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Abstract: The corticotropin-releasing factor (CRF) system has been strongly associated with gas-
trointestinal pathophysiology, including colorectal cancer (CRC). We previously showed that altered
expression of CRF receptors (CRFRs) in the colon critically affects CRC progression and aggressive-
ness through regulation of colonic inflammation. Here, we aimed to assess the potential of CRFR
methylation levels as putative biomarkers in CRC. In silico methylation analysis of CRF receptor 1
(CRFR1) and CRF receptor 2 (CRFR2) was performed using methylome data derived by CRC and
Crohn’s disease (CD) tissues and CRC-derived circulating cell-free DNAs (ccfDNAs). In total, 32
and 33 differentially methylated sites of CpGs (DMCs) emerged in CRFR1 and CRFR2, respectively,
between healthy and diseased tissues. The methylation patterns were verified in patient-derived
ccfDNA samples by qMSP and associated with clinicopathological characteristics. An automated
machine learning (AutoML) technology was applied to ccfDNA samples for classification analysis.
In silico analysis revealed increased methylation of both CRFRs in CRC tissue and ccfDNA-derived
datasets. CRFR1 hypermethylation was also noticed in gene body DMCs of CD patients. CRFR1
hypermethylation was further validated in CRC adjuvant-derived ccfDNA samples, whereas CRFR1
hypomethylation, observed in metastasis-derived ccfDNAs, was correlated to disease aggressiveness
and adverse prognostic characteristics. AutoML analysis based on CRFRs methylation status revealed
a three-feature high-performing biosignature for CRC diagnosis with an estimated AUC of 0.929.
Monitoring of CRFRs methylation-based signature in CRC tissues and ccfDNAs may be of high
diagnostic and prognostic significance in CRC.

Keywords: CRF; colorectal cancer; methylation; bioinformatics; machine learning; liquid biopsy

1. Introduction

CRC is among the most common cancers worldwide, accounting for 10.2% of the
newly diagnosed malignancies and 9.2% of cancer-related deaths in 2018 [1]. Although
the five-year survival rates for early-stage CRC reach 90%, mortality is significantly high
among patients with distant metastases [2]. Hence, tumor stage at the time of diagnosis
is thought to be the most crucial prognostic factor. Early diagnosis is often delayed by
lack of symptoms such as abdominal pain, rectal bleeding, weakness and weight loss
which usually appear in late-stage CRC, accompanied by worse prognosis [3]. Therefore,
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preventive screening of asymptomatic individuals should be mandatory for reducing the
incidence and mortality rates of CRC [4]. Currently, preventive colon cancer screening
and early diagnosis are facilitated only by invasive methods such as colonoscopy and
sigmoidoscopy. The success and accuracy of this method depend on several parameters,
including the experience of the gastroenterologist and the correct implementation of the
technical protocols, such as adequate bowel preparation and avoidance of bleeding compli-
cations [5,6]. In addition, randomized controlled trials have shown that sigmoidoscopy
is limited in detecting cancers only in distal colon [7], while computed tomography (CT)
colonography has shown lower sensitivity in detecting small polyps (<8 mm) [8]. Fur-
thermore, radiation exposure and the need for additional colonoscopy in case of positive
findings are also considerable disadvantages of the above methods [9]. The development
of noninvasive approaches for early CRC screening has recently begun to gain ground.
In this context, guaiac-based fecal occult blood test (gFOBT), a method that detects blood
in feces, has demonstrated low sensitivity (51%) in detecting cancer cells [10], whereas
DNA stool tests (i.e., Cologuard®) have high sensitivity for early CRC detection (92%) but
lower performance in perceiving advanced pre-cancerous lesions (42.4%) [11]. Blood-based
protein biomarkers have been suggested for the early detection of CRC [12]. Circulating
cfDNA has been considered as a liquid biopsy material able to provide insights in cancer
initiation and progression, meeting the need for a convenient, minimally invasive tool for
precision medicine [13–15]. It is well-established that specific gene methylation changes
that occur early in carcinogenesis and can be detected in ccfDNA could serve as valuable
biomarkers for early cancer screening [16–18]. For example, a SEPT9 methylation test in
ccfDNA has been introduced as a screening option for detecting CRC; however, it shows
low rates of sensitivity (48%) and specificity (92%) [9]. Hence, the identification of novel
biomarkers in liquid biopsy materials could be of great importance in early CRC screening.

Stress affects the function of the gastrointestinal tract in multiple ways and has been
associated with its pathology [19,20]. The hypothalamic neuropeptide CRF and its homolog
urocortin coordinate neuroendocrine pathways of the stress response via activation of two
distinct receptors, CRFR1 and CRFR2. CRFRs are expressed throughout the gastrointestinal
tract [19–23], while aberrant expression has been reported in CRC [24] and in Crohn’s
disease [25–28] considered to be a high-risk premalignant condition. In CRC, expression of
CRFR1 [29] and decreased expression of CRFR2 [30] are associated with tumorigenicity
and progression, whereas the CRF system has been implicated in cancer development in
multiple tissues [31].

