
ARTICLE

Received 12 May 2015 | Accepted 10 Nov 2015 | Published 18 Dec 2015

Embryonic transcription is controlled by maternally
defined chromatin state
Saartje Hontelez1,*, Ila van Kruijsbergen1,*, Georgios Georgiou1,*, Simon J. van Heeringen1, Ozren Bogdanovic2,

Ryan Lister2,3 & Gert Jan C. Veenstra1

Histone-modifying enzymes are required for cell identity and lineage commitment, however

little is known about the regulatory origins of the epigenome during embryonic development.

Here we generate a comprehensive set of epigenome reference maps, which we use to

determine the extent to which maternal factors shape chromatin state in Xenopus embryos.

Using a-amanitin to inhibit zygotic transcription, we find that the majority of H3K4me3- and

H3K27me3-enriched regions form a maternally defined epigenetic regulatory space with an

underlying logic of hypomethylated islands. This maternal regulatory space extends to a

substantial proportion of neurula stage-activated promoters. In contrast, p300 recruitment to

distal regulatory regions requires embryonic transcription at most loci. The results show that

H3K4me3 and H3K27me3 are part of a regulatory space that exerts an extended maternal

control well into post-gastrulation development, and highlight the combinatorial action of

maternal and zygotic factors through proximal and distal regulatory sequences.
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D
uring early embryonic development cells differentiate,
acquiring specific transcription and protein expression
profiles. Histone modifications can control the activity of

genes through regulatory elements in a cell-type-specific
manner1–4. Recent advances have been made in the annotation
of functional genomic elements of mammalian cells, Drosophila
and Caenorhabditis through genome-wide profiling of chromatin
marks5,6. Immediately after fertilization, the embryonic genome is
transcriptionally silent, and zygotic genome activation (ZGA)
occurs after a number of mitotic cycles7. In Drosophila and
zebrafish (Danio rerio) ZGA starts after 8 and 9 mitotic cycles,
respectively, in mammals transcription starts at the two-cell
stage8,9, whereas in Xenopus this happens after the first 12
cleavages at the mid-blastula transition (MBT)10–12. Permissive
H3K4me3 and repressive H3K27me3 histone modifications
emerge during blastula and gastrula stages13–16. To date, little
is known about the origin and specification of the epigenome
in embryonic development of vertebrates, which is essential for
understanding physiological cell lineage commitment and
differentiation.

To explore the developmental origins of epigenetic regulation
we have generated epigenome reference maps during early
development of Xenopus tropicalis embryos and assessed the
need for embryonic transcription in their acquisition. We find a
hierarchical appearance of histone modifications, with a
priority for promoter marks which are deposited hours before
transcription activation on regions with hypomethylated DNA.
Surprisingly, the promoter H3K4me3 and the Polycomb
H3K27me3 modifications are largely maternally defined (MaD),
providing maternal epigenetic control of gene activation that
extends well into neurula and tailbud stages. By contrast, p300
recruitment to distal regulatory elements is largely under the
control of zygotic factors. Moreover, this maternal-proximal and
zygotic-distal dichotomy of gene regulatory sequences also
differentiates between early and late Wnt signalling target genes,
suggesting that different levels of permissiveness are involved in
temporal target gene selection.

Results
Progressive specification of chromatin state. We have per-
formed chromatin immunoprecipitation (ChIP) sequencing
of eight histone modifications, RNA polymerase II (RNAPII) and
the enhancer protein p300 at five stages of development: blastula
(st. 9), gastrula (st. 10.5, 12.5), neurula (st. 16) and tailbud (st. 30).
These experiments allow identification of enhancers (H3K4me1,
p300)17–20, promoters (H3K4me3, H3K9ac)14,21–23, transcribed
regions (H3K36me3, RNAPII)22 and repressed and
heterochromatic domains (H3K27me3, H3K9me2, H3K9me3
and H4K20me3)1,14,24,25. In addition we generated pre-MBT
(st. 8) maps for three histone modifications (H3K4me3, H3K9ac
and H3K27me3) and single-base resolution DNA methylome
maps using whole-genome bisulfite sequencing of blastula and
gastrula (st. 9 and 10.5) embryos (Fig. 1; Supplementary Fig. 1).
Our data set consists of 2.7 billion aligned sequence reads
representing the most comprehensive set of epigenome reference
maps of vertebrate embryos to date. Using a Hidden Markov
Model approach26 we have identified 19 chromatin states based
on co-occurring ChIP signals (Fig. 2a). This analysis identifies
combinations of ChIP signals at specific genomic sequences
without distinguishing between overlapping histone
modifications that result from regional or cell-type specificity
and co-occurrence in the same cells14. Seven main groups were
recognized, namely (i) Polycomb (H3K27me3, deposited by
Polycomb Repressive Complex 2 (PRC2)), (ii) poised enhancers,
(iii) p300-bound enhancers, (iv) transcribed regions, (v)

