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Background: Stomach adenocarcinoma (STAD) is one of the most common tumors.
Tumormutation burden (TMB) has been linked to immunotherapy response.Wewanted to
see if there was any link between TMB and cancer prognosis.

Methods: The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO)
databases were used to obtain mutation data, gene expression profiles, and clinical data.
We looked at the differences in gene expression and immune markers between low and
high TMB groups, built an immune prognostic model, and created a dynamic nomograph
App that may be used in the clinic. Simultaneously, We ran the immunotherapy prediction
and model comparison at the same time. Finally, model gene mutation and copy number
variation (CNV) were displayed. The cellular functional experiments were used to
investigate the potential role of GLP2R in gastric cancer.

Results: Firstly, basic mutation information and differences in immune infiltration in STAD
are revealed. Secondly, the prognostic model developed by us has good accuracy, and
the corresponding dynamic nomograph Apps online and immunotherapy prediction
facilitate clinical transformation. Furthermore, GLP2R knockdown significantly inhibited
the proliferation, migration of gastric cancer cells in vitro.

Conclusion: Our findings imply that TMB plays a significant role in the prognosis of STAD
patients from a biological perspective. GLP2R may serve as a potential target for gastric
cancer.
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BACKGROUND

The third most common cancer-related fatality is gastric cancer
(GC), among which STAD is the most common type of
pathological tissue (Bray et al., 2018). Although many
therapeutic ways have been available, the high recurrence
rate causes a heavy economic burden in both family and
healthcare systems (Mehmedagic et al., 2016; Lee et al.,
2017). The cause of STAD is still unclear; many factors,
including H. pylori infection, smoking, environmental factors,
poison contact history, etc. are associated with the occurrence of
STAD (Naumann, 2005). Although clinicians have enriched
therapeutic choices in recent years, many clinical obstacles are
still unresolved. Immunotherapy has been a newly developed
method to treat tumors by targeting PD-1, PD-L1, CTLA-4, etc
(Kim and Seo, 2018; Powles and Morrison, 2018; Zhang et al.,
2018).

First-line clinical trials of immunotherapy in combination
with conventional therapy have shown improved clinical
benefit and survival in patients with gastric cancer, especially
among pretreated patients. This has contributed to the
accelerated approval of some checkpoint inhibitors. However,
the therapeutic effects of single-drug immune checkpoint
inhibitors do not seem to meet expectations. Therefore, new
immunotherapy algorithms should develop more efficient
predictive biomarkers to distinguish between gastric tumor
subsets with different clinical responses (Lazăr et al., 2018;
Coutzac et al., 2019; Liang et al., 2021).

Previous papers have pointed out the correlation between
immunotherapy response and TMB (Rizvi et al., 2015; He et al.,
2019). Gene mutations in tumor tissues may produce new
antigens through transcription and translation, thus being
recognized and targeted by the immune system (Matsushita
et al., 2012; Riaz et al., 2016). Not all mutations produce
immunogenicity, and immune cells can only recognize a few
mutated tumor antigens (Snyder and Chan, 2015). The more
variations the tumor has, the more antigens it forms. Higher TMB
has a tendency to generate more neoantigens, enhancing the
immunogenicity of tumors and improving the response to
immunotherapy in clinical applications (Rizvi et al., 2015).
Therefore, TMB can be used as a biomarker to evaluate
neoantigen load in tumors.

TMB can be utilized as a biomarker to predict the survival rate
of patients with advanced gastric cancer after immunotherapy,
which aids doctors in making the best decisions possible (Wang
et al., 2019; Kim et al., 2020). In terms of mechanism, TGFB2may
have a role in the epithelial-mesenchymal transition (EMT) and
TMB in gastric cancer, making it a possible therapeutic target
(Yang et al., 2020). CXCR4 may also influence gastric cancer
growth and prognosis by influencing immune infiltration, TMB,
cytolytic activity, tumor purity, and treatment sensitivity (Li et al.,
2020). In general, the TMB trial in stomach cancer warrants
additional investigation.

TCGA has currently mapped the mutations in the human
cancer genome, providing a wealth of mutation and expression
profile data to researchers all around the world. We used STAD
samples from the TCGA database to find differentially expressed

genes (DEGs) across the high and low TMB groups, as well as
investigate the relationship between immune cell infiltration
features and TMB, creating and verifying an immune
prognostic model. In the end, a series of functional
experiments were carried out on GLP2R.