Although the expression of CRFRs is known to be regulated by methylation in the
central nervous system (CNS) [32,33], the methylation status of the CRFRs present in
peripheral sites has not been thoroughly studied. We recently reported on an association
of CRFR1 hypermethylation with the presence of steroid hormone receptors in breast can-
cer [34]. In addition, using genome-wide methylation approaches, Kobayashi et al. found
that hypermethylation of CRFR2 is correlated with colitis-induced CRC [35]. This is in line
with our previous reports indicating that diminished or lost CRFR2 expression in CRC
promotes tumor development and aggressiveness, including tumor immunoescape, by
regulating molecular circuits involved in sustaining inflammation in the gut [30,36]. Here,
we explored the methylation status of CRFR1 and CRFR2 by performing bioinformatic
analysis in DMCs identified in CRFR1 and CRFR2 genes obtained by publicly available
high-throughput methylome data from healthy, CD and CRC colon tissue. We further
examined the CRFRs methylation in patient-derived liquid biopsy samples (ccfDNA) and
evaluated its diagnostic and prognostic value in CRC.

2. Materials and Methods
2.1. Dataset for the In Silico Analysis

Raw DNA methylation data from CRC, CD patients and normal colons as well as
the corresponding clinicopathological parameters were obtained from the GEO (Gene
Expression Omnibus) (https://www.ncbi.nlm.nih.gov/geo/, accessed on 1 September
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2020) database [37]. CRC, CD and ccfDNA were used as keywords in the GEO query and
‘Methylation profiling by array’ as the study type. Thirty-four studies were found; of them,
only those using Infinium Human Methylation 450K and EPIC BeadChips and providing
adequate raw and clinical data were selected for further analysis. Four studies, namely
GSE99788 [38], GSE149282 [39], GSE122126 [40] and GSE105798 [41], were recruited for our
analysis. The description of study groups and correlations is presented in Table 1.

Table 1. Methylome datasets used for the bioinformatic analysis of CRFR1 and CRFR2 methylation.

Dataset Platform Correlated Groups References

GSE149282 EPIC Twelve CRC vs. 12 adjacent colon tissues [35]

GSE122126 450k Four CRC ccfDNAs vs. four healthy ccfDNA [36]

GSE105798 450k Three CD vs. eight normal colon tissues [37]

GSE99788 EPIC Thirteen CD vs. five normal colon fibroblasts [34]
CRC: colorectal cancer; CD: Crohn’s disease; NINF: noninflammatory; STEN: stenotic; INF: inflammatory.

2.2. Data Preprocessing and DNA Methylation Analysis

Raw DNA methylation data (IDAT files) and sample annotation files were processed
in the Bioconductor R package RnBeads v2.0 (https://rnbeads.org/index.html, accessed
on 18 September 2020) [42]. CpGs were chosen as the genomic region of interest. The
MethyLumi-Noob method was used to normalize technical variation in the background
fluorescence signal [43]. BMIQ was used as a normalization method to adjust beta values of
type II design probes into a statistical distribution characteristic of type I probes [44]. Probes
for SNPs or probes outside of the CpG context as well as probes on sex chromosomes
were removed [45]. Probes/samples with the highest fraction of unreliable measurements
were removed from further analysis using the Greedycut algorithm. Normalized β-values
for each CpG were generated, representing the methylated probe’s intensity divided
by the overall intensity (sum of methylated and unmethylated probe intensities) plus
an offset of 100 [46]. DNA methylation differences were analyzed using hierarchical
linear models implemented in the limma package [47] provided in the RnBeads pipeline.
Differentially methylated CpGs (DMCs) for CRFR1 and CRFR2 were identified based on
the false discovery rate (FDR-adjusted p-value < 5.00 × 10−2).

2.3. In Silico Determination of Transcription Factor (TF) Binding

In order to examine if DMCs identified were correlated to CRFR1 and CRFR2 gene
expression, we further analyzed promoter regions to locate TFs binding sites. First, the
Methprimer (https://www.urogene.org/methprimer/, accessed on 5 November 2020) [48]
tool was used for the identification of possible cytosine–guanine dinucleotides islands
(CGIs) at these regions. CGIs are regions of transcription initiation with a high frequency
of CpG sites. The criteria for CGIs prediction used were as follows: size region of at least
100 bp, GC percentage greater than 50% and an observed-to-expected CpG ratio greater
than 60%. Then, the PROMO (http://alggen.lsi.upc.es/, accessed on 5 November 2020) [49]
tool was used in order to define possible TFs binding in identified CGIs. Only human
factors and human sites were considered for TFs search.

2.4. Clinical Samples

CRC patients who visited the Department of Medical Oncology of University General
Hospital of Alexandroupolis between 2001 and 2016 were included in the study. Blood
samples were collected following diagnosis from two patient groups: (a) 42 patients
having undergone surgery for primary CRC within the previous month and before the
initiation of adjuvant therapy (adjuvant group) and (b) 71 patients with metastatic disease
following palliative surgery and before the initiation of first-line chemotherapy (metastatic
group). The treatment modules used for the metastatic group were FOLFIRI (a combination
of folinic acid, fluorouracil and irinotecan) or FOLFOX (a combination of folinic acid,
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fluorouracil and oxaliplatin) or the alternatives XELIRI (irinotecan and capecitabine) or
XELOX (capecitabine and oxaliplatin) plus bevacizumab or panitumumab/cetuximab. The
response of metastatic patients to the above regimens was correlated with CRFR1 and
CRFR2 methylation. Clinicopathological and demographic characteristics are presented in
Table 2. Follow-up data from 2001 to 2016 were also available. In parallel, blood samples
from 20 healthy donors were collected from the blood donation unit of the same hospital
and included in our study (11 males and nine females, mean age: 58.9 (± 9.0), median:
59.0 (range: 43.0–76.0), mean BMI: 26.0 (± 5.0), median: 24.5 (20.49–35.49)) (control group).
Inclusion criteria of both patients and healthy individuals were age between 18 and 80 years
old and the ability to give informed consent, for patients not to have initiated adjuvant
or first-line treatment before sample collection and for healthy individuals to be free of
cancer and cancer history. Peripheral blood was collected in an EDTA before treatment
and processed immediately for plasma isolation within 2 h. The study was approved
by the Scientific Board and the Ethics Committee of the University General Hospital of
Alexandroupolis/Greece and was conducted according to the ethical principles of the
Declaration of Helsinki. All the patients participated after signing a voluntary informed
consent.