promoters, (vi) heterochromatin and (vii) unmodified regions
(Fig. 2a; Supplementary Fig. 2). Alluvial plots of state coverage
per stage show that all states increase in coverage during
development, except for the unmodified state (Fig. 2b;
Supplementary Fig. 2a). Unmodified regions decrease in
coverage during development, however, even at tailbud stage
67% of the total epigenome remains naive for the modifications
and bound proteins in our data set (Supplementary Fig. 2b).
Promoter coverage remains relatively constant during
development from blastula to tailbud stages, in contrast to the
Polycomb state which increases in coverage during gastrulation.
P300-bound enhancers are highly dynamic during development
(Fig. 2b). Global enrichment levels of modified regions show
similar dynamics, and reveal a priority for promoter marking at
or before the blastula stage, followed by enhancer activation and
heterochromatic repression during late blastula and gastrulation
stages (Supplementary Fig. 3a,b). A detailed time course between
fertilization and early gastrulation shows that both H3K4me3 and
H3K9ac emerge hours before the start of embryonic transcription
(Supplementary Fig. 3c). We and others have previously reported
that H3K4me3 is acquired during blastula stages14. Indeed,
H3K4me3 and H3K9ac levels increase strongly before the MBT,
well before embryonic transcription starts. This however raises
the question to what extent histone modifications are regulated by
maternal or embryonic factors.

Maternal and zygotic epigenetic regulation. To determine the
maternal and zygotic contributions to chromatin state, we used
a-amanitin to block embryonic transcription (Fig. 3a).
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Figure 1 | Reference epigenome maps of Xenopus tropicalis development.

(a) Genome-wide profiles were generated for stages 8 and 9 (blastula,

before and after MBT), 10.5 and 12.5 (gastrula), 16 (neurula) and 30

(tailbud). Adapted from Tan, M.H. et al. Genome Res. 23, 201–216 (2013),

under a Creative Commons License (Attribution-NonCommercial 3.0

Unported License), as described at http://creativecommons.org/licenses/

by/3.0/. (b) Gata2 locus with late gastrula (stage 10.5) methylC-seq, ChIP-

seq enrichment of histone modifications, RNAPII and p300

(cf. Supplementary Figs 1 and 2).
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a-Amanitin blocks the translocation of RNA polymerase II
(RNAPII) on DNA, thereby preventing transcript elongation27. It
is therefore expected that injection of a-amanitin into embryos
will stall RNAPII, immobilizing it on DNA after its recruitment to
pre-initiation complexes. Indeed, both RNAPII elongation and
embryonic transcription were effectively blocked in a-amanitin-
injected embryos (Fig. 3b,c; Supplementary Fig. 4a). New
transcription is necessary for gastrulation11,28,29, but a-

amanitin-injected embryos survive to the equivalent of stage 11
control embryos. ChIP sequencing of replicates of a-amanitin-
injected and control embryos (stage 11) revealed that the
majority of H3K4me3 (86%) and H3K27me3 (90%) regions are
consistently modified with these modifications independently
of embryonic transcription (Fig. 3d; Supplementary Fig. 4b,c).
This is especially surprising given the temporal hierarchy
of H3K27me3 and H3K4me3, and the relatively late acquisition
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Figure 2 | Chromatin state dynamics. (a) Emission states (same for all developmental stages) of the hidden Markov model, identifying the 19 most

prevalent combinations of histone modifications and bound proteins. From top to bottom: Polycomb (red), Poised enhancers and promoters (blue), Active

Enhancers (gold), Transcribed (dark magenta), Promoter (green), Heterochromatin (purple) and unmodified (grey). (b) Alluvial plots of chromatin state

coverage during development. Each plot shows the transitions (to and from the highlighted group of chromatin states) across developmental stages (stages

9–30). The height represents the base pair coverage of the chromatin state relative to the modified genome. The ‘modified genome’ has a chromatin state

other than unmodified in any of the stages 9–30. From top to bottom left: promoters (green), poised (blue), p300-bound enhancers (gold). From top to

bottom right: transcribed (dark magenta), Polycomb (red) and heterochromatin (purple). Line plots: Chromatin state coverage per stage as a percentage of

the modified genome.
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Figure 3 | Developmental acquisition of chromatin states. (a) Inhibition of embryonic transcription with a-amanitin, adapted from Tan, M.H. et al.