MATERIALS AND METHODS

Data Acquisition
We downloaded various data of STAD patients from the
TCGA data portal (https://tcgadata.nci.nih.gov/tcga/)
(Hutter and Zenklusen, 2018), including mutation data,
gene expression profiles, and clinical data. The STAD probe
matrix file (GSE84433 series matrix) and platform file
(GPL6947-13512) were also obtained from the GEO
database (Barrett et al., 2007). The patient selection criteria
for this study was samples of initial gastric adenocarcinoma
after primary surgical resection (patients with missing clinical
information were not included). To summarize the mutation
data, The mutation data were summarized using the Maftools
software package (Mayakonda et al., 2018). The relevant
parameters of tumor-specific mutant genes were computed
to obtain TMB. STAD samples were separated into high and
low TMB groups using the median of TMB as the critical
value. Then we looked at the relationship between TMB and
survival and other clinical factors. Gene expression data from
high and low TMB groups were analyzed using limma package
(Ritchie et al., 2015). The fold change >2 and the false
discovery rate (FDR) < 0.05 were our screening criterion
for DEGs.

DEGs Enrichment Analysis and Immune
Infiltration Assessment
We used GSEA 4.0.3 software to perform Gene Set Enrichment
Analysis (GSEA) and reported the first five Gene Ontology (GO)
keywords and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways which enrich most significantly in the high
TMB group (compared to the low TMB group) (Subramanian
et al., 2005).

The fraction of invading immune cells was computed by
applying the CIBERSORT algorithm, and the corresponding
violin plot was created. Using the CIBERSORT algorithm with
1,000 permutations and the LM22 signature, an accurate analysis
of the immune cells in STAD samples was carried out (Chen et al.,
2018).

Visualization of Mutation Data and ssGSEA
Analysis
We performed ssGSEA analysis in TCGA-STAD samples using
the GSVA package to determine the immune activity of
23 immune-related genesets, and the correction results ranged
between 0 and 1. The heat map (pheatmap R package) and violin
plots (ggpubr R package) of the tumor microenvironment were
created based on the correlation analysis using the ESTIMATE
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algorithm between high and low risk group. To clarify the
relationship between the risk grouping and immune
infiltration, we also used the ssGSEA method to calculate the
tumor immune cell infiltration score for each STAD sample in the
TCGA database, then used the “Bioconductor Limma” R package
to run the differential analysis of immune scoring and immune
typing, and finally drew the box plot.

Construction and Multiple Validations of
Immune Prognostic Model
We obtained differentially expressed immune genes by
intersecting the list of immune-related genes from the
Immunology Database and Analysis Portal (ImmPort
Database) (Bhattacharya et al., 2014) with the preceding
DEGs. We randomly separated TCGA samples into two
groups: a training group and an internal validation group after
correlating the expression of differentially immune genes with
survival time. Univariate COX analysis (p < 0.01) identified
survival-related immune genes in the training group, and
using the R package glmnet, the least absolute shrinkage and
selection operator (LASSO) (Tibshirani, 1997) excluded the high
correlation genes to avoid the model from overfitting. Finally, the
best prognostic model was created using stepwise multivariate
Cox regression analysis.

The developed prognostic model formula was used to
determine the patient riskScores for the training, internal
validation, total, and external validation (GSE84433) groups.
We divided the patients in the training, internal validation,
total, and external validation groups into a high-risk group
and a low-risk group using the median riskScore of the
training group as the threshold, plotting the survival curve and
Receiver Operating Characteristic (ROC) curve of the training,
internal validation, total, and external validation groups with R
x64 3.6.3 software. Ultimately, univariate and multivariate
prognosis analyses were done on the entire group (p < 0.05)
to see if the model’s riskScore may be an independent prognostic
factor.

The differences in model gene expression were evaluated
between the high and low risk groups, with the ggpubr
package drawing model gene boxplots to compute the
expression differences. To conduct multiple gene survival
analysis for all model genes, we used the PROGgeneV2
online program (Goswami and Nakshatri, 2014) and
picked the GSE62254 dataset (Cristescu et al., 2015). We
created a dynamic nomograph App online based on the
aforesaid prognostic model to aid in the rapid calculation
of patient survival rates in clinical practice. In order to
demonstrate the application method, we randomly
selected a low-risk group sample and a high-risk group
sample from the training group, and calculated survival
probability by inputting gene expression in the dynamic
nomograph App.

Mutation and CNV of Model Genes
We entered the cBioportal website (Cerami et al., 2012) and
selected the study (Stomach Adenocarcinoma TCGA PanCancer

data) to download the mutation status of model genes. Finally, we
investigated the association between CNV of the model genes and
immune cells infiltration level, as well as the correlation between
immune cells infiltration level and survival of STAD patients by
using the Tumor Immune Estimation Resource (TIMER)
database (Li et al., 2017).