Table 2. Demographic and clinicopathological characteristics of CRC patient and normal groups.

Clinical
Parameter Total (n = 113) (%) Adjuvant Group

(n = 42) (%)
Metastatic Group

(n = 71) (%)
Normal (n = 20)

(%)

Age (years)

Mean ± SD 67.0 ± 9.7 69.5 ± 8.7 65.5 ± 10 58.9 (±9.0)
Median, range 68, 44–87 70.5, 47–87 67, 44–85 59, 43–76

Gender

Male 78 (69%) 30 (71.4%) 48 (67.6%) 11 (55%)
Female 35 (31%) 12 (28.6%) 23 (32.4%) 9 (45%)

BMI

<18.5 2 (1.8%) 0 2 (2.8%) 0
18.5–24.9 12 (10.6%) 6 (14.3%) 6 (8.5%) 8 (40%)
25–29.9 35 (31%) 24 (57.1%) 11 (15.5%) 6 (30%)
≥30 13 (11.5%) 11 (26.2%) 2 (2.8%) 3 (15%)

Not available 51 (45.1%) 1 (2.4%) 50 (70.4%) 3 (15%)

Cancer location

R 19 (16.8%) 13 (31%) 6 (8.5%)
A 7 (6.2%) 4 (9.5%) 3 (4.2%)
S 28 (24.8%) 18 (42.9%) 10 (14.1%)
T 2 (1.8%) 2 (4.8%) 0
D 3 (2.7%) 3 (7.1%) 0
C 4 (3.5%) 2 (4.8%) 2 (2.8%)

Not available 50 (44.2%) 0 50 (70.4%)

Dukes
classification

A 14 (12.4%) 14 (33.3%) 0
B 14 (12.4%) 13 (31%) 0
C 13 (11.5%) 13 (31%) 0
D 69 (61%) 0 71 (100%)

Not available 3 (2.7%) 2 (4.8%) 0

Astler–Coller
classification

A 2 (1.8%) 2 (4.8%) 0
B1 12 (10.6%) 12 (28.6%) 0
B2 13 (11.5%) 13 (31%) 0
B3 0 0 0
C1 1 (0.9%) 1 (2.4%) 0
C2 12 (10.6%) 12 (28.6%) 0
C3 0 0 0
D 71 (62.8%) 0 71(100%)

Not available 2 (1.8%) 2 (4.8%) 0
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Table 2. Cont.

Clinical
Parameter Total (n = 113) (%) Adjuvant Group

(n = 42) (%)
Metastatic Group

(n = 71) (%)
Normal (n = 20)

(%)

Stage

I 15 (13.3%) 15 (35.7%) 0
II 13 (11.5%) 13 (31%) 0
III 13 (11.5%) 13 (31%) 0
IV 71 (62.8%) 0 71(100%)

Not available 1 (0.9%) 1 (2.4%) 0

Grade

1 41 (36.3%) 18 (42.9%) 14 (19.7%)
2 50 (44.2%) 18 (42.9%) 41 (57.7%)
3 12 (10.6%) 5 (11.9%) 7 (9.9%)

Not available 10 (8.9%) 1 (2.4%) 9 (12.7%)

Tumor size

T1 3 (2.7%) 3 (7.15%) 0
T2 24 (21.2%) 13 (30.95%) 11 (15.5%)
T3 66 (58.4%) 21 (50%) 45 (63.4%)
T4 12 (10.6%) 4 (9.5%) 8 (11.3%)

Not available 8 (7.1%) 1 (2.4%) 7 (9.8%)

LN status

N0 52 (46%) 27 (64.3%) 0
N1 25 (22.1%) 9 (21.4%) 28 (39.4%)
N2 26 (23%) 4 (9.5%) 35 (49.3%)

Not available 10 (8.9%) 2 (4.8%) 8 (11.3%)

Metastatic site

Lung 21 (18.6%) 0 21 (29.6%)
Liver 55 (48.7%) 0 55 (77.5%)

Pancreas 1 (0.9%) 0 1 (1.4%)
Bone 1 (0.9%) 0 1 (1.4%)

Peritoneum 10 (8.9%) 0 10 (14%)
Brain 2 (1.8%) 0 2 (2.8%)
Testis 1 (0.9%) 0 1 (1.4%)

Uterus 1 (0.9%) 0 1 (1.4%)
A: ascending; BMI: body mass index; C: cecum; D: descending; LN: lymph node; R: rectum; S: sigmoid; T =
transverse.

2.5. Extraction of ccfDNA

Circulating cfDNA was extracted from plasma using a MagCore Nucleic Acid Ex-
traction Kit (RBC BIOSCIENCE, New Taipei City, Taiwan) and a MagCore® Compact
Automated Nucleic Acid Extractor (RBC BIOSCIENCE, New Taipei City, Taiwan) accord-
ing to the manufacturer’s instructions. Briefly, ccfDNA was eluted from 1200 µL of plasma
in 40 µL elution buffer and stored at −20 ◦C until further use.