Genome Res. 23, 201–216 (2013), under a Creative Commons License (Attribution-NonCommercial 3.0 Unported License), as described at http://

creativecommons.org/licenses/by/3.0/. (b) RNAPII on the TSS of genes in control and a-amanitin-injected embryos (stage 11). (c) Box plots showing RNA

expression levels (RPKM) of maternal and embryonic transcribed genes in control and a-amanitin-injected embryos (stage 11). Box: 25th (bottom), 50th

(internal band), 75th (top) percentiles. Whiskers: 1.5� interquartile range of the lower and upper quartiles, respectively. (d) ChIP-sequencing on chromatin

of a-amanitin-injected and control embryos reveals maternal and zygotic origins of H3K4me3, H3K27me3 or p300 binding. Data from two biological

replicates, see Supplementary fig. 4.
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of H3K27me3 (Fig. 2b). By contrast, only 15% of the p300-bound
regions recruit p300 independently of active transcription
(Fig. 3d). This suggests that the promoter-permissive H3K4me3
mark and the Polycomb-repressive H3K27me3 mark are mostly
controlled by maternal factors (maternally defined, MaD),
whereas p300 binding to regulatory regions is largely zygotically
defined (ZyD). Regions with MaD H3K4me3 and H3K27me3
acquire these modifications more robustly and also earlier during
development compared with ZyD regions (Supplementary
Fig. 4d). By contrast, ZyD p300-bound regions show more
robust p300 recruitment during gastrulation compared with p300
MaD regions. These data show a pervasive maternal influence on
the developmental acquisition of key histone modifications.

DNA methylation logic of maternal control. Trimethylation of
H3K4 and H3K27 has been associated with CpG density and a
lack of DNA methylation. The Set1 and related MLL complexes
are responsible for H3K4me3 (ref. 10). Set1 is recruited to
hypomethylated CpG domains via the Cxxc1 protein (Cfp1)30–32.
In the absence of H3K4me3, PRC2 binding to hypomethylated
CpGs results in H3K27me3 and inhibition of gene activation13,33.
Using our whole-genome bisulfite sequencing data we
determined that MaD H3K4me3 promoters are predominantly
hypomethylated (Fig. 4a; Supplementary Fig. 5a; Supplementary
Data 1). Conversely, promoters decorated with ZyD H3K4me3
almost exclusively have highly methylated promoters.
Demethylation of ZyD promoters was not detected, and
methylation levels of MaD and ZyD regions were similar in
stage 9 and stage 10.5 (Supplementary Fig. 5a,b). In addition,
H3K4me3 often extends asymmetrically from promoters into
gene bodies (þ 1–2 kb from transcription start site (TSS);
Supplementary Fig. 5c), likely representing the second and third
nucleosomes that are trimethylated via RNAPII-recruited Set1 in
actively transcribed genes34. Concordantly, a-amanitin reduces
H3K4me3 at downstream positions. Interestingly, we also find
poised enhancers that gain H3K4me3 in a-amanitin-injected
embryos and which exhibit intermediate to high levels of DNA
methylation (Supplementary Fig. 5d,e).

The majority of promoters with ZyD H3K27me3 shows
intermediate to high levels of DNA methylation (Fig. 4a;
Supplementary Fig. 5a; Supplementary Data 1). Some of the
MaD H3K27me3 regions are methylated, but the highly enriched
H3K27me3 domains (larger dots) are almost exclusively both
maternally defined and hypomethylated. This is illustrated by the
hoxd cluster which harbours a large hypomethylated domain with
MaD H3K4me3 and H3K27me3 (Fig. 4b). There are also examples
of reciprocal changes of H3K4 and H3K27 methylation, for
example at the hypermethylated promoters of nodal1 and nodal2.

ZyD p300-bound regions are generally hypermethylated,
whereas MaD p300-bound regions show a variable degree of
DNA methylation (Supplementary Fig. 5e). However, promoters
that overlap with MaD p300 peaks are hypomethylated in 77% of
the cases, whereas 96% of the promoters that are associated with
ZyD p300 peaks are hypermethylated (Supplementary Fig. 5f),
showing that p300-recruiting hypomethylated promoters tend to
be under complete maternal control, for both H3K4 methylation
and p300 recruitment.

To further explore the relationships between DNA methyla-
tion, histone modifications and developmental activation of
transcription we determined correlations with different measures
of gene activity such as RNA-seq and ChIP-seq of RNAPII and
H3K36me3 (Supplementary Fig. 6). We find that H3K36me3 and
RNAPII in gene bodies correlate well with each other but less
with transcript levels (RNA-seq), presumably due to the effects of
RNA stability. A much lower correlation was found between

either measure of gene activity and the promoter marks
H3K4me3 and H3K9ac, especially at early stages. In part this
may be caused by time delays of transcriptional activation relative
to acquisition of permissive histone modifications14,15. It raises

CG density (%)

H3K4me3

m
eC

G
/C

G

1

0.75

0.5

0.25

5 20
0

1

0.75

0.5

0.25

0
10 15 10 3 4 5

H3K27me3

CG density (%)

