 
Thus, this receptor may have a role in inflammation seen 
in AD  [60] .

  Moreover, Aβ interacts with other receptors such as 
tyrosine kinase (TrkA), pan-neurotrophin p75 (p75NTR) 
and α7 nicotinic acetylcholine (nAChR)  [61] .

  Several neurotrophin signaling pathways may be acti-
vated in response to Aβ. Aβ increases the nerve growth 
factor and its receptor TrkA expression  [62] . In addition, 
the interaction of Aβ with p75NTR has a pivotal role in 
AD pathogenesis. Cholinergic basal forebrain neurons 
express p75NTR receptors and Aβ may induce apoptosis 
through these receptors  [61] . Moreover, TrkA reduces 
β-cleavage of APP, whereas p75NTR activates this pro-
cess. Also, normal aging activates Aβ generation in the 
brain by ‘switching’ from the TrkA to the p75NTR recep-
tor system  [62] .

  The interaction of Aβ with α7 nAChR promotes the 
endocytosis of NMDA receptors and impairs normal 
cholinergic neurotransmission  [29] . Furthermore, Aβ 
shows antagonistic effects on α7 nAChR in a dose-depen-
dent manner, and its pathological function may partially 
correlate with the blocking of these receptors  [39] .

  Aβ and the Immune System 

 In response to Aβ-induced neurotoxicity in AD, both 
humoral and cellular immunity are activated. Aging is 
commonly accompanied by a progressive dysregulation 
of the immune response, mainly due to alterations of cel-
lular immunity. In comparison to these changes in cellu-
lar immunity, many features of innate immunity are rela-
tively well maintained with age  [63] .

  A number of publications have reported the presence 
of anti-Aβ antibodies in the blood and CSF of patients 
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with AD and healthy subjects  [64] . Also, some drugs 
have recently been designed based on fully human anti-
Aβ monoclonal antibodies for the clearance of Aβ  [65, 
66] .

  Aβ deposition is responsible for microglia activation. 
Aβ contributes to the enhancement of the inflammatory 
response by NF-κB stimulation, a nuclear factor that is 
implicated in cytokine production and also regulates the 
ERK (extracellular signal-regulated kinase) and MAPK 
(mitogen-activated protein kinase) pathways that lead to 
cytokine and chemokine production  [67] . Toll-like re-
ceptors (TLR) are important for regulating microglial re-
sponses to Aβ and fibrillar Aβ triggers microglia inflam-
matory cytokine production via TLR4-TLR6 heterodi-
mers, whose assembly is regulated by CD36. Modification 
of the inflammatory state of microglia/macrophages may 
have an axial role in AD-related pathology  [68] .

  Prion-Like Mechanism of Aβ Toxicity 

 The concept of ‘prion-like’ has been suggested to ex-
plain the pathogenic mechanism of all the principal neu-
rodegenerative disorders associated with protein mis-
folding, including AD  [69] .

  Like prions, Aβ peptides may fold in different man-
ners, thus giving rise to ‘strains’ with specific pathological 
aspects. Also, Aβ oligomers show a high affinity for bind-
ing to cellular prion protein (PrP C ). Aβ oligomers alter 
the activity of the Src family tyrosine kinase Fyn which 
participates in the PrP C -regulated signaling pathway  [70] . 
Also, Aβ binds to postsynaptic PrP C  and activates Fyn to 
impair neural function  [71] . It has been reported that 
NMDA receptors are necessary for the transduction of 
Aβ toxic signaling  [70] . Another study has indicated that 
the Aβ-PrP C  complex exerts its cytotoxicity via trans-
membrane LRP1  [72] . Additionally, the pattern of trans-
mission and the spreading of Aβ are similar to prions in 
the brain of AD patients  [73] .

  Aβ and Neurofibrillary Tangles 

 Tau is a microtubule-associated neuronal protein. It 
is generated by neurons and is localized in the cell body 
and axons  [74, 75] . Under normal conditions, nerve 
growth factor increases tau expression during neuronal 
development  [76] . However, in some pathological con-
ditions it is also produced by glial cells  [75, 77] . Al-
though tau’s main expression region is in the central 

