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Abstract: Glioblastoma (GBM) is the most lethal type of primary brain cancer. Standard care using
chemo- and radio-therapy modestly increases the overall survival of patients; however, recurrence is
inevitable, due to treatment resistance and lack of response to targeted therapies. GBM therapy resis-
tance has been attributed to several extrinsic and intrinsic factors which affect the dynamics of tumor
evolution and physiology thus creating clinical challenges. Tumor-intrinsic factors such as tumor
heterogeneity, hypermutation, altered metabolomics and oncologically activated alternative splicing
pathways change the tumor landscape to facilitate therapy failure and tumor progression. Moreover,
tumor-extrinsic factors such as hypoxia and an immune-suppressive tumor microenvironment (TME)
are the chief causes of immunotherapy failure in GBM. Amid the success of immunotherapy in
other cancers, GBM has occurred as a model of resistance, thus focusing current efforts on not only
alleviating the immunotolerance but also evading the escape mechanisms of tumor cells to therapy,
caused by inter- and intra-tumoral heterogeneity. Here we review the various mechanisms of therapy
resistance in GBM, caused by the continuously evolving tumor dynamics as well as the complex TME,
which cumulatively contribute to GBM malignancy and therapy failure; in an attempt to understand
and identify effective therapies for recurrent GBM.

Keywords: glioblastoma; resistance; recurrence; tumor heterogeneity; hypermutation; metabolism;
splicing; tumor microenvironment; hypoxia

1. Introduction

Glioblastoma (GBM) is the most aggressive (WHO grade IV) form of glioma arising
from astrocytes or their precursors in the Central Nervous System [1]. It is the most
lethal type of glioma with an extremely poor prognosis and a median survival of only
12.1 months [2]. Standard care involves surgical resection followed by radiotherapy along
with concomitant chemotherapy with temozolomide (TMZ) and adjuvant doses of TMZ [2,
3]. This treatment regimen has increased the median overall survival of GBM patients
from 12.1 to 14.6 months in adults [4] and from 7.6 to 9.3 months in elderly patients [5].
However, patients with GBM eventually develop resistance to therapy resulting in recurrent
tumors. Thus, an understanding of the diverse mechanisms of resistance is paramount in
developing effective treatment regimens against GBM.

Intrinsic resistance to the therapeutic intervention in GBM has long been attributed
to the activity of the DNA repair protein O-6-methylguanine-DNA methyltransferase
(MGMT). Gliomas with methylated MGMT promoters are more sensitive to TMZ-induced
cytotoxicity with a longer median overall survival, as compared to patients whose tu-
mors have unmethylated MGMT promoters [5,6]. However, recent studies show that
even MGMT hypermethylated glioma cells show robust expression of MGMT through
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promoter-independent mechanisms, thereby developing resistance to TMZ treatment [7,8].
Nevertheless, combination therapy using an MGMT inhibitor, O6-benzylguanine (O6BG)
alongside TMZ did not show any clinical benefit compared to TMZ alone [9,10]. Moreover,
GBM therapy resistance is caused by several other pathways and mechanisms which are
either intrinsic to tumor development or are acquired as a result of extrinsic factors such
as hypoxia or the immuno-suppressive tumor microenvironment (TME). Factors that are
intrinsic to therapy resistance other than MGMT, involve the dynamics of tumor evolution
driven by inter- and intra-tumor heterogeneity, development of a high tumor mutation
burden resulting in hypermutated tumors, metabolic changes that occur due to manipula-
tion of free radical signaling and oncogenic splicing pathways preferentially expressed in
therapy resistant GBM tumors as compared to the normal brain.

Intratumoral heterogeneity is one of the leading causes of therapy failure in GBM
and arises due to selective pressures such as clonal competition, nutrient limitation and
treatment. Such restricting factors lead to competition between subclones which ultimately
results in an ideal microenvironment for tumor growth [11]. Variability in clonal pop-
ulations is also associated with a diverse mutation load. GBM tumors typically have a
low tumor mutation burden (TMB), however a subset of patients develops a high TMB,
typically in response to therapy (hypermutated tumors). Previous studies have shown
hypermutated tumors to benefit from immune checkpoint therapies, as they offer novel
neoantigen signatures [12,13]. However, clinical trials using anti-PD-1 therapy in GBM
have shown limited success [14]. Thus, current studies are aimed at understanding the
mechanisms by which hypermutation develops and their response to therapy.

The Warburg effect is an intrinsic hallmark of cancer cells, where the tumor cells show
a metabolic shift in the generation of ATP from oxidative phosphorylation (OXPHOS) to
glycolysis. Cancer cells can utilize aerobic glycolysis, or glycolysis even when oxygen is
present, which is less efficient in ATP production as compared to OXPHOS but can utilize
glucose in other biosynthetic pathways for the production of lipids, nucleic acids, and some
proteins [15]. Similar changes have also been observed in the metabolome of therapy resis-
tant GBM cells wherein different oncogenic variations result in the induction of common
metabolic pathways. For example, purine metabolites are known to cause resistance to
radiation therapy (RT) by enabling repair of the RT-induced double-strand breaks (DSBs),
and thus inhibiting these metabolites alleviates resistance to RT in GBM [16]. Moreover, the
oncogenic induction of altered splicing pathways in GBM is another intrinsic regulator of
resistance in GBM. Genome-wide transcriptome analysis in GBM has revealed the presence
of aberrant AS events in tumors that generate tumor-specific isoforms having enhanced
oncogenic activities as compared to normal brain. Such isoforms are also involved in ther-
apy resistance [17–20]. For example, splicing profiles of glioma subtypes proneural (PN)
and mesenchymal (MES) glioma stem cell (GSC) lines have shown significant differences
in the genes implicated in the hallmark characteristics of cancer, contributing to PN-MES
transition and subsequent tumor heterogeneity and resistance [21].