H3K4me3 H3K27me3 RNAseq

R
el

. R
P

K
M

R
el

. R
P

K
M

Blastula Gastrula Neurula Tailbud

U
nm

et
hy

la
te

d
M

et
hy

la
te

d

8 9
10

.5
12

.5 16 308 9

10
.5

12
.5 16 308 9

10
.5

12
.5 16 308 9

10
.5

12
.5 16 30

10

5

0

10

5

0

10

5

0

10

5

0

10

0

20

30

10

0

20

30

10

0

20

30

10

0

20

30

Rel. RPKM
40
80

120
MaD
ZyD

MaD
ZyD

Rel. RPKM
40
80

120

ZyD

MethylC

H3K4me3 1.5

10 kb
Nodal1 Nodal2 Nodal3.1

0
1.5

0
4
0
4

0

Control

α-am.

H3K27me3

Control

H3K4me3

MethylC
MaD

5
0
5
0

10
0

10
0

Control

α-am.

H3K27me3

Control

α-am.

α-am.

hoxd1mtx2
hoxd3

100 kb

hoxd4
hoxd8

hoxd9

hoxd10

hoxd11

hoxd13
evx2

a

b

c
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the question to what extent a lack of DNA methylation at
promoters, which is associated with MaD H3K4me3, uncouples
promoter marking and transcriptional activation. Therefore, we
grouped transcribed genes without detectable maternal messenger
RNA35 based on the stage of maximum expression and DNA
methylation (Fig. 4c). We find that developmentally activated
promoters with hypomethylated CpG islands are trimethylated
at H3K4 or H3K27 early on, irrespective of the time of
transcriptional activation. By contrast, methylated promoters
show a much closer relation between H3K4me3 and
gene expression. Although H3K4me3 is known to stabilize the
transcription initiation factor Taf3 (a subunit of TFIID) and can
also interact with the chromatin remodeller Chd1 (refs 36–38),
hypomethylated promoters gain H3K4me3 autonomously with
their hypomethylated CpG island status, independent of
embryonic transcription.

ZyD p300-bound domains shape enhancer clusters. P300 can be
recruited by transcription factors that bind to regulatory
elements. We therefore modelled transcription factor motif
contributions to p300 binding across multiple developmental
stages (see Methods). The results predict specific transcription
factors to recruit p300 in a stage-specific manner (Fig. 5a).
Clustering of MaD and ZyD p300-bound regions with H3K4me3,
H3K4me1 and RNAPII data revealed that ZyD p300 is recruited
to distal regulatory sequences that lose both p300 and RNAPII
binding in the presence of a-amanitin, whereas MaD p300
binding mostly includes promoter-proximal regions that are
H3K4me3-decorated and recruit RNAPII in the presence of
a-amanitin but without elongating (Fig. 5b). Indeed, MaD p300
regions are enriched for promoter-related motifs (Supplementary
Fig. 7). Although some ZyD p300-bound regions overlap with
annotated transcription start sites (Supplementary Fig. 5f),
most of these sequences are decorated with H3K4me1 in the
absence of H3K4me3, suggesting they correspond to distal
regulatory sequences (Fig. 5b). Both MaD- and ZyD p300-bound
regulatory regions recruit embryonically regulated transcription
factors such as Otx2, Gsc, Smad2/3, Foxh1, T (Xbra), Vegt and
Eomes (Supplementary Fig. 8)39–41, suggesting that multiple
transcription factors contribute to p300 recruitment.

Large enhancer clusters (ECs) are thought to improve the
stability of enhancer–promoter interactions, are associated with
genes coding for developmental regulators, and have been
implicated in cell differentiation42–44. During development the
cluster size of p300-bound enhancers grows dynamically by p300
seeding of individual enhancers (Fig. 5c,d, see Methods). Histone
modifications and transcript levels of EC-associated genes are
developmental stage specific, confirming the association of ECs
with developmental genes (Supplementary Fig. 9; Supplementary
Data 2). Analysis of the percentage of the total EC regions
identified in each stage show that most p300-bound ECs increase
in genomic coverage during development by newly gained p300
binding at enhancers (EC clusters 1 and 2), whereas a group of
early ECs (EC cluster 3) decrease in coverage as a result of the
decreasing number of p300 peaks that contribute to the EC.

We next examined how MaD and ZyD p300-bound regions
contribute to p300-bound ECs. Approximately 50% of all ZyD
p300-bound enhancers are located in ECs at stage 11. Among
MaD p300-bound enhancers this fraction is much reduced
(Fig. 5e). Similarly, a much larger fraction of ZyD p300-bound
promoters is found in ECs compared with MaD p300-bound
promoters. Up to 20% of the developmental ECs that are seeded
at stage 9 have a MaD p300 seeding site (Fig. 5f). However, very
few ECs can be called based on MaD p300, showing that
formation of p300-bound enhancer clusters requires embryonic
transcription (Fig. 5g).