nervous system, its mRNA is found in peripheral tis-
sues, too  [75] . In the brain, six tau isoforms are gener-
ated from a single gene through the alternative splicing 
of mRNA  [74, 77] . Under normal conditions, tau pro-
motes the assembly of tubulin into microtubules and 
maintains their stability  [78, 79] . Besides this function, 
it interacts with spectrin and actin filaments  [75]  and 
has a role in TrkA receptor-mediated signal transduc-
tion  [74] . It is thought that tau abnormalities result in 
NFT production and neuronal death that eventually 
leads to dementia  [80] . Accumulations of tau occur in a 
wide spectrum of neurodegenerative disorders such as 
progressive supranuclear palsy, corticobasal degenera-
tion, Pick’s disease, argyrophilic grain disease, the Par-
kinson-dementia complex of Guam, and AD  [77] . The 
hyperphosphorylated form of tau protein exerts neuro-
toxic effects in these diseases which are collectively 
termed as tauopathies  [74] . Tau in its hyperphosphory-
lated forms accumulates in somatodendritic parts of the 
neurons and becomes the core component of NFTs  [76] . 
NFTs are structurally paired helical filaments which are 
composed of hyperphosphorylated tau proteins and 
neurofilaments  [15, 77] . The formation of NFTs is di-
rectly associated with neuronal dysfunction and the 
number of NFTs are related to the degree of dementia 
in AD  [81] . It has been suggested that many years prior 
to the appearance of clinical signs of AD  [5]  the deposi-
tion of both NFT and Aβ occurs within the neocortex, 
hippocampus, and other cognition-related subcortical 
structures  [15] . Increasing evidence shows that Aβ can 
be internalized or produced inside of the cells. This pro-
vides the opportunity for Aβ to facilitate NFT formation 
 [82] . On the other hand, the disruption in tau formation 
can influence the production of Aβ and amyloid plaques 
 [82, 83] . Three major pathways have been proposed to 
illustrate the link between Aβ and tau pathology. First, 
the activation of tau kinases by Aβ induces NFT forma-
tion through tau hyperphosphorylation. Second, Aβ de-
creases tau degradation by the promotion of protea-
some dysfunction and, finally, Aβ activates caspase-3, 
which causes the truncation of tau and altered tau ag-
gregation that leads to NFT formation ( fig. 2 )  [84] . Since 
immunotherapy with anti-Aβ antibodies in a triple 
transgenic mouse model of AD reduced Aβ accumula-
tion and slowed the formation of NFT, it seems that Aβ 
is also involved in the formation of NFTs  [85] . This sur-
mise is supported by the fact that during AD develop-
ment NFTs gradually accumulate in limbic areas and in 
the isocortex after Aβ aggregation and cause dementia 
and cognitive dysfunction  [80] .
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  Synthetic and Naturally Secreted Aβ 

 Aβ assemblies are classified as synthetic and naturally 
secreted forms. Synthetic Aβ oligomers include 10, 40 or 
42 peptides and mimic the most common forms of Aβ 
which are found in both AD and the normal human brain 
 [86] . It has recently been shown that synthetic Aβ dimers 
which mimic the natural ones can make some stable pro-
tofibrils that persist for a long time and impair synaptic 
plasticity  [87] . Moreover, these synthetic forms of Aβ are 
chemically defined and can be readily synthesized and 
biophysically characterized  [46] . On the other hand, for 
the achievement of adequate memory disruption in ani-
mals these forms of Aβ must be used at higher doses  [50] .

  Naturally secreted Aβ peptides are usually obtained 
from CHO (cultured Chinese hamster ovary) cells which 
stably overexpress APP V717F  (a mutant form of APP 
known to cause the familial form of AD)  [50, 88]  and re-
lease soluble oligomers (dimmers, trimmers and tetra-
mers) and monomers of Aβ  [50, 86] . Importantly, bio-
chemical properties of Aβ   assemblies derived from this 
cell line have been reported  [50] . There are some other 
natural forms of Aβ which can be produced in the brains 
of patients with AD, including Aβ 25–35 . Aβ 25–35  is a frag-
ment of full-peptide Aβ  [89] . It forms β-sheets similarly, 
which provoke neuronal cell death, memory impairment 
and synaptic damage  [90, 91] . Recent evidence shows that 
a single-dose intracerebroventricular injection of this 
form can mimic some main neuropathological signs of 
AD in its early stages in rats  [92] .

  As mentioned above, synthetic forms of Aβ contain 
predefined lengths of peptides, whereas CHO-derived Aβ 
assemblies, like other naturally produced brain and CSF 
Aβ peptides, are heterogeneous in length. On the other 
hand, unlike the synthetic forms of Aβ, naturally pro-
duced Aβ peptides exert their biological effects only at 

very low doses and, therefore, they are able to effectively 
disrupt memory and long-term potentiation in animal 
models  [48, 50] .

  Aβ-Based Rodent Models 

 Aβ is able to induce neurotoxicity directly and cause 
destruction in cholinergic basal forebrain projections 
 [21] ; moreover, it can disrupt memory skills in experi-
mental models. Different doses of synthetic and/or natu-
rally secreted Aβ peptides are stereotactically delivered 
into the brain through intracerebroventricular  [46, 48, 93, 
94]  and/or intrahippocampal injections for the induction 
of experimental AD in rodents  [95] .