2.6. Sodium Bisulfite Conversion of ccfDNA

Bisulfite conversion was performed by EZ DNA Methylation-Gold™ Kit (ZYMO
Research Co., Orange, CA, USA) according to the manufacturer’s instructions and previous
reports [50]. During conversion, all unmethylated but not the methylated cytosines of
ccfDNA were converted to uracil. DNA was then eluted in 10 µL elution buffer and
stored at −80 ◦C until use. In each experiment, CpGenome Human Methylated and Non-
Methylated DNA standards (Merck Millipore, Germany) or H2O were included as positive
and negative controls, respectively.

2.7. Quantitative Methylation-Specific PCR (qMSP)

Promoter methylation of CRFR1 and CRFR2 was analyzed by qMSP. A methylation-
independent assay with non-CpG bearing sites for the β-actin gene (ACTB) was used in
order to verify DNA quality and normalize results. Primer sequences and qMSP conditions
are presented in detail in our previous work [34]. The samples were run in duplicates. The
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results were calculated using the Rotor-Gene 6000 Series Software 1.7 (Qiagen). The results
were analyzed using the 2−∆∆CT formula representing methylation levels, where ∆∆CT =
∆CTsample – ∆CTcalibrator [51]. Negative and positive control samples of 0% and 100%
methylated converted DNA standards were included in each run.

2.8. Statistical Analysis

The Kolmogorov–Smirnov test was applied to check for normality in distribution
and the chi-squared test for comparison between discrete variables. One-way ANOVA
test followed by Bonferroni post-hoc or Kruskal–Wallis test were used for comparisons
of continuous variables between three or more subgroups. In case of binary variables,
t-test or Mann–Whitney test were also applied. Pearson or Spearman correlation was
applied to compare two continuous variables. Metastatic patients who presented complete
response (CR), partial response (PR) to treatment or stable disease (SD) at the first clinical
examination after first-line treatment initiation according to response evaluation criteria
in solid tumors (RESIST) version 1.1 [52] were considered as “responders,” whereas those
who presented clinical progressive disease (PD) were considered as “non-responders.”
Statistical significance was set at p-value < 0.05. Statistical analysis was performed using
the IBM SPSS 19.0 statistical software (IBM Corp., 2010, IBM SPSS Statistics for Windows,
version 19.0, Armonk, NY, USA).

2.9. Automated Machine Learning Analysis

Our data were further analyzed using an AutoML technology in order to construct
signatures of diagnostic value, combining the liquid biopsy-based experimental parameters
determined by our study and the clinicopathological features of the study groups. The Just
Add Data Bio v1.1.118 (JADBio) (https://www.jadbio.com/, accessed on 25 January 2020)
platform applicable to low-sample high-dimensional datasets [53] was employed and able
to provide predictive models by employing standard, best-practice and state-of-the-art
statistical and machine learning methods. JADBio works as follows: it first selects the
appropriate algorithms to try for the task at hand depending on the outcome type, predictor
type, user preferences (e.g., importance of quality of analysis vs. speed of analysis) using
an artificial intelligence decision support system. The algorithms are selected to perform
the following steps: data transformations, data preprocessing and imputation of missing
values, feature selection, predictive modeling and data visualization. The AI system also
selects which tuning hyperparameter values to try for each algorithm. All combinations of
algorithms for each step and hyperparameter values (called configurations) are applied
using a 10-fold cross-validation protocol. JADBio applies a bootstrap-based adjustment
to the final reported performance [54] to remove this optimism and to return slightly
conservative estimates of performance. JADBio performs biosignature discovery using
SES (statistical equivalent signature) or LASSO (least absolute shrinkage and selection
operator) algorithms for feature selection. A signature is defined as a minimal-size subset
of predictors (features, molecular quantities, biomarkers, risk factors), which collectively
(multivariately) lead to an optimal predictive model, neglecting all other features as irrele-
vant or redundant for prediction given the selected features. For classification modeling,
JADBio employs an SVM (support-vector machine) [55] with full polynomial and Gaussian
kernels, random forests [56], ridge logistic regression [57] and decision trees [58]. As most
modern machine learning models are completely incomprehensible to a human, JADBio
reports not only the best-out-of-all model, but also the best interpretable model (linear
models or decision trees).

3. Results
3.1. In Silico Analysis of CRFR1 and CRFR2 Methylation in CRC and CD

In silico methylation analysis of CRFR1 and CRFR2 genes was performed using
methylome data derived by CRC and CD tissues and CRC ccfDNAs. The results are
described below.

https://www.jadbio.com/
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3.1.1. Analysis in CRC and CD Tissue-Derived Datasets