Extended maternal epigenetic control. We next examined the
extent to which the MaD epigenome is maintained during
development. Genes were grouped based on MaD or ZyD
trimethylation of H3K4 and H3K27 in the promoter
(Supplementary Data 3, see Methods). For p300 we counted the
total number of MaD and ZyD peaks in the cis-regulatory
landscapes of genes (Fig. 6a). Remarkably, MaD H3K4me3-
regulated genes represent the majority of all H3K4me3-enriched
genes in both early and late developmental stages. Even at
neurula and tailbud stages only a small fraction of the H3K4me3-
decorated genes are ZyD. Similarly, maternal control of
H3K27me3 also extends late into development, albeit to a smaller
degree. After gastrulation, the number of MaD H3K27me3
regulated genes slightly decreases, whereas ZyD increases.
However, also at neurula stage more than 50% of the Polycomb
(PRC2)-regulated genes are under MaD H3K27me3 control. By
contrast, p300 in cis-regulatory regions of genes is almost
exclusively ZyD in all stages (Fig. 6a).

Many genes may maintain MaD H3K4me3 because they are
constitutively expressed throughout development. We therefore
analysed the regulation of genes that are exclusively
embryonically transcribed. We find that 487 of 983 (49.5%)
genes which are expressed between blastula and tailbud stages but
not expressed in oocytes or before the MBT, feature a MaD
H3K4me3 promoter (Supplementary Fig. 10a). Most of the
MaD H3K4me3 genes that are modified by PRC2 exhibit MaD
H3K27me3. When separating embryonic transcripts based on
developmental activation, we find MaD H3K4me3 for 58% of the
gastrula genes and up to 74% of the neurula expressed
genes (Fig. 6b; Supplementary Fig. 10b). In most cases MaD
H3K4me3-regulated genes also have MaD H3K27me3 control.
This indicates an important role for the MaD epigenome in the
regulation of embryonic transcripts.

To explore the distinctions between expression inside and
outside the maternal regulatory space, we analysed Wnt signalling
targets. Early Wnt/beta-catenin signalling serves to specify dorsal
fates following fertilization, leading to organizer gene expression.
This has been shown to depend on Prmt2-mediated promoter
poising before the MBT45. Indeed, we find that seven of eight early
Wnt/beta-catenin targets have a hypomethylated island promoter
marked with MaD H3K4me3 (Fig. 7a; Supplementary Fig. 10c).
Wnt signalling also plays an important role after the MBT, when it
ventralises and patterns mesoderm. The majority of these later
targets turn out to have a methylated promoter with ZyD
H3K4me3. Notably, these ZyD H3K4me3 late Wnt targets are
associated with high binding of p300 in their locus; many of the
p300 binding events happen at distal regulatory regions. In
contrast, MaD H3K4me3 Wnt targets have less p300 binding but
are marked with H3K27me3 (Fig. 7a,b). These results illustrate the
dichotomy in proximal and distal regulation that is associated with
transcriptional activation of maternal and zygotic Wnt target genes,
which is paradigmatic of the distinctive maternal and zygotic
epigenetic programs that are orchestrated by DNA methylation
and exert a long-lasting influence in development (Fig. 8).

Discussion
The H3K4me3 modification poises promoters for transcription
initiation by stabilizing Taf3/TFIID binding36,37. Promoter H3K4
methylation based on an underlying DNA methylation logic
driven by maternal factors at the blastula stage sets the stage
for a default programme of gene expression. Most constitutively
expressed housekeeping genes are within this maternal regulatory
space, as well as a subset of developmentally regulated genes.
Remarkably, many late expressed genes have hypomethylated
promoters and are already poised for activation by H3K4me3
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during early blastula stages. H3K4me3 is not sufficient for gene
transcription and additional embryonic factors are required for
activation in many cases. Genes with MaD H3K4me3 generally
have fewer p300-bound enhancers associated with them,

suggesting they are regulated by promoter-proximal elements.
This further underscores the permissive nature of this regulation,
as opposed to zygotically regulated events at both promoters
(H3K4me3) and enhancers (recruitment of p300). The
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H3K27me3 modification is gradually acquired between blastula
and gastrula stages on spatially regulated genes, repressing
lineage-specific genes in other lineages13,14. The acquisition of
this modification in the absence of transcription indicates that it
is uncoupled from the inductive events of the early embryo,
suggesting a default maternal response to a lack of transcriptional
activation. The results indicate that maternal factors set
permissions and time-dependent constraints on a subset of
genes with reduced CpG methylation at their promoter. These
permissions and constraints are likely to channel embryonic cell
fates into a limited number of directions by controlling
hierarchical developmental progression by master regulators.
Previously we observed that DNA methylation does not lead to
transcriptional repression in early embryos, whereas it does in
oocytes and late embryos46. The observations described here
suggest a new role of DNA methylation in defining a maternal-
embryonic programme of gene expression. In zebrafish, the
maternal methylome is reprogrammed between fertilization and
ZGA, to match the paternal methylome. This also occurs in
maternal haploid fish, and appears to align with CG content47,48,
suggesting an intrinsic maternal mechanism that sets the stage for
the MaD epigenome.