Immunotherapy Benefit Evaluation and
Model Comparison
To explore whether the above prognostic model can evaluate
the efficacy of immunotherapy for patients, we analyzed a
series of immunotherapy biomarkers. We examined the
differences between the high and low risk groups by
uploading the TCGA sample expression profile into the
Tumor immune dysfunction and exclusion (TIDE) database
(Jiang et al., 2018) and obtaining TIDE, Microsatellite
instability (MSI), Dysfunction, and Exclusion scores for
each sample.

Furthermore, 5-years ROC curves were used to evaluate the
riskScore’s prognostic prediction efficiency with TIDE and tumor
inflammation signature (TIS) scores (Danaher et al., 2018),
demonstrating the correctness of the prognostic model we
developed.

Drug Sensitivity Testing
We downloaded transcriptome data from the CellMiner
database (https://discover.nci.nih.gov/cellminer/) and FDA-
certified drug sensitivity–related data to clarify the influence
of model genes in the prognostic model on drug sensitivity and
tolerance. To investigate the relationship between gene
expression and drug sensitivity, the Pearson correlation test
was used. Then, we used the “pRRophetic” R package to draw a
box plot and analyze the differences in drug sensitivity between
high and low risk groups.

Cell Culture and siRNA Treatment
Human gastric cancer cell lines (BGC823,MKN45) were cultured
in RPMI 1640 medium (HyClone, United States)supplemented
with 10% fetal bovine serum (FBS, Gibco, United States). These
cells were maintained at 37°C under an atmosphere of 5% CO2.
GLP2R siRNA were synthesized by RiboBio (Guangzhou, China)
and transfected into cells using Lipofectamine 3,000 (Invitrogen,
California, United States) according to the manufacturer’s
instructions. The cells were cultured in basic RPMI 1640
medium for 12–16 h before the media was for RPMI 1640
medium containing FBS.

Quantitative Real-Time PCR
RNA was extracted from gastric cancer cell lines
(BGC823,MKN45) interfered with si-GLP2R and NC as
control. cDNA was synthesized for real-time PCR adopting
SYBR Green qPCR mix (Vazyme, China). The primers are
listed as following: GLP2R -Forward: TCCTGGAAATGTCTC
TGTACCC; GLP2R—Reverse: GGCGTTCTCTATCGTCTGCC;
GAPDH-Forward:GACCACAGTCCATGCCATCA; GAPDH-
reverse:GTCAAAGGTGGAGGAGTGGG.
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Western Blot Analysis
RIPA lysis buffer (Servicebio, China) containing PMSF
(Servicebio, China) was used to collect proteins from BGC823
and MKN45 cells. 10% sodium dodecyl sulfate–polyacrylamide
gel electrophoresis (SDS-PAGE) was applied in separating
protein samples and a polyvinylidene fluoride membrane
(PVDF) membrane (Invitrogen, Carlsbad, United States) was
used to transfer the separated protein. The membrane was
blocked in 5% skim milk at room temperature for 1 h in a
shaker, and then incubated with the primary antibody:GLP2R
(Abconlal, CAT# A6602, 1:1,000), and GAPDH (Proteintech,
CAT# 60004-1-Ig, 1:20,000) at 4°C overnight and subsequent
incubation with the secondary antibody for 1 h. Finally, the
indicated proteins were visualized by West Pico plus
Chemiluminescent Substrate (Thermo Fisher Scientific,
United States).

Cell Proliferation and Colony Formation
Assays
After transfection with GLP2R siRNA for 48 h, BGC823 and
MKN45 cells were cultured in 96-well plates (3,000 cells/well in
100 µl RPMI 1640 medium). The proliferative capacity of treated
cells was detected at 24, 48, 72, 96, and 120 h. 10% Cell Counting
Kit-8 (CCK8) reagent (Bio-sharp, Hefei, China) was added to
each plate according to the kit instructions, and the OD450 value
was analyzed by a microplate reader (BioTek, United States).
Regarding colony formation experiment, 1,000 cells were seeded
in cell culture plates and allowed to grow until visible colonies
formed. Then we used methanol to fix clones 15 min, 1% crystal
violet to stain clones 20 min, and counted the number of clones
(>50 cells).

Transwell Migration and Wound Healing
Assays
BGC823 and MKN45 cells were transfected with GLP2R siRNA
for 48 h and cultured in 24-well culture plates with 8 mm pore-
containing membrane inserts to measure cell migration capacity.
4 × 104 cells were seeded on the upper transwell chambers in
200 µl serum-free culture medium, and 500 µl medium
containing 20% FBS was added to the lower chambers. After
24 h incubation, the cells that migrated through membranes were
fixed with methanol, stained with 1% crystal violet and counted
under light microscope (200×). Additionally, BGC823 and
MKN45 cells were cultured in 24-well-plates and scraped with
a 10-μl pipette tip. The cells were cultured in RPMI 1640 medium
without FBS. Images of wounds were captured at 0, 24, and 48 h,
the area of wounds was quantified by ImageJ software (40×).