On the other hand, the hypoxic and immune rich TME extrinsically affects GBM
tumorigenesis and response to therapy. Hypoxia, or physiologically low levels of oxygen
tension in the tumor, is a major cause of radio-resistance in glioma as RT induces DNA
damage but does not maintain its effects [22]. Additionally, in GBM xenografts it has been
shown that hypoxic stress increases hypoxia-inducible factor 1 (HIF-1)-mediated induction
of the drug efflux transporter ABCB1, leading to chemo-resistance [23]. Furthermore, GBM
tumors have a highly immunosuppressive TME, which is the leading cause of immunother-
apy resistance in GBM. This is caused by various factors extrinsic to the tumor, such as
infiltration of immunosuppressive myeloid cells, expression of checkpoint inhibitors and
the dense fibrous tumor stroma that restricts the infiltration of lymphocytes [24]. Other
non-neoplastic cells of the TME include the neural precursor cells, tumor vascular niche
comprising of endothelial cells, pericytes and vascular smooth muscle cells, astrocytes, and
fibroblasts all of which interact with and drive the proliferation of the tumor neoplastic
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population [25,26]. Thus, cumulative immunotherapy targeting the various barriers of the
TME is required to overcome immunotherapy resistance in GBM.

Current studies in the field of recurrent glioma aim at understanding the mechanisms
of resistance caused by the aforementioned extrinsic and intrinsic factors. Despite multi-
ple treatment approaches, tumors inevitably relapse after six to nine months of primary
treatment and there is no standard treatment for recurrent GBM patients [27]. In a study
of 105 patients, who received RT-TMZ treatment, central relapse occurred in 77% patients
at the site of the original tumor edge, was the most predominant pattern of relapse [28].
Treatment options include re-resection of tumor, re-irradiation, systemic chemotherapy
with the anti-angiogenesis agent bevacizumab, and other experimental approaches through
clinical trials. In MGMT-methylated patients relapsing after TMZ treatment, a rechallenge
could be proposed [29]. In a study by Mallick et al., 2016, a treatment algorithm has been
proposed for recurrent glioma patients based on disease state and patient profile [30].
Though trials have been successful in some patients, no treatment strategy has signif-
icantly improved survival of recurrent GBM patients with an average overall survival
of less than six months [31,32]. This review aims at understanding the mechanisms of
therapy resistance that cause tumor recurrence in glioma, based on recent preclinical and
clinical studies.

2. Intrinsic Factors of Therapy Resistance
2.1. Tumor Heterogeneity-Mediated Therapy Resistance

Tumor heterogeneity exists both at the molecular and cellular level and is exhibited
within a tumor (Intra-tumor) as well as across different tumors (Inter-tumor). Based on
Inter-tumor heterogeneity studies of bulk gene expression analysis from TCGA, glioblas-
toma (GBM) has been classified into the Proneural (PN), Classical (CL) and Mesenchymal
(MES) tumor subtypes [33,34]. Each of these subtypes has a predominant genetic mutation
signature. For example, the PN subtype has an enrichment of platelet-derived growth
factor receptor A (PDGFRA) mutations while the CL and MES subtypes have a predomi-
nance of epidermal growth factor receptor (EGFR) and neurofibromin 1 (NF1) alterations
respectively. Moreover, multi-region tumor sampling has shown that different type of cells,
and in different ratios, can co-exist within different regions of the same tumor. Thus, re-
gardless of the subtype, each GBM tumor possesses varying populations and types of cells
in the TME from all the three subtype tumors, contributing to intra-tumor heterogeneity.
Moreover, single cell RNA sequencing (scRNA seq) profiling has shown that the GBM
subtypes can inter-change over time and with therapeutic application, thus adding to the
complexity of Intra-tumor heterogeneity (Figure 1) [34–36].

Figure 1. Different transcritptional subtypes of GBM cells and their associated mutations in
bold. scRNA seq studies have elucidated three different subtypes of GBM cells namely Proneural
(PN), Classical (CL), and Mesenchymal (MES) subtypes manifesting the PDFRA, EGFR and NF1
mutations respectively.
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Further, recent studies using an integrative approach by combining scRNA profil-
ing from a large number of tumor samples with genetic and expression datasets from
TCGA have refined these concepts and showed that GBM cells exists in a limited set of
developmental states namely (1) neural-progenitor-like (NPC-like), (2) oligodendrocyte-
progenitor-like (OPC-like), (3) astrocyte-like (AC-like), and (4) mesenchymal-like (MES-like)
states. These states are driven by genetic alterations in cyclin dependent kinase 4 (CDK4),
PDGFRA, EGFR, and NF1 genes respectively, that favor a particular developmental state,
confirming the modulation of GBM cells by GBM genetic drivers. Further, lineage tracing
of uniquely barcoded single cells in vivo has shown that these cells exhibit plasticity, and
a single cell type has the potential to convert into all other cell types influenced by the
in vivo TME, collectively contributing to the heterogeneity in GBM and rendering GBM
therapeutically resistant [36,37].

Such divergent evolution of sub-clonal populations with distinct mutation signatures
and cell types in different ratios in the same tumor (intratumoral heterogeneity) is the root
cause of failure for multimodal therapies including RT, chemotherapy, and other targeted
therapies. Though, therapeutic treatments can target and destroy the treatment-sensitive
cell clones or fractions of subpopulations, outgrowth of treatment-resistant clones or
populations (both intrinsic and acquired resistance) are responsible for therapy-resistance
and ultimately tumor recurrence [38]. Studies profiling low- & high-grade gliomas (LGG
& HGG) and their paired recurrent tumors have shown temozolomide (TMZ)-therapy to
drive such treatment-resistant clones as the recurrent counterparts were found to bear a
specific TMZ-induced mutagenesis signature [39–41]. Both linear and divergent models of
clonal evolution have been attributed to tumor recurrence and subsequent resistance. While
some GBM recurrences bear driver mutation signatures such as p53 already present in the
primary/initial tumor (linear evolution), other recurrent tumors show a more branched
divergent evolution wherein the acquired mutations driving the tumor recurrence are
not present in the primary tumor [39,41,42]. To summarize, when a normal cell acquires
sequential genetic mutations and evolves into a tumor initiating cell, it expands and further
evolves into different sub-clonal populations giving rise to intratumoral heterogeneity.
External stresses such as application of therapies could lead to selection of early or late
clonal populations in these evolution processes or generate therapy-selected subclones
which could be resistant to current or different therapies such as RT. The therapy-resistant
clones then seed the recurrent tumor which is comprised of a new heterogenous TME
having a distinct clonal population from the original tumor and harbors a distinct set of
genetic mutations which are both new and common to the initial tumor [38].