Gene expression outside maternal regulatory space could be
mediated by p300-associated enhancers, most of which require
new transcription for recruitment of p300. Promoter and
enhancer activation in the ZyD regulatory space likely involves
binding of specific factors. Indeed, we find that both MaD- and

ZyD p300-bound regulatory regions recruit embryonically
regulated transcription factors. Enhancers often contain binding
sites for many different proteins, which can play different roles in
opening up chromatin, recruitment of co-activators and establish-
ing looping interactions with promoters. Future experiments will
shed light on the maternal–zygotic hierarchy and the regulatory
transitions underlying these events and the roles of maternal and
zygotic pioneer factors. We find that ZyD p300-bound enhancers
shape enhancer clusters. These form dense hubs of regulatory
activity, and EC p300 binding is generally correlated with the
expression of the associated genes. The work reported here
suggests that recruitment of p300 to ‘seeding’ enhancers precedes
establishing cluster-wide activity of the local enhancer landscape.
Future work will also need to address to which extent seeding
causes relaxation and opening of the local chromatin and activity
of neighbouring enhancers.

Key proteins of the molecular machinery involved in DNA
methylation (Dnmt3a, Tet2), H3K4me3 (Mll1-4, Kdm5b/c),
H3K27me3 (Ezh2, Eed, Kdm6a/b) and enhancer histone
acetylation (p300) are not only highly conserved between
species but also frequently mutated in cancer49–51. Moreover
cancer-specific hypermethylated regions tend to correspond to
Polycomb-regulated loci in embryonic stem cells and DNA
methylation may restrict H3K27 methylation globally52,53.
In addition, the sequence signatures of hypomethylated
regions that acquire H3K4me3 or H3K27me3 are conserved
between fish, frogs and humans13. These observations suggest
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that the molecular mechanisms that orchestrate the maternal
and zygotic regulatory space are conserved. One key difference
between mammals and non-mammalian vertebrates is the
specification of extra-embryonic lineages between zygotic
genome activation and the blastocyst stage in mammals10, so it
is likely that the way this plays out for specific genes differs
between species. In summary, our results provide an
unprecedented view of the far reach of maternal factors in
zygotic life through chromatin state. The dichotomy of maternal
promoter-based and embryonic enhancer regulation demarcates
an epigenetic maternal-to-zygotic transition that is maternal
permissive to the expression of some embryonic genes and
restrictive to others. This highlights the combinatorial interplay of
maternal and zygotic factors through distinct mechanisms.

Methods
Animal procedures. X. tropicalis embryos were obtained by in vitro fertilization,
dejellied in 3% cysteine and collected at the indicated stage. Fertilized eggs were
injected with 2.3 nl of 2.67 ng ml� 1 a-amanitin and developed until the control
embryos reached mid-gastrulation (stage 11). Animal use was conducted under the
DEC permission (Dutch Animal Experimentation Committee) RU-DEC 2012–116
and 2014–122 to G.J.C.V.

ChIP sequencing and RNA sequencing. Chromatin for ChIP was prepared as
previously described54,55, with minor modifications. Antibody was incubated with
chromatin overnight, followed by incubation with Dynabeads Protein G for 1 h.
The following antibodies were used: anti-H3K4me1 (Abcam ab8895, 1 mg per 15
embryo equivalents (Eeq)), anti-H3K4me3 (Abcam ab8580, 1 mg per 15 Eeq), anti-
H3K9ac (Upstate/Millipore 06-942, 1 mg per 15 Eeq), anti-H3K36me3 (Abcam
ab9050, 1 mg per 15 Eeq), anti-H3K27me3 (Upstate/Millipore 07-449, 1 mg per 15
Eeq), anti-H3K9me2 (Diagenode C15410060, 1 mg per 15 Eeq), anti-H3K9me3
(Abcam ab8898, 2 mg per 15 Eeq), anti-H4K20me3 (Abcam ab9053, 2 mg per 15
Eeq), anti-p300 (Santa Cruz sc-585, 1 mg per 15 Eeq) and anti-RNAPII (Diagenode
C15200004, 1 mg per 15 Eeq). For all ChIP-seq samples of the epigenome reference
maps and RNAPII ChIP-seq samples of the a-amanitin experiments three
biological replicates of different chromatin isolations of 45 embryos were pooled.
Two biological replicates for H3K4me3 (a-amanitin injected: 90 and 56 Eeq;
control: 45 and 67 Eeq), H3K27me3 (a-amanitin injected: 90 and 180 Eeq; control:
45 and 202 Eeq) and p300 (a-amanitin injected: 112 and 56 Eeq; control: 112 and
67 Eeq) ChIP-seq samples of the a-amanitin experiments were generated. For
RNA-seq samples of the a-amanitin experiments RNA from five embryos from one
biological replicate was isolated and depleted of ribosomal RNA as previously
described35. Samples were subjected to a qPCR quality check pre- and post
preparation. Libraries were prepared with the Kapa Hyper Prep kit (Kapa
Biosystems), and sequencing was done on the Illumina HiSeq2000 platform. Reads
were mapped to the reference X. tropicalis genome JGI7.1, using STAR (RNA-seq)
or BWA (ChIP-seq) allowing one mismatch.