Statistical Analysis
All data of this study were statistically analyzed by R software
3.6.1 and Prism 9.0. The data were analyzed by two-tailed
Student’s t-test and one-way analysis of variance (ANOVA).
The difference was considered statistically significant when the
p-value was less than 0.05.

RESULTS

Primary Genetic Alterations and Statistical
Analysis in STAD
We obtained the clinical information and whole-exome
sequencing results of STAD patients from the TCGA database
(Table 1). Maftools were applied to summarize themutation data.
We further categorized mutations based on the variant effect
predictor, among which the frequency of missense mutations is
highest (Figure 1A). Among all mutation types, the occurrence
frequency of SNP is the highest (Figure 1B). Similarly, the most
frequent type of SNV in STAD is C > T transversion (Figure 1C).
Figure D shows the mutation of each sample, which is most
relevant to TMB (Figure 1D). Figure E also depicts the mutations
of the samples (Figure 1E). The first 10 mutated genes are TTN,
MUC16, TP53, LRP1B, ARID1A, SYNE1, FAT4, CSMD3, FLG,
and PCLO (Figure 1F). The waterfall diagram graphically shows
the gene mutations of the samples (Figure 2). The correlation
graph visualizes the correlation between two gene mutations; for
example, mutations of PIK3CA and ARID1A co-occur, while
mutations of PIK3CA and TP53 are mutually exclusive
(Figure 3).

TMB was calculated by dividing the non-synonymous
protein-coding variance by the genome’s overall sequence
length. Based on the median TMB, we classified STAD
patients into two groups: high TMB and low TMB
(Supplementary File S1). The survival rate of patients in the
high TMB group is higher than that of patients in the low TMB
group, according to Kaplan-Meier survival analysis
(Supplementary Figure S1A). The results show that in STAD,
TMB is favorably connected with age and negatively correlated

TABLE 1 | Clinical characteristics of STAD patients in the TCGA database.

Characteristics Total %

All 338 100.00
Age (y) ≥65 189 55.92

<65 149 44.08
Gender Male 216 63.91

Female 122 36.09
Grade G1 7 2.07

G2 116 34.32
G3 215 63.61
G4 0 0.00

Stage I 42 12.43
II 112 33.14
III 153 45.27
IV 31 9.17

T stage T1 15 4.44
T2 72 21.30
T3 167 49.41
T4 84 24.85

M stage M0 319 94.38
M1 19 5.62

N stage N0 104 30.77
N1 95 28.11
N2 71 21.01
N3 68 20.12
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with stage, T, and N stages; female patients have higher TMB than
male patients. TMB in female patients is higher than in male
individuals (Supplementary Figures S1B–H). Between the high
and low TMB groups, 816 DEGs were found (Supplementary
File S2).

GSEA Enrichment and Immune Infiltration
Analysis
The top 5 GO keywords (Figures 4A–E) and KEGG pathways
(Figures 4F–J) with the highest significant enrichment in the
high TMB group (p < 0.05) were obtained using GSEA
enrichment analysis comparing the high and low TMB
groups. These KEGG pathways and GO keywords are
mostly related to genetic material metabolism and DNA
repair.

According to studies, the higher the TMB in tumors, the
more neoantigens are produced, making tumors more
immunogenic (Rizvi et al., 2015). As a result, we
investigated the link between TMB and immune markers in
STAD. Using the CIBERSORT method, we determined the
fraction of invading immune cells. The inference of immune
cell types generated by CIBERSORT was relatively reliable at
the p < 0.05 threshold. These findings demonstrated that high
TMB tumors included large proportions of follicular helper

T cells, activated memory CD4+ T-cells, M1 macrophages, M0
macrophages, and Neutrophils. Resting memory CD4+ T cells,
regulatory T cells, monocytes, resting dendritic cells, and
resting mast cells were all higher in the low TMB group
(Figure 5).

Construction and Validations of Prognostic
Model
From the overlap of immune-related genes and prior DEGs,
differentially expressed immune genes were derived
(Supplementary File S3). One-time random grouping was
used to create the training (Supplementary File S4) and
internal validation groups (Supplementary File S5). Based
on univariate COX analysis (p < 0.01) for the training group
(Supplementary File S6), we applied the LASSO algorithm to
deal with the 21 survival-associated immune genes. Following
the stepwise multivariate Cox regression analysis, four
immune genes were able to develop a predictive model. The
riskScore for each patient is calculated as follows:
0.001*APOD +0.005*APOH +0.039*INHA +0.499*GLP2R
(Table 2). Each model gene is considered to with high risk
attribute.