Meta-analysis of clinical trials in GBM has documented the failure of monotherapies
in GBM owing to the complex intratumoral heterogeneity and has highlighted the need to
develop newer multimodal therapies to treat this complex disease. Unfortunately, recently
tested monotherapies have been met with limited success in clinical trials. For example,
monoclonal antibodies targeting programmed cell death protein 1 (PD-1) protein and its
ligand programmed death-ligand (PDL-1) to enhance the cytotoxic activity of CD8+ T cells
has been found to be successful in other cancers such as melanoma and non-small cell
lung cancer but failed to show success in GBM as reported by the CheckMate phase III
clinical trial (NCT02017717) [43]. Moreover, even combination therapies coupling anti-
PD-1/PDL-1 with other targets which have proven to be successful pre-clinically have
not progressed ahead to clinical trials [44,45]. The clinical trial targeting EGFRvIII, a
constitutively active mutant of EGFR, through the vaccine rindopepimut (phase III ACT
IV clinical trial) did not show any improvement in patient survival in GBM, possibly
due to the loss of EGFRvIII expression upon therapy or in recurrent GBM [46]. Such
studies thus emphasize a deep understanding of intratumoral heterogeneity in GBM and
stress the need of further understanding of the underlying tumor biology that will lead to
effective multimodal therapies. Furthermore, a novel small molecule inhibitor, BGB324, has
been tested pre-clinically in immunocompromised mice with GSC-derived MES-like GBM
tumors to target the TAM (Tyro-3, Axl, and Mer) receptor tyrosine kinase family member
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Axl, thereby disrupting it’s signaling with ligand protein S (PROS1), has significantly
improved survival and is thus under investigation in recurrent GBM models. If successful,
this approach might be promoted to clinical trials [47]. Thus, coupling this molecule with
RT, which has the strongest impact on proneural cells, and TMZ which showed efficacy
in rapidly proliferating CL GBM cells, might be addressing the complex issue of tumor
heterogeneity in GBM [48].

2.2. Role of GBM Tumor Models in Studying Therapy Resistance

In addition to the complex heterogeneity of GBM tumors at the genetic and develop-
mental level, there exists a unique immune TME. In order to have a deep understanding of
the tumor biology, GBM models are needed which faithfully recapitulate potential GBM
states and their association with the TME. Serum-free glioma spheres is a widely used
in vitro GBM model which have been categorized to be both radio- and chemo-resistant,
but it is not clear if a radio-chemotherapy would lead to selection of subclones which
would lead to recurrence [49–51]. Also, the lack of tumor architecture and TME interac-
tions in these in vitro models limits its usefulness. Genetically engineered mouse models
(GEMMs) are derived from combined mutations in the primary GBM tumor that drive
tumor growth. The GEMMs recapitulate the tumor architecture and are useful in studying
signaling mechanisms linked to driver mutations. However, in a GBM tumor there are
multiple mutations linked to tumorigenesis and hence their interdependence cannot be
examined in the GEMMs [38]. Patient-derived xenograft (PDX) models on the other hand
provide a complete mutational profile that can be stably passed in vivo, possess a TME
that can form heterogenous cells and are thought to recapitulate the histopathological fea-
tures of the parent GBM [52]. However, recent studies have shown PDX tumors to follow
the trajectory of a mouse-specific tumor evolution, thus jeopardizing their usefulness for
therapeutic modeling [53].

These challenges have been met with the recently developed tumor organoid (TO) [54]
model and the cerebral organoid glioma (GLICO) model wherein patient-derived GSCs
home towards human embryonic stem cell (hESC)-derived cerebral organoids and deeply
invade and proliferate within the host tissue to form tumors that phenocopy human tumors
in clinic [55]. Moreover, cancer avatar tumor organoid models derived from genetically
engineered human pluripotent stem cells (hiPSCs) are shown to form secondary tumors
that resemble patient tumor characteristics including tumor heterogeneity. Introduction
of GBM-associated genetic driver mutations in hiPSCs (GBM avatars) has been shown
to result in the formation of high-grade gliomas that recapitulate the authentic cancer
pathobiology [56]. Further, recent studies including three-dimensional culture conditions
and scRNA seq has enabled the generation of GBM organoids (GBOs) in which unlike the
above organoid models, pieces of GBM around 1 mm in diameter are cultured instead of
dissociating them into single cells, this retains the cell-cell interactions without the presence
of an extracellular matrix. scRNA seq, histopathological analysis, and molecular profiling
have shown that GBOs faithfully recapitulate the cellular and molecular profiling of GBM
patient tumors and represent both inter- and intra-tumor heterogeneity. These organoid
tumor models also recapitulate other features of GBM tumors which are difficult to model
in in vitro conditions such as hypoxic gradients and tumor heterogeneity [57,58].

Current in vitro and in vivo GBM models are derived from primary tumor tissues
obtained at initial diagnosis to study pathway signaling in tumorigenesis and are extrap-
olated for their role in recurrent tumors. However, the divergent evolutionary nature of
the tumor shows that recurrent tumors are molecularly different from the primary/initial
tumors. Also, most animal models do not reveal the progression of tumor from a treatment
naïve-initial tumor state to a treatment refractory-relapse tumor condition. Hence models
which recapitulate the recurrent TME are required.



Cells 2021, 10, 484 6 of 20

2.3. Hypermutation-Induced Therapy Resistance

Owing to the subsequent resistance to therapy and inevitable tumor recurrence,
scientists resorted to large scale longitudinal analysis to compare pre- and post-treatment
tumor samples using high-throughput exome and transcriptome sequencing [11,39–41].
Such analysis revealed recurrent tumor types of two genomic outcomes–hypermutant and
non-hypermutant [59]. Hypermutated tumors were categorized by an increased load of
tumor burden, having >500 mutated genes per tumor, whereas the non-hypermutated
recurrent tumors had only ~50 mutations on average [39,41]. Moreover, hypermutated
recurrence arises only in TMZ-treated patients and were enriched for a unique TMZ-specific
mutation signature of C>T (G>A) transitions. Also, most of the hypermutated tumors
gain mutations in genes encoding DNA mismatch repair (MMR) proteins, and primarily
MutS homolog 2 (MSH2) and MutS homolog 6 (MSH6) [41]. The association of MMR
mutations and hypermutation in glioma has been studied for a long time [60,61], however,
they have not been functionally categorized and thus their role in causing hypermutation
is not clear. A recent study profiling 93 paired (primary and recurrent) glioma samples
has shown that all eight of the recurrent tumors which had MMR inactivation resulted in
hypermutation [41]. Moreover, in a much larger study involving 10,294 glioma patients,
identification of hypermutation driver mutations has shown that MMR mutations are the
most enriched ones (~91.2%) among a total of 36 enriched genes [40].