For the methylation analysis of the indicated receptor genes in CRC and CD tissues, we
used methylome data from four datasets (GSE149282, GSE122126, GSE105798, GSE99788)
(Table 1). DMCs were identified among groups in all the studies (Supplementary Tables S1
and S2) except for GSE99788. In total, 32 and 33 DMCs were detected among healthy
individuals and CD or CRC patients for CRFR1 and CRFR2, respectively. In general, lower
methylation was noticed mostly in gene body intronic regions, while higher methylation
was observed mainly in the first exon and the TSS200/1500 genome locations, known to
be strongly associated with regulation of expression by methylation [59,60]. We therefore
focused our analysis mostly in those regions. Among the DMCs identified in CRFR1, four
CpGs (cg08473090, cg08929103, cg12577105 and cg18757974) were located at TSS1550 and
two (cg11338426, cg13521908)—at the first exon (Table 3). Notably, methylation in all the
CpGs located in the island region, known to have an important role in transcriptional
regulation [61], was increased in CRC tissue in comparison to the adjacent normal tissue
(GSE149282 dataset), whereas decreased methylation was noticed in the one found in the
N shore, a region 0–2 kb upstream (5′) of the CpG island. Other CRFR1-related DMCs
identified in CRC or CD tissue databases were located in the gene body or in the 5′UTR. A
decrease of methylation was mainly noticed at these DMCs, while an increase was detected
at DMCs located at islands or S shores of the gene body or the 5′UTR in cancer tissue
in relation to the adjacent healthy colon (GSE149282 and GSE1222126). An increase of
CRFR1 methylation was also noticed in gene-body DMCs of CD patients in comparison to
normal tissues (GSE105798) (Supplementary Table S1). Finally, only one DMC (cg21773872)
emerged from the GSE105798 dataset, showing decreased methylation in CD in relation to
normal colon tissues.

Table 3. DMCs at the first exon or close to the TSS identified by in silico analysis in CRFR1.

STUDY CpG
ID

Compared
Study

Groups

Mean
β-Value 1 *

Mean
β-Value 2 *

∆ β-Value
#

Methylation,
CRC

vs. Normal

Gene
Location

Location
Relative
to CpG

FDR

GSE149
282 cg08473090 Adjacent vs.

CRC tissue 0.089 0.330 +0.241 Up TSS1500 Island 3.174 × 10−3

GSE149
282 cg08929103 Adjacent vs.

CRC tissue 0.563 0.239 −0.323 Down TSS1500 N shore 4.453 × 10−5

GSE149
282 cg11338426 Adjacent vs.

CRC tissue 0.103 0.269 +0.166 Up First Exon Island 1.786 × 10−2

GSE149
282 cg12577105 Adjacent vs.

CRC tissue 0.047 0.163 +0.116 Up TSS1500 Island 8.456 × 10−3

GSE149
282 cg13521908 Adjacent vs.

CRC tissue 0.077 0.249 +0.172 Up First Exon Island 3.136 × 10−3

GSE149
282 cg18757974 Adjacent vs.

CRC tissue 0.062 0.218 +0.156 Up TSS1500 Island 7.654 × 10−3

GSE122
2126 cg08929103 Healthy vs.

CRC ccfDNA 0.767 0.477 −0.291 Down TSS1500 N shore 1.261 × 10−3

GSE122
2126 cg13521908 Healthy vs.

CRC ccfDNA 0.117 0.213 +0.096 Up First Exon Island 2.545 × 10−2

* Mean β-value 1 represents methylation in normal tissues and mean β-value 2—methylation in diseased tissues; # ∆ β-value: mean
β-value 2 −mean β-value 1; DMC: differentially methylated CpG; FDR: false discovery rate; ccfDNA: circulating cell-free DNA.

For CRFR2, nine CpGs located close to the TSS (cg01718447, cg02712145, cg04863452,
cg07658503 cg13094036, cg14896516, cg15615793, cg18351440, cg21773872) and six CpGs
located at the first exon (cg04922810, cg04923928, cg18266052, cg24214442, cg24610236,
cg27430726) were identified as DMCs among the studied groups (Table 4). They were all
found in the island except one found in the S shore (a region 0–2 kb downstream (3′) of the
CpG island) and one in the N shelf (a region 2–4 kb upstream (5′) of the CpG island). In the
GSE149282 dataset, all of the 11 CpGs (cg01718447, cg02712145, cg07658503, cg13094036,
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cg14896516, cg21773872, cg04922810, cg18266052, cg24214442, cg24610236, cg27430726)
identified as DMCs were hypermethylated in cancer tissue in relation to the adjacent
healthy colon.

Table 4. DMCs at the first exon or close to the TSS identified by in silico analysis in CRFR2.

STUDY CpG
ID

Compared
Study

Groups

Mean
β-Value 1 *

Mean
β-Value

2 *

∆
β-Value #

Methylation,
Diseased

vs. Normal

Gene
Location

Location
Relative
to CpG

FDR

GSE149
282 cg01718447 Adjacent vs.

CRC tissue 0.126 0.536 +0.410 Up TSS200 Island 2.375 × 10−3

GSE149
282 cg02712145 Adjacent vs.

CRC tissue 0.166 0.471 +0.305 Up TSS1500 Island 2.785 × 10−2

GSE149
282 cg04922810 Adjacent vs.

CRC tissue 0.077 0.435 +0.358 Up First Exon Island 7.024 × 10−3

GSE149
282 cg07658503 Adjacent vs.

CRC tissue 0.051 0.313 +0.262 Up TSS200 Island 3.165 × 10−2

GSE149
282 cg13094036 Adjacent vs.

CRC tissue 0.089 0.343 +0.254 Up TSS1500 Island 3.663 × 10−3

GSE149
282 cg14896516 Adjacent vs.

CRC tissue 0.106 0.352 +0.246 Up TSS1500 Island 1.861 × 10−4

GSE149
282 cg18266052 Adjacent vs.

CRC tissue 0.100 0.418 +0.318 Up First Exon Island 4.872 × 10−2

GSE149
282 cg21773872 Adjacent vs.