We split the patients in the training, internal validation,
total, and external validation groups into high and low risk

FIGURE 1 | Primary genetic changes in STAD. (A,B)Gene variant categories in STAD. (C) The SNV classification of STAD. (D,E) The STAD samples’mutations. (F)
STAD mutation profile and first 10 mutant genes.
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groups (Supplementary Files S7, S8, S9, S10) for later survival
analysis after computing their riskScores. The survival curves
between the high and low risk groups in the training, internal
validation, total, and external validation groups are notably
different, and the low risk group’s survival rate is significantly
greater than the high risk group’s. The accuracy of the
prognostic model we developed is dependable, according to
the area under the curve (AUC) values of ROC curves
(Figure 6). Ultimately, univariate and multivariate
prognostic studies (p < 0.05) show that the riskScore
derived from the model is a prognostic factor that is
independent of other factors (Supplementary Figure S2).

Boxplots of model genes were created to compute the
expression level differences between the high and low risk
groups (Figures 7A–D). The high-risk group has significantly
higher expression of all model genes, which validates the
earlier inference that all model genes belong to high risk
factors. Furthermore, incorporating all model genes in a
multiple gene survival study successfully verifies the
efficiency of the prognostic model (Figure 7E). A dynamic
nomograph App online (https://u20131050.shinyapps.io/
STAD-TMB-Dynamic_nomogram/) was successfully
designed to quickly compute patient survival and support
clinical decision making in order to improve the clinical
translational implications of our study. We take low-risk
group sample TCGA-VQ-AA6J and high-risk group sample
TCGA-D7-A6F0 as examples to show the calculation results of

dynamic nomograph App, which shows that the prediction
results are relatively accurate (Supplementary Figure S3).

Alteration of Model Genes and Immunity
The cBioportal website provided an overall view of genetic change
(Figure 8A) as well as domain mutation plots (Figures 8B–E) for
the model genes. These model genes have extremely lowmutation
frequencies.

According to the TIMER database, CNV of these model genes
has little effect on immune cell infiltration level differences
(Figures 9A–D), and only Macrophage cell infiltration has a
substantial impact on STAD patients’ survival (Figure 9E).

Visualization of Mutation Data and ssGSEA
Analysis
We created a heatmap (Figure 10A) and violin plots (Figures
10B–E) of the tumor microenvironment by analyzing the
correlation between risk categorization and tumor
microenvironment. In conclusion, high-risk group had higher
StromalScore, ImmuneScore, and ESTIMATEScore than low-
risk group, while the low-risk group had a higher score of
TumorPurity. To investigate the relationship between the risk
score and immune status, we used the ssGSEA method to
quantify 23 immune cell subsets, discovered that the infiltration
of 13 immune cell subsets was significantly higher in the high-risk
group than in the low-risk group (p < 0.05). (Figure 10F).

FIGURE 2 | The waterfall diagram of STAD samples.
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Efficacy Prediction of Immunotherapy and
Model Comparison
The high risk group had a higher TIDE score, lower MSI score,
higher Dysfunction score, and higher Exclusion score, indicating
that the high risk group of STAD has increased immune escape

potential, resulting in poor immunotherapy efficacy
(Figure 11A).

In the end, it can be judged from the 5-years ROC curves that

the prognostic model constructed by us has the largest AUC

value, so its prognostic prediction efficiency is higher than TIDE

FIGURE 3 | The correlation graph of STAD samples.

FIGURE 4 | Results of GSEA enrichment. (A–E) GO enrichment results. (F–J) KEGG enrichment results.
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score and TIS score (Figure 11B). The above results show that the
group with high expression of GLP2R has the highest risk score
and the worst prognosis.

Drug Sensitivity Testing
By performing a separate drug sensitivity analysis on model genes in
the prognostic model, we were able to identify the top 16 drugs with
the most statistically significant differences. APOD expression was
found to be positively related to the sensitivity of vemurafenib, pd-
98059, dabrafenib, hypothemycin, selumetinib, bafetinib, denileukin
diftitox ontak and cobimetinib (isomer 1), it indicates that the higher
level of APOD expression, the greater sensitivity to the
aforementioned drugs, but APOD has a negative correlation with
pyrazoloacridine, batracylin, docetaxel and pralatrexate. APOH
expression was revealed to be highly linked to the sensitivity of
elesclomol, INHA expression was discovered to be strongly tied to

the sensitivity of fulvestrant, but inversely correlated with the
sensitivity of amonafide. Furthermore, the higher the expression
of GLP2R in STAD patients, the greater the patient’s sensitivity to
decitabine (Figure 12A). To further improve the clinical value of
tumor mutation burden-related prognostic model for the treatment
of stomach cancer. We analyzed the commonly used drugs in the
clinical treatment of gastric cancer, which include cisplatin,
doxorubicin, gemcitabine, lapatinib, and gemcitabine was noticed
to bemore sensitive in the high-risk group than in the low-risk group
(p < 0.001), whereas lapatinib is the opposite (Figures 12B–E).