Next, earlier studies have shown that TMZ is a direct cause of hypermutation in recur-
rent gliomas as seen by the accumulation of a TMZ-specific mutational signature in these
tumors [39,62]. However, whole-exome and transcriptome studies in the paired tumor
samples have shown that only 17% of patients (17 of 100) in one study and 25.8% patients
(58 of 225) in another study, who had been subjected to TMZ treatment, resulted in hyper-
mutant recurrent tumors [40,41]. Thus, TMZ treatment in glioma might not always result
in hypermutation [40]. Interestingly, in the aforementioned studies, 16 of 17 patients [41]
and 91.2% of the 58 hypermutated patients [40] had MMR gene mutations, likely suggest-
ing that TMZ-treated gliomas that gain MMR inactivation mutations, universally evolve
to hypermutated recurrent tumors, while those lacking these potential driver mutations
resulted in non-hypermutant recurrent tumors.

Further, the study by Touat et al., 2020 which studied the mutational burden by
profiling 10,294 gliomas, found that hypermutant tumors or tumors with high mutation
burden have a worse overall survival as compared to non-hypermutant tumors in different
types of glioma including 1p/19q co-deleted oligodendrogliomas, isocitrate dehydrogenase
1/2 (IDH1/2)-mutant astrocytomas and IDH1/2 wild-type GBM [40]. However, contrary
studies from the Glioma Longitudinal Analysis (GLASS) Consortium analyzing a smaller
yet sizable cohort of 222 glioma patients, reported no difference in the overall survival
of patients with hypermutant vs non-hypermutant recurrences. The driver mutations
manifested in the original tumor were retained at recurrence with a slim possibility of
developing or acquiring new mutations at recurrence and the rate of hypermutation was
different across different glioma subtypes [11]. Both studies did longitudinal analysis of
paired original and recurrent tumors samples using DNA-sequencing datasets, however,
report opposing findings.

Studies in cancers with high tumor mutation burden are now focusing on exploiting
the increased neoantigen burden in such cancers to enhance immunogenicity. Cancers
with MMR deficiencies have been approved to be treated clinically by the PD-1 blocker
pembrolizumab [63,64]. However, MMR deficiency generally occurs at the initiation of the
tumor, for example in colorectal cancer (CRC), unlike in glioma, where MMR deficiency
occurs later due to post-treatment recurrence, and hence the immune regulation and re-
sponse to immunotherapy in glioma may differ from other cancers with MMR deficiencies.
In an attempt to find an association between MMR deficiency and immune infiltration,
Touat et al., 2020 found that while there was a high T-cell infiltration in CRC patients with
MMR deficiency, as compared to their MMR-proficient counterparts, both MMR-proficient
and post-treatment MMR–deficient glioma patients had reduced T-cell infiltration. Further,
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PD-1 blockade did not show any increase in survival or any histopathological changes in
glioma patients, thus suggesting a difference in the mutational landscape of hypermutated
gliomas as compared to other types of immune-responsive hypermutated cancers [40].
However, another study has shown clinical benefit in a pair of siblings with recurrent GBM
having biallelic mismatch repair deficiency, wherein treatment with the PD-1 inhibitor
nivolumab showed significant clinical and radiological responses [12].

Thus, other strategies of chemotherapy are warranted which retain sensitivity in
recurrent tumors and do not lead to such a high tumor mutation burden which ultimately
leads to therapy-resistance and reduced overall survival as compared to tumors with low
mutation burdens. Mathematical modeling studies using data from TMZ-treated patients
or with a nitrosourea drug called CCNU, predicted acquired resistance in 51% of LGG
patients treated with TMZ. However, none of the CCNU-treated patients were classified
into the acquired resistance category, suggesting that TMZ paradoxically increases tumor
progression in a subset of patients and hence identification of such a risk group is of high
importance [65]. This finding has been corroborated by the Touat et al., 2020 study where
the authors show that all MMR-deficient models that were resistant to TMZ, were sensitive
to CCNU, suggesting that hypermutant gliomas might still be sensitive to DNA damaging
agents other than TMZ [40].

2.4. Splicing-Mediated Therapy Resistance

Currently, effective therapeutic targets for GBM are severely lacking as the clinical
standard of care has not changed since the Stupp protocol was put into place in 2005 [4].
However, dysregulated RNA alternative splicing (AS) has gained attention in the past 15
years as sequencing has become more affordable and commonplace. AS is the process
of removing introns and joining together exons [66] in ways that are dictated by the
spliceosome and many accompanying splicing factors [67,68]. The spliceosome is a large
protein complex made up of multiple small nuclear RNA (snRNAs)–U1, U2, U4, U5
and U6–that combine with over 80 proteins to create RNA-protein complexes known
as small nuclear ribonucleoproteins (snRNPs, pronounced “snurps”) [69,70]. Although
few mutations in splicing factors or RNA binding proteins (RBPs) are found in gliomas,
dysregulation of AS in glioma has been described [71]. A large number of AS isoforms with
oncogenic functions in glioma has also been reported [8]. Furthermore, the U2 snRNP has
received a lot of attention due to a number of mutations in its protein member splicing factor
3B subunit 1 (SF3B1) in chronic lymphocytic leukemia and uveal melanoma [72–75]. Many
drugs have now been designed to specifically target SF3B1, including in glioma [76,77].
The SF3B1-targeting compounds spliceostatin A and sudemycin C1 have been shown
to specifically target glioma stem cells, which are notoriously known for being therapy
resistant, over normal neural stem cells [78]. A third SF3B1-targeting agent, palidomide B,
has also been shown to be effective against multiple central nervous system (CNS) cancer
lines, even before its target was fully realized [79]. However, targeting the spliceosome
may be tricky as there must be a large enough therapeutic window to show a cancer-
specific effect and an ability to cross the blood brain barrier. Nevertheless, multiple clinical
trials have been designed to answer this question [80]. As we await the results of direct
spliceosome inhibition, other indirect ways to target splicing remain through splicing
factors and isoform modulation (Figure 2).