CRC tissue 0.146 0.655 +0.509 Up TSS200 Island 1.242 × 10−6

GSE149
282 cg24214442 Adjacent vs.

CRC tissue 0.123 0.463 +0.340 Up First Exon Island 3.225 × 10−6

GSE149
282 cg24610236 Adjacent vs.

CRC tissue 0.074 0.451 +0.378 Up First Exon Island 1.568 × 10−5

GSE149
282 cg27430726 Adjacent vs.

CRC tissue 0.133 0.457 +0.325 Up First Exon Island 7.102 × 10−5

GSE1222126 cg04863452 Healthy vs.
CRC ccfDNA 0.053 0.110 +0.057 Up TSS200 Island 1.065 × 10−3

GSE1222126 cg04923928 Healthy vs.
CRC ccfDNA 0.045 0.143 +0.098 Up First Exon Island 1.665 × 10−4

GSE1222126 cg15615793 Healthy vs.
CRC ccfDNA 0.486 0.629 +0.142 Up TSS1500 S_Shore 9.913 × 10−3

GSE1222126 cg18351440 Healthy vs.
CRC ccfDNA 0.885 0.806 −0.079 Down TSS1500 N_Shelf 3.929 × 10−5

GSE105799 cg21773872 Normal vs.
CD 0.089 0.041 −0.049 Down TSS200 Island 2.386 × 10−4

* Mean β-value 1 represents methylation in normal tissues and mean β-value 2—methylation in diseased tissues; # ∆ β-value: mean
β-value 2 −mean β-value 1. DMCs: differentially methylated CpGs; FDR: false discovery rate; ccfDNA: circulating cell-free DNA.

3.1.2. Analysis of CRC-Derived ccfDNA Data

Two CpGs (cg08929103, cg13521908) identified in CRFR1 as DMCs in ccfDNA dataset
GSE1222126 showed the same hypermethylation trend in patient-derived samples com-
pared to normal counterparts, thus suggesting that ccfDNA may reflect the methylation
status of tumor tissues. Methylation analysis of CRFR2 using the same dataset revealed
that three CpGs (cg04863452, cg15615793, cg04923928) and one CpG (cg18351440, located
in the N shelf) were hypermethylated and hypomethylated, respectively, in CRC ccfDNAs
compared to their normal counterparts. It has to be noted that the DMCs found in CRC
ccfDNA (GSE1222126 dataset) were not identified as DMCs in the CRC tissue (GSE149282).

3.2. In Silico Analysis of TFs Binding in CRFR1 and CRFR2 Promoters

DNA methylation regulates gene expression mainly by disturbing transcription factor
(TF) and RNA polymerase binding to putative sites known to be necessary for initiation
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of transcription [62]. To address whether the identified DMCs may actually play a role in
regulating CRFR1 and CRFR2 expression, we examined their presence within CGIs that
are known to contain TFs binding that could initiate transcription.

For CRFR1, one CGI of 180 bp was found that contained DMCs between malignant
and adjacent colon tissues. Further analysis by the PROMO tool predicted 31 putative TFs
that could bind to this CGI (Figure 1A). For CRFR2, a CGI of 287 bp was also identified
and 40 TFs were predicted (Figure 1B). Together, these findings show that CGIs containing
the identified DMCs contain multiple sites for putative TFs binding and therefore altered
methylation during carcinogenesis can affect CRFR1 and CRFR2 expression.
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3.3. Methylation Analysis of CRFR1 and CRFR2 in CRC-Derived ccfDNA Clinical Samples

Following the in silico analysis, methylation of the CRF receptor genes was investi-
gated in CRC patient-derived ccfDNAs and compared with their healthy counterparts.
Quantitative MSP assays were performed in ccfDNAs isolated from 42 adjuvant CRC
patients, 71 metastatic CRC patients and 20 healthy individuals (control). Primers of CRFR1
and CRFR2 were designed at the promoter region inside the studied CGI.

CRFR1 methylation was detected in 45.0, 35.7 and 36.6% of control, adjuvant and
metastatic groups, respectively. For CRFR2, the respective numbers were 70.0, 64.3 and
67.6%. CRF receptor methylation levels are presented in Figure 2A. Significantly increased
levels of CRFR1 methylation were found in the adjuvant group compared to the control
group (p = 0.021) and the metastatic group (p = 0.001) (Figure 2B). For CRFR2, no statistically
significant differences in methylation levels were observed between the studied groups
(Figure 2C).
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ccfDNA: circulating cell-free DNA; qMSP: quantitative methylation-specific PCR; CRC: colorectal cancer.