Downregulation of GLP2R Inhibits STAD
Cell Proliferation and Migration
To evaluate the specific role of GLP2R in gastric cancer, the
relative mRNA expression level of GLP2R in the eight gastric

FIGURE 5 | TMB and immune markers in STAD were found to be correlated. In high (red violin part) and low (blue violin part) TMB groups, there are 22 types of
adaptive and innate immune cells (by wilcox test).

TABLE 2 | Multivariate COX regression analysis results of model genes.

Id Coef HR HR.95 L HR.95H p Value

APOD 0.001461317 1.001462385 0.999632616 1.003295504 0.117313047
APOH 0.005260581 1.005274442 1.002123723 1.008435067 0.001021469
INHA 0.039468481 1.04025771 1.008357221 1.073167407 0.013003103
GLP2R 0.499454853 1.64782272 1.065644695 2.548053521 0.024713044

Frontiers in Cell and Developmental Biology | www.frontiersin.org March 2022 | Volume 10 | Article 7909208

Fu et al. Mutation Burden in Stomach Adenocarcinoma

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


cancer cell lines (GES1, BGC-823, MKN45, SNU-216, SGC-7901,
MGC-803, AGS and N87) was analyzed. The expression level of
GLP2R in the BGC-823, MKN45 cell lines was higher than that in
the other cell lines (Figure 13A). We first evaluated the
transfection efficiency of the cells by qRT-PCR and Western
blot, found that the relative expression level of GLP2R was
significantly lower after siRNA 3 transfection (Figures 13B,C).
To further confirm the role of GLP2R in proliferation, We
performed CCK-8 assays to detect the effect of GLP2R
knockdown. After GLP2R silencing, BGC-823, MKN45 cell

proliferation significantly decreased compared to control cells
(Figure 13D). Colony formation assay also indicated that GLP2R
silencing significantly suppressed the growth of BGC-823 cell
(Supplementary Figures S4A–B). Transwell and wound healing
assays were performed to detect migration, Our results showed
that the migration rates of BGC-823, MKN45 cells transfected
with siRNA were significantly lower than that of the control-
transfected cells (Figures 13E–H). These data suggest that
GLP2R knockdown repressed the proliferative and migratory
abilities of BGC-823, MKN45 cells.

FIGURE 6 | Survival curves and ROC curves. p < 0.05 reveals significant survival differences. The ROC curves show the model prediction efficiency. (A) Training
group. (B) Internal validation group. (C) Total group. (D) External validation group GSE84433.
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DISCUSSION

Cancer is an inherited disease, and the mechanisms underlying
involve the accumulation of harmful somatic mutations, which
leads to a phenotypic consequence. Mutations are caused by
faulty repair after DNA replication (especially meiosis) errors or
DNA damage (such as exposure to radiation or carcinogens).
Mutational processes contribute to different cancers, and the
distribution of the rates of different mutational processes in various
cancer types also varies (Martincorena and Campbell, 2015). High
gene alterations make the tumor more immunogenic, making it a
target for immune cell activation and susceptible to programmed
cell death -1 (PD-1) immunocheckpoint inhibitors. TMB has been
linked to a positive response to checkpoint inhibitor treatment
(Snyder et al., 2014; Van Allen et al., 2015). In patients with
advanced gastric cancer, a recent study found that pembrolizumab
immunotherapy has good antitumor activity and low toxicity
(Amatatsu et al., 2018). Due to the generation of immunogenic

neoantigens, TMB, an emerging biomarker for response to
immunotherapy, has also been a possible predictor of clinical
benefits from immunocheckpoint inhibitors across several
tumor types (Chalmers et al., 2017; Gong et al., 2019).

Higher TMB, as calculated from the complete exome, is related
with greater immunotherapy responsiveness in patients with
melanoma or non-small cell lung cancer, according to some
studies (Chalmers et al., 2017). TMB levels beyond a certain
threshold are more likely to create neoantigens in the tumor
microenvironment, boosting antigenic presentation and enticing
T cells to infiltrate tumors (Seto et al., 2019). A series of stromal
cells, including vascular cells, fibroblasts, and inflammatory cells,
come into being the tumor microenvironment (Greten and
Grivennikov, 2019). More and more evidence suggests that the
tumor microenvironment is important in the beginning and
progression of STAD. Meanwhile, tumor-infiltrating lymphocytes
have been shown to be effective in predicting GC patient prognosis,
demonstrating that immune-related protective and hazardous

FIGURE 7 | Multiple validations of model genes. (A–D) Boxplots display the differential expression for model genes. *, p < 0.05. **, p < 0.01. ***, p < 0.001. (E)
Multiple gene survival validation, from the PROGgeneV2 online tool.
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variables in the GC microenvironment can become prognostic
predictors (Yang et al., 2019).