Cells 2021, 10, 484 8 of 20

Figure 2. Splicing can be modulated at multiple levels. Pre-splicing, modifying enzymes, like the
methyltransferase PRMT5, can be inhibited preventing spliceosome assembly. Core spliceosome
components, like SF3B1, can also be inhibited leading to unproductive splicing. Isoform modulation
can also be a target of alternative splicing to switch to a less oncogenic protein isoform. Clinicaltrials.
gov identifiers (NCT) are included where small molecule inhibitors or modulators are being tested
in humans.

Accumulated studies have shown that splicing factors are dynamically expressed be-
tween normal brain and gliomas [81]. One of the larger studies evaluated over 1,500 RBPs,
finding 223 and 225 overexpressed between GBM and normal brain and glioma stem cells
(GSCs) and neural stem cells (NSCs), respectively, with 58 overlapping between GBM and
GSCs [82]. As such, targeting overexpressed RBPs has become an active area of research in
GBM. Overexpression of SRSF3 in GBM patient samples and GSCs was shown to effect
exon usage of multiple mitosis-related genes, where knockout normalized exon usage and
increased overall survival in mouse models [17]. In a high throughput screen of TMZ-
treated GL261 cells, Braun et al discovered a dependency on the arginine methyltransferase
PRMT5, showing its role in regulating detained introns. They went on to show that PRMT5
knockdown or inhibition could reverse this oncogenic splicing pattern and further created
a gene-based score for PRMT5 inhibition sensitivity [71]. Following this trend, post TMZ
treatment, RBM11 was shown to increase in expression where it was then packaged into
apoptotic vesicles that were taken up by surrounding surviving cells, which changed
overall splicing patterns and decreased TMZ drug sensitivity [83]. These studies show that
targeting splicing factors and RBPs in glioma is still an active and attractive area of research
for therapeutic development.

Another indirect way to target splicing is through modulation of specific protein
isoforms. Zhou et al focused on the downstream targets of SRSF1, which is upregulated
and a poor prognosis predictor in GBM and found that SRSF1 upregulation led to an
increase of the myosin IB full length isoform (MYO1B-fl). This isoform was membrane-
bound and promoted GBM cell proliferation, invasion, and survival [84]. Similarly, an
increase in SRSF6 phosphorylation led to an increase in the estrogen-related receptor
beta 2 (ERRb2), which was also membrane-bound and inhibited GBM cell migration,
invasion, and antagonized the nuclear-localized short form (ERRbsf) isoform, dampening
its transcription regulatory functions. Using both an inhibitor for SRSF6 phosphorylation,
TG-003, and an ERRb agonist, DY131, the isoform ratio was shifted to favor the ERRb2
isoform, which could be activated by DY131 to promote cell death [85]. EGFRvIII effects
isoform regulation through upregulating heterogeneous nuclear ribonucleoprotein A1
(hnRNPA1). hnRNPA1 promotes the splicing of Delta Max, a Myc interacting protein,
which augments EGFRvIII expression and promotes GBM cell proliferation in vitro [86].
Overall, a better understanding of dysregulated AS in GBM is warranted and may lead to
better therapeutic options in the future.

2.5. Metabolism as a barrier to RT and TMZ treatment

Radiation therapy (RT) and temozolomide (TMZ) treatment have been the two main
workhorses in treating GBM [87]. However, while they work upfront, resistance is rapid
and being able to better understand this resistance is necessary to develop second-line

Clinicaltrials.gov
Clinicaltrials.gov
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therapeutics [88]. The conventional mechanism of action for radiation is dependent on
reactive oxygen species (ROS) that cause DNA damage resulting in oxidative stress [89].
Normal cell metabolism favors OXPHOS where the final glycolysis product, pyruvate, is
shuttled into the mitochondria where electrons are transferred through the electron transfer
chain (ETC) to maximize production of ATP. However, this process is dependent on oxygen
and in low oxygen, or hypoxic conditions cells will turn to lactic acid fermentation, or
anaerobic glycolysis thus increasing the production of ROS [90]. Therefore, an attractive
avenue to increase RT sensitivity, or re-sensitize to RT, would be to increase intracellular
ROS or deplete antioxidants. Post RT treatment, antioxidants levels, like ascorbic acid
and glutathione (GSH), are decreased, with an increase of ATP and GTP [91]. With this
knowledge, experiments have been focused on manipulating the levels of glutathione and
ascorbic acid to treat radioresistant tumors [92]. One method that is currently in trials is
high dose ascorbic acid, which has been shown to markedly increase intracellular ROS and
is thought to inhibit glycolysis, disrupt labile iron metabolism, and induce double strand
breaks (DSBs) [93–95]. In addition, high ascorbic acid treatment showed radio-sensitization
of GBM to be a ROS-dependent cell death [96]. The combination treatment of radiation
and ascorbic acid is currently being tested in clinical trials (NCT02344355).

ROS modulation in IDH mutant (IDHmut) tumors can also re-sensitize to RT through
targeting glutamine metabolism. Glutaminase (GLS) catalyzes the hydrolysis of glutamine
to glutamate (and ammonia), which is one of the three amino acids necessary to make the
antioxidant GSH [97]. As (R)2-hydroxyglutarate (HG), the metabolite made by IDHmut,
inhibits the 2-oxoglutarate-dependent transaminases branched chain amino acid transam-
inase (BCAT)-1 and BCAT-2, these cells become dependent on GLS for glutamate and
subsequent GSH production [98]. In this way, GLS inhibition by CB-839 has been shown to
re-sensitize IDHmut gliomas to RT both in vivo and in vitro by depleting the antioxidant
GSH [98]. Currently, the combination of CB-839, radiation, and TMZ is recruiting IDHmut
patients for a clinical trial (NCT03528642).