  Nowadays, transgenic and knockout rodents  [96, 97]  
have been developed as well as other transgenic models 
such as  Caenorhabditis elegans   [98, 99] ,  Drosophila mela-
nogaster   [100]  and viral vector-driven models of AD  [101] , 
but mice are by far the most used genus. Due to the com-
plexity of AD, it has been difficult to create a transgenic 
model that replicates the multiple characteristics of the 
disease. Thus, most of the transgenic models that have 
been generated to date exhibit some of the major patho-
logical hallmarks of AD  [102] . By considering amyloid 
importance in AD pathogenesis, the main focus of model-
ing studies is on amyloid deposition  [101] . After the dis-
covery of familial AD mutations in APP, modeling studies 
focused on making AD models based on the overexpres-
sion of transgenes containing familial AD mutations 
 [103] . The first predication of the AD transgenic model 
was reported in 1995  [104] , which expressed high levels of 
mutant APP to generate extracellular Aβ in specific parts 
of the brain  [105] . Consequently, numerous models have 
been successfully developed which are deposits of amyloid 
plaque  [106] . Some of these models are shown in  table 1 .

  Fig. 2.  Interrelationship between Aβ and 
NFT formation. 
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  The type of mutation affects plaque formation in mod-
els. For example, mutations at the N terminus of Aβ lead 
to an increase in Aβ 40  and Aβ 42 , whereas mutations at the 
C terminus lead to an increase in the Aβ 1–42  form  [102] . 
However, a mutant of the amyloid-related gene carrier 
has been crossed with the human APP overexpressing 
line in these models. Most of these models express trans-
genic APP at an extremely higher level than the endoge-
nous APP. Most of the transgenic animals exhibit age-
dependent amyloid deposition similar to that found in 
AD.

  Conclusion 

 The most common neurodegenerative disorder and 
the most important cause of dementia in elderly people 
appears to be AD, and Aβ peptide has a substantial role 
in its pathogenesis. The appearance of Aβ occurs many 
years before the clinical signs and symptoms of the dis-
ease, so it could be a reliable biomarker for AD prediction. 
As indicated, Aβ plays an important role in the formation 
of both amyloid plaques and NFTs, which gradually leads 
to AD. Aβ deposition leads to synaptic degeneration and 
interacts with different types of central nervous system 
receptors; hence, it disrupts neuronal homeostasis. More-
over, Aβ deposition along the cerebral vessels alters their 

tonicity and triggers some of the cerebrovascular deficits. 
Furthermore, its accumulation disrupts intracellular Ca 2+  
homeostasis which ultimately reduces neuronal Ca 2+  
buffering capacity and increases excitotoxicity outcomes. 
Also, Aβ peptides may fold in different ways and show a 
prion-like pathology in the brain of AD patients.

  Recently, most of the efforts have been directed to con-
trolling the production and clearance of Aβ. Interestingly, 
given this, anti-Aβ monoclonal antibodies have been de-
veloped as a novel strategy in the treatment of AD. Fur-
thermore, animal models related to Aβ neurotoxicity 
have been developed for the better understanding of AD 
and for the testing of new strategies against it. The exact 
mechanisms of this peptide are unclear and more studies 
need to be done to clarify them.
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 Table 1.  Some of amyloid-based transgenic animal models of AD

Transgenic 
line

Promoter Memory 
deficits

Neurological characteristic Ref.

PDAPP PDGF β + Aβ deposits, neuritic plaques, synaptic loss, astrocytosis and microgliosis 104
BRI-Aβ42 MoPrp – Aβ plaques in the cerebellum, extracellular Aβ plaques in the hippocampus 96
Arc Aβ MoPrP + Aβ deposits in cortex and hippocampus, Aβ plaques, cerebral amyloid 

angiopathy present
97

TgAPParc Thy1.2 + High APParc levels, amyloid deposition in subiculum and thalamus 107
5XFAD Thy1 + Aβ42 accumulation, amyloid deposition and gliosis, synapse degeneration, 

increased p25 levels, neuron loss
108

Tg-SwDI/B Thy1.2 + Plaques in hippocampus and cortex, Aβ deposits throughout forebrain 109
Tet-APPSwe/Ind Tetracycline 

responsive 
(pTetSplice)

NA High MMo/huAPP overexpiration, doxycycline inhibits APP expression 
and reduces Aβ production

110

APPSWE Hamster PrP + Aβ plaques, oxidative lipid and glycoxidative damage 111
PDGF-APPSwInd PDGF β + Aβ and Aβ42 in neocortical and hippocampus, high levels of Aβ1 – 42 

resulted in Aβ plaques 
112

McGill-R-
Thy1-APP

Thy1.2 + Intraneuronal Aβ accumulation, extracellular Aβ deposits, 
thioflavine S-positive amyloid plaques, glial activation

113

 NA = Not assessed.
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