TMB appears to have a considerable impact on the prognosis
of STAD, in a study that included TGCA data from 375 gastric
cancer patients, 15.7% of the patients had high TMB, and
screening 632 up-regulated genes and 979 down-regulated
genes were selected (Bai et al., 2020), further pathway analysis
showed that patients in the high TMB group were associated with
high activated CD4+ memory T cells, follicular helper T cells,
quiescent NK cells, M0 and M1 macrophages, and neutrophils
Cell infiltration.

TMB has been reported in many articles in tumor patients, as a
novel immunotherapy marker, TMB levels are linked to immune

cell infiltration in the tumor microenvironment, the higher the
TMB, the better the outcome (Li et al., 2016; Kelly, 2017; Wei
et al., 2021).

The clinical data of 63 patients with advanced stomach cancer
who received immunotherapy were analyzed, assessed whether
TMB is associated with response to immunotherapy, the results
showed that high TMB was associated with the effectiveness of
ICI treatment and chemotherapy, and no progression in the high
TMB group extended survival, so TMB may serve as a predictive
biomarker for patients with advanced gastric cancer treated with
ICI material that aids clinical decision-making (Kim et al., 2020).

We acquired 816 DEGs by comparing the low and high TMB
groups. We can identify a close association between genetic

FIGURE 8 |Mutation profiles of model genes. (A) The mutation summary of genetic alteration. Each color refers to corresponding alteration attribute. (B–E) Gene
domain mutation. Each color refers to corresponding domain.

FIGURE 9 | CNV of the model genes and immune cells in STAD. (A–D) The effect of CNV of these model genes on the penetration level difference of immune cells.
(E) The correlation between the recruitment of immune cells and the survival of STAD patients.
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material metabolism, DNA repair, and TMB based on the GSEA
enrichment data. TMB deficiency impairs genetic material
metabolism and is linked to the DNA repair mechanism, an
enzyme system that prevents changes in genetic material, as seen
in non-small cell lung cancer (Chae et al., 2019). According to our
findings, those with a high TMB had more activated memory
CD4+ T-cells, follicular helper T cells, M0 macrophages, M1
macrophages, and Neutrophils. High TMB encourages the
invasion of these immune cells, as evidenced by studies in
different malignancies (Zhang et al., 2019; Wu et al., 2020; Xu
et al., 2020). These findings suggested that TMB can alter the

features of immune cell infiltration, and that TMB levels
beyond a certain threshold can attract immune effector
cells. The relative balance between immunosuppressive and
anti-tumor immune cells is one of the methods by which
tumor cells retain immune-mediated dormancy (Mittal
et al., 2014). Activated memory CD4+ T-cells and follicular
helper T cells are archetypal anti-tumor immune cells, as we all
know. Follicular helper T cells are a subpopulation of CD4
T cells that support B cells in the germinal center of lymphatic
tissue. Classically activated M1 macrophages may be
implicated in the early removal stage of immunoediting

FIGURE 10 | An examination of the immune status of the tumor microenvironment. (A) heatmap. The sample name is represented by the abscissa, and the immune
gene set is represented by the ordinate. The upper section contains tumor microenvironment scores, in which Stromal Score, Immune Score, and ESTIMATE Score
decrease as risk low, implying that the content of corresponding cells decreases. Tumor purity is diametrically opposed to them. (B–E) Violin Plot. The statistical
relationship between the degree of risk and each tumormicroenvironmental parameter is investigated. (F) box plot. Immune cell subset differences in high- and low-
risk groups. *, p < 0.05. **, p < 0.01. ***, p < 0.001. ns, p > 0.05.
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driven by CD8 cytotoxic T lymphocytes and interferons, where
they destroy tumor cells and cause tissue death (Quaranta and
Schmid, 2019). TMB and the immune microenvironment have
a very close interaction, as can be observed. In the growth of
malignancies, the interaction of these immune cells is critical.

According to the results of the ssGSEA analysis, the degree of
TMB in STAD patients is positively correlated with the level of
immune infiltration. According to GSEA enrichment analysis, the
risk was positively correlated with StromalScore, ImmuneScore,
and ESTIMATEScore, but negatively coupled to TumorPurity,
and the higher risk, the stronger immunosuppressive activity.
This finding could explain why STAD patients with higher risk
levels have a lower survival rate.