Increasing mitochondrial ROS (mROS) has also been investigated to sensitize cells
to RT. Post-radiation, the Hypoxia Inducible Factor 1α (HIF1α) target gene pyruvate
dehydrogenase kinase (PDK) has been shown to be upregulated. PDK is a regulator
of pyruvate fate, where inhibiting PDK leads to a decrease of lactate production and
increases both glucose oxidation and mROS [99]. This effect has been shown both in vitro
and in vivo with concurrent radiation and in hypoxic conditions [100]. Furthermore, it
has been shown that a PDK inhibitor, dichloroacetate (DCA), can cross the blood brain
barrier (BBB) and was well tolerated in patients [101]. However, more research needs to be
completed to determine the efficacy of DCA in prolonging patient survival. While targeting
tumor metabolic changes induced by RT may be a potential therapeutic avenue in the
future, recent work has also shown that mice that were pre-irradiated before tumor cell
engraftment showed a decreased response to post-engraftment radiation treatment [91].
This study shows the importance of understanding the effects of radiation as most recurrent
gliomas will recur in a pre-irradiated microenvironment. Therefore, to design better second
line treatments, the effect of previous radiation needs to be considered.

However, RT is combined with the chemotherapeutic agent TMZ as the current stan-
dard of care treatment. TMZ is an alkylating agent that induces DNA damage, which can
be reversed by the DNA repair protein methyl guanine methyl transferase (MGMT) [102].
Tumors expressing MGMT are intrinsically resistant to TMZ, however others become resis-
tant post TMZ treatment as chromatin changes can allow MGMT to become expressed [103].
As this pathway has been exhaustively targeted, another potential target are the abnormal
metabolic changes due to TMZ treatment.

While most studies focus on nuclear DNA damage caused by TMZ, Oliva et al investi-
gated the effect of TMZ on mitochondrial DNA (mtDNA). They found a decrease in total
mtDNA, as well as large deletions that effected mtDNA integrity post TMZ treatment. As
mtDNA codes for electron transport chain (ETC) proteins, they went on to show acquired
TMZ resistance in both GBM cell lines and clinical samples showed a remodeling of the ETC
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with a decrease in Complex I and V, and an increase in Complex II-III, and IV in mitochon-
dria [104]. This change in ETC components was corroborated in a second TMZ-acquired
resistant model where Complex I, II, and IV were upregulated [105]. Furthermore, in
paraganglioma, an inactivating mutation in Complex II has been associated with increased
TMZ responsiveness, underscoring the importance of the ETC in TMZ efficacy [106,107].
To this end, multiple studies have looked to repurpose the type II diabetes drug, metformin,
to target TMZ-resistant cells [108]. While the actual mechanism of action is uncertain, met-
formin treatment was shown to modulate anabolic mitochondrial metabolism and induce
cell cycle arrest and cell death, re-sensitizing TMZ-resistant cells to TMZ treatment [109].
Another potential metabolic target is fatty acid oxidation, as Caragher et al recently showed
that TMZ induces a dependence on endogenous fatty acid oxidation, that was enriched in
CD133+ GSCs and the proneural GBM subtype [110].

TMZ has also been shown to increase the expression of aldehyde dehydrogenase
1 family member A1 (ALDH1A1) via the long non-coding RNA TP73-AS1. ALDH1A1 has
been used as a marker for TMZ-resistant GSCs, where inhibition of ALDH1A1 increased
responsiveness to TMZ treatment [111]. Clinical trials are currently investigating the
therapeutic potential of ALDH1A1 inhibitors in combination with TMZ and RT [112]. As
the two main treatments for GBM-TMZ and RT-both affect tumor metabolism, further
research should be completed to discover metabolic dependences with modulators that
can cross the BBB and give better therapeutic options for GBM patients in the future.

3. Extrinsic Factors of Therapy Resistance
3.1. Hypoxia-Induced Therapy Resistance

Hypoxia, or lack of oxygen, is a common feature of fast-growing tumors like GBM
as they quickly outgrow their vasculature and subsequent nutrient supply [113]. Normal
brain oxygenation was shown to be ~40 mmHg by Eppendorf needle electrode, whereas
GBM clocked in at ~10 mmHg where 0-10 mmHg was shown to correlate with RT re-
sistance [114,115]. Hypoxic tumors also show a greater resistance to chemotherapy, and
because of their lack of properly formed vasculature, drug profusion is difficult leading to
a dismal patient prognosis [116]. TMZ treatment has been shown to increase the expression
of HIF1α, a transcription factor that regulates genes involved in dedifferentiation, genomic
stability, metastasis, and maintenance of stem cells, among others [117]. CD133, a surface
marker of glioma stemness, is also increased in hypoxic gliomas where its upregulation is
proposed to be through HIF signaling [55]. Hypoxic conditions have also been shown to
decrease the response of GBM cells to the standard of care treatment for GBM, TMZ [118].

HIF1α is able to work in conjunction with the oncogene c-Myc to alter tumor meta-
bolism [119]. c-Myc interacting with HIF1α increases the expression of the glucose trans-
porter GLUT1, which allows for an influx of glucose, and hexokinase 2 (HK2), the enzyme
necessary for the first step of glycolysis, thereby directing the cells towards glycolysis [120].
This switch to glycolysis has been shown to help cancer cells adapt to hypoxic conditions by
increasing the synthesis of ATP and biomolecules [121]. HIF1α is also controlled by the PI3K
pathway, where loss of phosphatase and tensin homolog (PTEN), a common feature of GBM,
can increase HIF1α activation and where PI3K inhibition decreases HIF1α expression [122].

Reoxygenation via hyperbaric chambers [123] or misonidazole and nimorazole–oxygen
mimetics–have been moderately successful in increasing radiation sensitivity [124]. How-
ever, hypoxia-activated compounds like quinones, N-oxides, and tirapazamine, while
able to decrease tumor hypoxia, were poorly perfused and had toxic side effects which
greatly limited their clinical use [123]. Therefore, the current strategy to increase oxygen
consumption within the tumor is by targeting the mitochondrial oxygen consumption
rate (OCR). Inhibition of the electron transport chain (ETC) at the mitochondrial mem-
brane, which requires oxygen in the final step, allows for an increase in tumor oxygen
concentrations and re-sensitization to radiation [125]. Inhibitors to complex I (biguanides),
complex II (alphatocopheryl, lonidamine, and VLX600), complex III (atovaquone), and
complex IV (VLX600 and arsenic trioxide) have been tested [126]. While the complex I
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biguanide, metformin, reduced OCR by ~10-20%, the complex III inhibitor atovaquone
showed a decrease of ~80% in OCR [127]. Though not yet tested in GBM, atovaquone has
shown radiation sensitizing effects in hypopharyngeal carcinoma [128] and is currently
being tested as a hypoxia modifying agent in a non-small cell carcinoma clinical trial in
combination with radiation (NCT02628080). Importantly, atovaquone is able to cross the
BBB, warranting more research into this potentially promising therapeutic avenue for drug
resistant gliomas [129].