Interestingly, among cancer patients, lower methylation levels of CRFR1 were corre-
lated with adverse clinicopathological characteristics and poor outcomes. Specifically, low
methylation levels were significantly correlated with advanced disease stage (p < 0.001)
(Figure 3A), D tumor stage (by Dukes) as compared to A (p < 0.001) and B (p = 0.014)
stages (Figure 3B), while the same methylation trend was observed in the D stage when
compared to B1 (p < 0.001) and B2 (p = 0.014) stages of the Astler–Coller classification
system (Figure 3C).
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Diminished CRFR1 methylation was also associated with the incidence of death
(p < 0.001) (Figure 3D). Moreover, within the adjuvant group, larger tumors and those
presenting lymph node infiltration showed decreased CRFR1 methylation levels in relation
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to small tumors (p = 0.009) (Figure 3E) and those without characteristics of LN infiltration
(p = 0.050) (Figure 3F), respectively. No significant correlations were established between
CRFR1 methylation levels and tumor location, grade, mutational status of the KRAS gene
or demographic parameters. Similarly, CRFR1 methylation levels were not associated
with the frequency of relapses in the adjuvant group or first-line treatment response in the
metastatic group. CRFR2 methylation levels were not associated with any clinicopathologi-
cal parameters or prognosis in a statistically significant manner. The methylation analysis
of the ccfDNA study groups revealed that CRFR1 methylation was significantly increased
in the adjuvant group of patients compared to that of healthy individuals and patients
with metastatic disease (Figure 2B). Comparison of the CRFR1 methylation levels between
the last two groups (control and metastatic) also showed a trend of hypermethylation
in the metastatic group; however, this difference was not statistically significant. Within
the patients’ groups (adjuvant and metastatic), the lower methylation levels were posi-
tively correlated with advanced tumor stage and size, infiltrated nodes and poor outcomes
(Figure 3A–F). Furthermore, low methylation within the two malignant groups was sig-
nificantly associated with advanced disease and adverse prognosis. The above findings
demonstrate for the first time CRFR1 hypermethylation as a hallmark of early CRC status,
which is remarkably diminished as the disease progresses to more aggressive phenotypes,
reaching the almost normal levels.

3.4. Automated Machine Learning Analysis

Our data were further analyzed by AutoML in order to construct a signature of diag-
nostic value, combining methylation measurements and established clinicopathological
features of the study group. The task was a classification analysis in order to discriminate
CRC patients from healthy individuals. Our best-performing model was a three-feature
signature containing the methylation levels of CRFR1, the methylation levels of CRFR2
and age via the Classification Random Forests algorithm with an estimated area under
the curve (AUC) of 0.929 (0.873, 0.972) and an average precision of 0.983 (0.965, 0.994) to
discriminate healthy tissues from CRC. Model performance and model inspection are de-
picted in Figure 4. Furthermore, the best-interpretable model containing the same features
via ridge logistic regression was produced reaching an AUC of 0.933 (0.887, 0.972) and an
average precision of 0.983 (0.965, 0.994) (Figure 5).
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Figure 4. Model performance for the discrimination of CRC patients from healthy individuals. (A) ROC curve of the model,
AUC: 0.929 (0.873, 0.972). (B) Probabilities density plot depicting distributions between normal (class 0, green) and CRC
ccfDNA samples (class 1, blue). (C) UMAP plot showing sufficient discrimination between normal (class 0, blue) and
CRC ccfDNA samples (class 1, green). (D) PCA plot presenting a good separation between normal (class 0, blue) and
CRC ccfDNA samples (class 1, green). ROC: receiver operating characteristic; PCA: principal component analysis; UMAP:
uniform manifold approximation and projection.
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4. Discussion

We and others have reported that CRF receptors play a critical role in regulating
inflammation, carcinogenesis and disease progression in the colon [24]. Although the
epigenetic regulation of CRF receptors has been thoroughly studied in stress-related CNS
disorders, their methylation patterns and role in peripheral tissues have not been clearly
elucidated. In this study, we first adopted a bioinformatic approach using publicly available
datasets of CRC and CD to analyze methylation of CRF receptor genes. Although a large
number of DMCs was identified in the entire genes (32 and 33 in CRFR1 and CRFR2,
respectively) among healthy tissues and studied pathologies, we focused our analysis
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on the first exon and the TSS200/1500 region, which are genome locations known to be
strongly associated with gene expression regulation by methylation [59,60].

Methylation of CRFR1 CpGs within the above regions and in particular those located
in islands was significantly elevated in CRC compared to the adjacent healthy colon
tissues, thus pointing to downregulation of CRFR1 expression. This pattern of CRFR1
hypermethylation was also observed in methylome datasets of ccfDNAs from CRC patients
and clinical ccfDNA samples obtained in adjuvant CRC cases. Taken together, these
findings suggest that assessing methylation in ccfDNA can dynamically reflect methylation
events in the tumor’s lifespan. This notion is further supported by recent reports in
pancreatic cancer, demonstrating that DNA methylation profiles of cancerous tissues and
respective ccfDNAs significantly correlate with each other [38]. In concordance, our results
for CRC ccfDNAs showed that methylation levels of CRFR1 were increased in the adjuvant
group of patients in relation to healthy individuals. However, within the patients’ groups,
lower methylation levels were correlated with advanced tumor stage and size, infiltrated
nodes and poor outcomes. It can be postulated that CRFR1 methylation is a molecular event
characterizing primary tumor formation and is later lost during transition to the metastatic
phase. Our findings are the first demonstrating aberrant CRFR1 methylation in CRC. Given
that decreased methylation may lead to increased CRFR1 expression, our findings strongly
support an involvement of CRFR1 signaling in CRC aggressiveness, as previously shown
in mouse models where CRFR1 showed a proinflammatory and a pro-tumorigenic effect in
inflammation-related colon cancer [63]. In this context, a CRFR1-mediated CRC promoting
pathway has also been described in CRC cells through modulation of IL-6/JAK2/STAT3
signaling and VEGF-induced angiogenesis [29], while CRFR1 hypermethylation in breast
cancer models has been associated with the expression of steroid hormone receptors, a
favorable prognostic factor [34]. Overall, our findings are quite novel, given that this is the
first study reporting aberrant CRFR1 methylation in CRC, as per our knowledge.