In our study, which also indicates that the risk score of the
model composed of APOD, APOH, INHA, and GLP2R. At the
same time, we demonstrates that increased GLP2R expression
is attached to an increase in cancer cell sensitivity to
decitabine. Decitabine is a chemotherapeutic pyrimidine
nucleoside analogue used for the treatment of
myelodysplastic syndromes by inducing DNA
hypomethylation and corresponding alterations in gene
expression (https://go.drugbank.com/drugs/DB01262).
Therefore, we guess that the model gene can be used as an
evaluation index of drug efficacy.

It’s almost probable that the model genes we discovered are
high-risk genes, and that the prognostic model we built is
accurate. Through bioinformatics analysis, we found that
GLP2R has the highest risk coefficient. And GLP2R was
reported to be associated with gastrointestinal cancer in
previous studies (Lu et al., 2019; Qiu et al., 2020). Therefore,
in order to investigate whether it can be used as a prognostic
indicator, we performed in gastric cancer cell lines (BGC823,
MKN45) and found that knockdown of GLP2R can significantly
inhibit the proliferation and migration of gastric cancer
cell lines.

Although there is little study on the significance of these model
genes in STAD, they are essential in other malignancies, therefore
further mechanism studies are needed. For example, APOD can
be employed as a therapeutic tool to promote tumor cell death as
a prognostic marker for numerous cancer types (Søiland et al.,
2009; Bajo-Grañeras et al., 2013). Similarly, INHA induces tumor
angiogenesis and promotes tumor metastasis as a poor survival
predictor of various cancer types, and is a potential target for anti-
angiogenesis therapy and genetic engineering therapy (Singh
et al., 2018; Yoon et al., 2018).

The results of mutation study show that our model genes
have low mutation frequency. Perhaps, on the one hand, the
model genes in our study do not rely on structural and
functional alterations to influence STAD prognosis; on the
other hand, they generate high risk effect in STAD as a
result of quantitative changes. The judgment could also be
explained by the fact that the CNV of these model genes has
no effect on the difference in immune cell infiltration levels.
Only Macrophage cells, out of the six types of immune cells, can
alter STAD patients’ survival. Combined with previous violin
plot of immune cell infiltration, to a large extent, Macrophages
M0, M1 rather than M2, may play a vitalrole in the prognosis of
STAD. At present, studies on the role of Macrophage cells in
STAD are still lacking. Therefore, this is a direction worth
exploring.

CONCLUSION

In conclusion, our results imply that STAD patients with a high
TMB have a better prognosis. We identified DEGs between high
and low TMB groups using STAD samples from the TCGA
database, and investigated the relationship between immune cell
infiltration features and TMB. In addition, the immune
prognostic model was built using a range of bioinformatics

FIGURE 11 | Efficacy prediction of immunotherapy and model
comparison. (A) Violin plots. The comparison of immunotherapy biomarkers in
high and low risk categories. *, p < 0.05. **, p < 0.01. ***, p < 0.001. (B) 5-years
ROC curves.
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FIGURE 12 | Gene–drug sensitivity analysis. (A) based on the CellMiner database, the top 16 strongest correlations are shown. (B–E) Used the “pRRophetic” R
package to compare differences in drug susceptibility between high and low risk groups, the drug sensitivity of (B) Cisplatin, (C) Doxorubicin, (D) Gemcitabine, (E)
Lapatinib in high and low risk groups, respectively displayed.
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methodologies, with several validations. Our study’s clinical
translational importance was further strengthened by the
establishment of the dynamic nomograph App online and
immunotherapy prediction based on the prognostic model.
Finally, GLP2R may be expected to be a potential target for
gastric cancer.
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FIGURE 13 | Knockdown of GLP2R inhibits proliferation, migration of gastric cancer cells. (A) The relative expression level of GLP2R in the GES1, BGC-823,
MKN45, SNU-216, SGC-7901, MGC-803, AGS and N87 cell lines detected by RT-PCR. (B) The transfection efficiency of si-GLP2R in the BGC-823 and MKN45 cell
lines detected by RT-PCR. (C)Western blot analysis confirmed that the expression of GLP2R was inhibited by GLP2R siRNA administration. (D) The CCK-8 assay was
used to detect the effect of si-GLP2R on the proliferation of BGC-823 and MKN45 cell lines. (E) Representative images of the wound healing assay. (F) Statistical
analysis of the wound healing assay results after Knockdown of GLP2R. (G) Representative images of the transwell assay. (H) Statistical analysis of the transwell assay
results after Knockdown of GLP2R in the BGC-823 and MKN45 cell lines.*p < 0.05, **p < 0.01, and ***p < 0.001.
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