3.2. Mechanisms of Immunotherapy Resistance

The GBM TME is a diverse milieu of both neoplastic and non-neoplastic cells in which
the tumor cells grow and develop diversity within the tumor. GBM tumors differ from
other solid tumors as they are located in the brain, an immune-privileged organ, where the
infiltration of the peripheral immune cells is restricted due to the brain-blood-barrier (BBB).
However, the BBB is disrupted by inflammation, rapid expansion of GBM tumors, and
tumor infiltration by immunosuppressive immune cells from blood circulation categorizing
it as a ‘cold’ tumor [130]. Flow cell analysis of clinical GBM biopsy samples have shown
that T cells account for only 0.25% of the GBM tumor of which CD8+ cytotoxic T cells, which
are the effector killer T cells, account for only one-fourth of the total CD3+T cell population.
Also, these T cells are less responsive to anti-CD3+ stimulation in vitro as compared to their
healthy counterparts, indicating an immunosuppressed state within the GBM TME [131].
Moreover, a study that characterized the TME across 33 cancer types identified six dif-
ferent immune subtypes with unique signatures and revealed that LGG and GBM were
the most prevalent in the ‘immunologically quiet’ immune subtype which exhibited the
lowest number of lymphocytes and the highest number of macrophages dominated by the
‘Tumor Associated Macrophage’ population [132]. Additionally, other studies have shown
that immunosuppressive cytokines and chemokines such as transforming growth factor
beta (TGF-β), interleukin 10 (IL-10), prostaglandin E2, and immune cells like immuno-
suppressive natural killer T (NKT) cells, T/B regulatory cells (T/Breg), tumor-associated
macrophages/microglia (TAMs), and myeloid-derived suppressor cells (MDSCs) create an
immunosuppressive microenvironment in glioma, supporting pro-tumorigenic activities
which lead to tumor progression [133–135].

The above mechanisms pose an intrinsic resistance in GBM. Thus, appropriate tar-
get antigens must be identified and selectively delivered to overcome immunotherapy
resistance. Upregulation of immune checkpoint molecules are commonly observed in
solid tumors; however, their expression increases dramatically under the pro-tumorigenic
immune-TME, wherein the immunological milieu co-opts the tumor cells to drive tumor
progression [24]. Immune checkpoint inhibitors which have shown clinical success are
targeted against the immune checkpoint molecules PD-1 and cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4). These checkpoint inhibitors are expressed by T cells and
perform inhibitory functions by interacting with their corresponding ligands that are ex-
pressed on both the tumor and TAMs, to release cytokines, leading to inhibition of T cell
function, polarization of macrophages to a pro-tumorigenic state and thus tumor progres-
sion [136]. Antibodies against the PD-1 and CTLA-4 checkpoints have been successful
in several solid cancers. However, in a phase III clinical trial of Nivolumab (monoclonal
antibody against PD-1) in GBM, only 8% of patients responded in the trial (clinical trial
NCT02017717). To this end, alternative checkpoint receptors such as T-cell immunoglob-
ulin and mucin domain-3 (TIM-3) have been found to be upregulated in tumors with
delayed resistance to PD-1 blockade and combinatorial therapy against PD-1 and TIM-
3 has increased efficacy in pre-clinical models [137]. Thus, current clinical efforts are
aimed at targeting additional checkpoints to overcome the resistance to PD-1 or CTLA-4
blocking antibodies [24].

TAMs are the dominant infiltrating immune population in glioma constituting around
30–40% of the total tumor volume [25,132,138]. Studies using scRNA seq analyses have
revealed that the MES subtype of GBM has the maximum infiltration of the myeloid cell
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population [138,139] which has been associated with a poor prognosis in GBM [140]. In
GEMMs of platelet derived growth factor subunit B (PDGFB)-driven glioma, it has been
shown that TAMs derived from bone marrow-derived monocytes constitute the major pro-
portion (up to 85%) of TAMs in the GBM TME, whereas those derived from brain-resident
microglia constitute only 15% of the total TAM population in GBM [141]. Furthermore,
a scRNA seq study showed that blood-derived TAMs up-regulate immunosuppressive
cytokines, exhibit altered metabolism as compared to microglia-derived TAMs, and that
the gene-signature of blood-derived TAMs correlates with an inferior survival in patients
with glioma [142]. The GBM TME attracts TAMs to the tumor and polarizes them to an
anti-inflammatory or pro-tumorigenic ‘M2′-like state, thus current studies are aimed at in-
hibiting their recruitment or survival in the TME, allowing for their functional re-education
to an anti-tumor ‘M1′-like state, or targeting the tumor using monoclonal antibodies that
elicit macrophage-mediated phagocytosis and intracellular destruction of cancer cells [143].

Additionally, a recent study showed that kynurenine, a metabolite produced by
glioma cells, attracts TAMs to the TME by up regulating the expression of a transcription
factor aryl hydrocarbon receptor (AHR) in TAMs thus regulating their function that in
turn reduces T cell immunity by producing the metabolite adenosine in conjunction with
CD73. The expression of AHR is the highest in GBM-relative to lower grade gliomas and
is independently correlated with poor patient prognosis, thus making AHR an attractive
target for GBM immunotherapy [144]. The cytokine CSF-1 (colony-stimulating factor-1)
has been shown to be critical in the function and survival of TAMs. Inhibition of the CSF-1
receptor (CSF-1R) to target TAMs has been shown to regress tumor formation and increase
survival in GBM mouse models. Moreover, although inhibition of CSF-1R through blocking
antibodies showed a high response rate in a preclinical GBM models, tumors recurred
in >50% of the mice due to acquired resistance through re-activated phosphoinositide
3-kinase (PI3K) signaling [24]. Additionally, a phase II clinical trial with the CSF-1R oral
inhibitor PLX3397 failed to improve survival in 37 recurrent GBM patients [145]. Lastly,
the cytokine interleukin 2 (IL-2) has been found to convert TAMs from a pro-tumorigenic
mode to a tumor inhibiting state and attempts are underway to deliver them to the TME
using nanoparticles [146]. Moreover, studies using CD47-blocking antibodies have shown
promise in preclinical GBM models [24] but their clinical relevance for treating GBM is yet
to be determined.