MethylC-seq. Genomic DNA from Xenopus embryos stages 9 and 10.5 was
obtained as described before56. MethylC-seq library generation was performed as
described previously57. Library amplification was performed with KAPA HiFi
HotStart Uracilþ DNA polymerase (Kapa Biosystems, Woburn, MA, USA), using
six cycles of amplification. Single-read MethylC-seq libraries were processed and
aligned as described previously58.

Quantitative PCR. PCR reactions were performed on a CFX96 Touch Real-Time
PCR Detection System (BioRad) using iQ Custom SYBR Green Supermix
(BioRad). We preformed RNA expression PCR (RT–qPCR (quantitative PCR)) and
ChIP-qPCR for H3K4me3 and H3K9ac on promoters of odc1, eef1a1o, rnf146,
tor1a, zic1, cdc14b, eomes, xrcc1, drosha, gdf3, t, tbx2, fastkd3, gs17 (see
Supplementary Methods for primer sequences). ChIP-qPCR enrichment over
background was calculated using the average of 5 negative loci.

Detection of enriched regions. We used MACS2 (ref. 59) with standard
settings and a q-value of 0.05. Fragment size was determined using phantom-
peakqualtools60. Broad settings (--BROAD) were used for H3K4me1, H3K36me3,
H3K27me3, H3K9me2, H3K9me3, H4K20me3 and RNAPII. Broad and narrow
peaks were merged for H3K4me3. For H3K9ac narrow peaks were used. For p300
broad peaks were used in the ChomHMM analysis, narrow p300 peaks were used
for super-enhancer and MaD versus ZyD analyses. All peaks were called relative to
an input control track. Peaks that showed at least 75% overlap with 1 kb regions
that have more than 65 input reads, and peaks that have a ChIP-seq RPKM higher
than the 95 percentile of random background regions are excluded from further
analysis. Only scaffolds 1–10 (the chromosome-sized scaffolds) were included in
the analysis. Relative RPKM was calculated by dividing the ChIP-seq RPKM of the
peaks by the ChIP-seq RPKM of the 95 percentile of random background regions.

We used MAnorm61 to determine differentially enriched regions in a-amanitin
and control embryos. We used merged peak sets of replicate 1, replicate 2 and stage
10.5 to avoid bias caused by peak calling. Lost, gained and unchanged peaks per
biological replicate were determined using the following parameters: lost peaks have
M-values 41 and a � log base 10(P value) 45 (for H3K27me3) or 1.3 (for
H3K4me3 and p300) and have a relative RPKM (background corrected) 41 in stage
11 control (no cut-off was used for st.11 control of H3K27me3 rep.1), stage 10.5
(H3K4me3 and p300) or stage 12 (H3K27me3); increased peaks have M-values
smaller than -1 and a -log base 10(P value) 45 (H3K27me3) or 1.3 (H3K4me3 and
p300) and have a rel. RPKM greater than 1 in stage 11 a-amanitin, stage 10.5
(H3K4me3 and p300) or stage 12 (H3K27me3); unchanged peaks are neither gained
nor lost and have a rel. RPKM 41 in stage 11 control (no cut-off was used for st.11
control of H3K27me3 rep.1), stage 11 a-amanitin, stage 10.5 (H3K4me3 and p300) or
stage 12 (H3K27me3). Maintained peaks are peaks that are not lost and have a rel.
RPKM 41 in stage 11 control (no cut-off was used for st.11 control of H3K27me3
rep.1), stage 11 a-amanitin, stage 10.5 (H3K4me3 and p300) or stage 12 (H3K27me3).
Common lost, gained, unbiased and maintained peaks are present in both replicates.
All other peaks are considered not defined (ND). Replicate-specific peaks were only
used for Supplementary Fig. 4b, for all other figures the common peaks were used.