Genetic alterations induced by immunological pressures are known to develop into ac-
quired resistance in the tumor that diminishes the effect of immunotherapy and ultimately
results in delayed treatment failure. In a recent clinical study, 66 patients with recurrent
GBM who were treated with PD-1 blocking antibodies were longitudinally profiled before
and after treatment. Seventeen patients were categorized as responders based on tumor
regression and inflammation. Genomic and transcriptomic studies revealed that the respon-
ders were enriched for gene mutations in the mitogen-activated protein kinase (MAPK)
pathway and showed a branched pattern of evolution resulting from the elimination of
neo-epitopes whereas non-responders were enriched for PTEN mutations associated with
immunosuppressive gene signatures and non-clonal evolutionary patterns. Thus, the clini-
cal response to anti-PD-1 treatment in GBM is associated with specific molecular patterns
and clonal evolution during treatment, lack of which develops an acquired resistant state
in the glioma tumor, thus resulting in therapy failure [24,147].

Finally, the role of neurons and neuronal precursors in driving glioma progression has
been of recent interest in the field. In an interesting study done with glioma-bearing mice,
where mice were housed either under standard conditions or in enriched conditions mice
in larger numbers, in cages with toys, it was found that the environmental cues induced
the activity of phagocytic macrophages in the TME by brain-derived neurotrophic factor
(BDNF) and pro-inflammatory cytokines by NK cells [148]. Another study has shown the
presence of neuron-glioma interactions through the formation of electrochemical synapses
involving the α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor,
and that pharmacological or genetic blocking of this electrochemical stimulation inhibits
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the growth of mouse xenografts and improves survival [149]. Further it is shown that
such neural-glial signaling is involved in breast-to-brain metastasis through N-methyl-
D-aspartate (NMDA) receptor mediated neuronal signaling [150]. Interestingly, different
neuronal subtypes display variable activities. The cortical pyramidal neurons drive tumor
progression while the Gamma-aminobutyric acid (GABA)-ergic interneurons reduce glioma
cell proliferation [151]. Such synaptic driven brain tumor progression could further be
explored in resistant glioma patients to study their role in tumor recurrence.

4. Conclusions

Despite the ongoing work and advancements made in better understanding some of
the molecular mechanisms underlying GBM disease and progression, more work is needed
to continue to make progress in understanding this universally fatal disease. Unlike other
cancers, GBM does not have standard and effective second-line therapeutic options. Here,
we outlined areas such as heterogeneity, hypermutation, metabolism, splicing, hypoxia and
the immune system, that are being actively investigated to hopefully provide successful
second-line therapies (Figure 3).

Figure 3. Complex pathways underlie the therapeutic resistance of GBM. The decrease of oxygen
within in the tumor can facilitate hypoxia-induced signaling which can render cells less sensitive to
treatment. Tumor heterogeneity can complicate therapeutic response as not all clones are targeted
equally by standard treatments. Immune regulation is severely dampened in GBM, creating a “cold”
TME. Splicing changes via RBPs or splicing factors can affect isoform outcome leading to dysregulated
AS. Metabolic changes induced by TMZ or RT are able to change metabolism in both the tumor cells
as well as the TME, creating a therapeutic-resistant microenvironment. TMZ-induced hypermutation
can create a hypermutator state in which patient outcome is correlated with a worse overall survival,
as compared to other cancers. Overall, many pathways play a role in GBM therapeutic resistance,
and all should be investigated for better second-line treatments. RBPs, RNA binding proteins; AS,
Alternative splicing; RBCs, red blood cells, CAFs, cancer-associated fibroblasts.

While TMZ is currently the only effective 1st line therapeutic option, along with
surgery and radiation, we show how in a section of GBM patients, TMZ treatment can create
a hypermutator state which has been correlated to worse overall survival in patients. While
in other cancers, this hypermutator state has been shown to induce a “hot” immunologic
tumor, this effect is not noted in GBM, and the benefits of immunotherapies have been
underwhelming so far. However, new immune cell receptor targets are being developed.
TMZ also affects the metabolic state of both the tumor and the TME that can create a radio-
and chemo-resistant environment through both hypoxia and other metabolic intermediates.
Direct and indirect targeting of splicing factors may be a promising future direction where
the outcome of many clinical trials is eagerly being awaited. However, the underlying
issue of tumor heterogeneity cannot be neglected, as tumor cells are constantly evolving
and remain in a plastic cell state. Therefore, future treatments will more than likely need to
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be combinatorial to target all subtypes and clones, as well as to be able to cross the BBB. As
we look to the future of GBM treatments, areas that are particularly intriguing would be
a better understanding of the GBM immune environment, as previous immunotherapies
have not been successful, immune responses and cell types that may be unique to the
brain could have an important impact on GBM treatment. Combination of chemotherapy
with immune modulators, like TMZ with PD-1 blockade and CD47, and others could
be an interesting avenue to study in the future [152]. Understanding the role of splicing
factors and their mRNA products is also an exciting avenue of research, where mRNA
therapies–like antisense oligonucleotides (ASOs)–are becoming more prevalent with our
increased understanding of delivery methods. ASOs can be used to target certain splicing
factors, as well as tumor-specific splicing events [153]. As the brain is the most alternatively
spliced organ, it will be interesting to see the advances made to better understand and
target aberrant splicing pathways in GBM [154]. Overall, more work is necessary to better
understand the many facets of therapy-resistant GBM from both an intra- and inter-tumoral
standpoint to create better second-line therapeutic options for patients diagnosed with
recurrent GBM.
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