DNA methylation levels in Supplementary Fig. 4d was calculated using
previously published Bio-CAP data62. Bio-CAP RPKM levels of stage 11–12 were
calculated for H3K4me3, H3K27me3 and p300 peaks, and corrected for input
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Figure 8 | Model of maternal and zygotic regulatory space. This shows the segregation of maternal regulatory space, which contains hypomethylated

promoters that are mainly controlled by maternal factors, and zygotic regulatory space, which includes methylated promoters and enhancers that are under

zygotic control. Most p300-bound enhancers are in zygotic space, however, they can regulate promoters in both maternal and zygotic space, crossing the

regulatory space border. This may contribute to varying degrees of permissiveness to transcriptional activation. Maternal regulatory space extends well into

neurula and tailbud stages and includes many embryonic genes which are activated at specific stages of development. Zygotic regulatory space requires

zygotic transcription, is established from the mid-blastula stage onwards but increases in relative contribution during development.
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values. For Fig. 4c genes were considered ‘hypomethylated’ if the Bio-CAP/Input
ratio on the promoter (±1 kb from TSS) was 41.

RNA expression analysis was performed as previously published35. Embryonic
transcripts were separated based on the clustering of maximum expression levels
per stage in Fig. 3d of Paranjpe et al.35 (cluster 1¼ blastula, cluster 5¼ gastrula,
clusters 3 and 4¼ neurula, clusters 2 and 6¼ tailbud).

Enhancer clusters were called as previously described43. Enhancer Clusters are
called per stage and merged to determine the total Enhancer Cluster region.
Percentage of the EC region is calculated relative to the total Enhancer Cluster
region.

MaD and ZyD classification. MaD peaks emerge at or before stage 11 and are also
acquired in a-amanitin treated embryos in both replicates. Zygotically defined
(ZyD) peaks appear at or before stage 11 and are lost in a-amanitin treated
embryos in both replicates, or emerge after stage 11. To classify MaD and ZyD
H3K4me3 genes we ran MAnorm on promoters (±250 bp from TSS) only, using
similar restrictions as described in ‘Detection of enriched regions’. MaD H3K4me3
genes have a maintained promoter in both replicates, ZyD H3K4me3 genes have a
lost promoter H3K4me3 peak in both a-amanitin replicates, or a peak that emerges
after stage 11. MaD H3K27me3 genes have at least one MaD peak in the vicinity of
their promoter (±2.5 kb from TSS). ZyD H3K27me3 genes have at least one ZyD
peak in their promoter and lack a MaD peak. ND peaks or genes do meet the
criteria for neither MaD nor ZyD. For p300 the total number of ZyD and MaD
peaks was counted in GREAT63 regions of genes.

ChomHMM analysis. Chromatin states were discovered and characterized using
ChromHMM v1.10 (ref. 26), an implementation of a hidden Markov model. As
input we used the enriched regions from ten tracks (H3K27me3, H3K36me3,
H3K4me1, H3K4me3, H3K9ac, H3K9me2, H3K9me3, H4K20me3, p300 and
RNAPII) across five developmental stages. We trained and ran the model with a
range of states, and determined the 19 emission states model as the optimal
number of states that could sufficiently capture the biological variation in co-
occurrence of chromatin marks. We subsequently classified the states into seven
main groups based on the presence and absence of specific chromatin marks.

The segmentation files of the seven main groups per stage were binned in 200
base pairs intervals. An m� n matrix was created, where m corresponds to the 200
base pair intervals and n to the developmental stages (9–30). Each element a(i,j)
represents the chromatin state of interval i at stage j. For each chromatin group
occurrences were counted per stage n. The changes between stage n and nþ 1 were
plotted using Sankey diagrams (https://github.com/tamc/Sankey), a flow diagram
closely related to alluvial diagrams.

Motif analyses. For the prediction of motif contribution to p300 recruitment
(Fig. 5a) we have implemented the ISMARA method developed by Balwierz et al.64

This method uses motif activity response analysis to determine the transcription
factors that drive the observed changes in chromatin state across samples. As input
we used the number of known motifs found per p300 binding site and the RPKM
of the p300 peaks per developmental stage. The model infers the unknown motif
activities from the equation in which the changes in signal levels are explained
with the number of binding sites and the unknown motif activities. Motifs that
showed a z-score activity that was 413 are shown in Fig. 5a. Enriched motifs
(Supplementary Fig. 7) were detected with gimme diff, a tool from the
GimmeMotifs package65. The vertebrate motifs used in this script were obtained
from CISBP (http://cisbp.ccbr.utoronto.ca/)66 and clustered using gimme cluster
from GimmeMotifs. The motifs are available at http://dx.doi.org/10.6084/
m9.figshare.1555851 (ref. 67).

Generation of plots and heatmaps. All heatmaps were generated using fluff
(http://simonvh.github.com/fluff)13 or gplots (http://cran.r-project.org/web/
packages/gplots/index.html). For all heatmap clustering, the Euclidean distance
metric was used. Other plots were generated using ggplot2 (http://ggplot2.org/).
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