Although we showed increased CRFR1 methylation levels in the adjuvant group
compared to healthy individuals and metastatic group, we failed to establish any signif-
icant alterations in the methylation levels assessed in the control and metastatic study
groups. At the same time, CRFR1 hypomethylation within the cancer groups (adjuvant and
metastatic) revealed direct clinical relevance as it was positively correlated with adverse
clinicopathological characteristics and poor outcomes. Based on the findings extrapolated
by the two cancer groups, one could postulate that CRFR1 methylation might be a molecu-
lar event characterizing primary tumor onset which is significantly eliminated later, during
tumor transition to a metastatic phase. Given the limitations of our in silico analysis in
terms of the available patient study groups, we can further speculate that this trend of
CRFR1 hypermethylation followed by hypomethylation as the disease progresses may be
associated with the sample origin and thus be ccfDNA-specific. Our findings are novel,
demonstrating that primary CRC is characterized by aberrant CRFR1 methylation which is
progressively lost following disease aggressiveness and therefore the CRFR1 methylation
levels may have a prognostic significance in CRC.

In silico analysis of CRFR2 methylation status revealed that all the emerged DMCs
identified in transcription-related regions were hypermethylated in the CRC tissues com-
pared to the healthy ones. This is in line with recent findings indicating positive correlation
of hypermethylated CRFR2 (studied by an Infinium Human Methylation 450K array) with
colitis-induced CRC [35]. Accordingly, the previously reported observations on diminished
CRFR2 mRNA and protein expression in CRC cell lines and tissues [30] may be attributed
to CRFR2 hypermethylation. We have further identified the CRFR2/Ucn2 signaling as
a critical negative regulator in sustaining chronic inflammation and promoting cancer
development and aggressiveness in the colon [24]. Based on the above findings we strongly
suggest that CRFR2 methylation and expression levels in the colon tissues may be of prog-
nostic significance in CRC management. In the CRC ccfDNA dataset, three more CpGs of
CRFR2 were found hypermethylated. However, in our experimental part of the study, no
statistically significant differences in CRFR2 methylation levels were observed between
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healthy and patient-derived ccfDNAs analyzed by qMSP, raising doubts about the clinical
application in liquid biopsy.

Furthermore, methylation analysis in gene body intronic regions of CRFR1 and CRFR2
revealed lower methylation levels in both receptors in CRC compared to normal tissues.
Gene body methylation is largely unexplored and very often connected to active transcrip-
tion [64,65], which is known as the DNA methylation paradox [66]. Although gene body
hypomethylation has been previously correlated to cancer [67], further targeted experimen-
tal analysis of gene body CRFR1 and CRFR2 methylation in relation to expression may be
necessary in order to clarify their interconnection in our system.

Epigenetic modifications such as DNA methylation within CGIs are known to modu-
late the dynamic binding of transcription factors to regulatory elements, thus resulting in
transcriptional repression [68]. In our study, we predicted 31 and 40 TFs that may regulate
CRFR1 and CRFR2 transcription, respectively, through putative binding to DMC-containing
CGIs. Therefore, any methylation events in these DMCs during malignant transformation
may block TFs binding and transcriptional activities. Among the predicted TFs, NF kappa
B, AP-2 and E2F have been previously shown to be sensitive to CpG methylation with
consequent inhibition of their DNA binding activities [62]. In addition, p53 was also
predicted, and CRF has been reported to inhibit cell proliferation and apoptosis in cell lines
via the CRFR1-mediated p53 mechanism [69].

To further exploit our experimental observations and bring in a clinical perspec-
tive, we employed an autoML approach in order to build classifying models of diagnos-
tic/prognostic performance. ML exploits a variety of algorithms to perform predictive
analysis and its use in biomarker discovery in cancer is rapidly increasing [70,71]. Au-
tomated tools for ML promise to democratize data analysis for non-experts, increase
productivity, improve replicability of the statistical analysis and shield against common
methodological analysis errors such as overfitting [53]. We employed JADBio, an autoML
platform designed for standard, best-practice and state-of-the-art statistical and machine
learning methods. JADBio has previously been successfully used to produce signatures for
clinical applications such as development of classifiers for metastatic BrCa based on novel
ccfDNA methylation patterns [16], identification of risk of lung cancer in smokers [72] or
suicide prediction among depressive patients [73]. Recently, by revisiting publicly available
omics datasets via JADBio, we were able to deliver accurate highly-performing blood-based
predictive biosignatures in Alzheimer’s disease [74] and in breast cancer [75].

In our study, JADBio analysis delivered a three-feature biosignature via the Classifica-
tion Random Forests algorithm, including both CRF receptor methylation levels assessed in
ccfDNA and age, with high-performance metrics in discriminating between CRC patients
and healthy individuals. It has to be noted that although methylation of CRFR2 did not
reach a statistically significant difference between groups when examined by standard
univariate statistical analysis, multivariate analysis by JADBio selected it as a significant
feature when combined with CRFR1 methylation and age. Previous ML-based studies
performed in ccfDNA materials have also shown promising results in CRC. Wan et al. built
an ML-based model for the early detection of CRC with an AUC of 0.92 (95% CI: 0.91–
0.93) [76], while Luo et al. constructed a predictive model that accurately discriminated
CRC patients from healthy individuals (AUC: 0.96) [77].

Overall, the identification of novel, noninvasive and high-performance biomarkers
is of high importance for early, pre-asymptomatic CRC diagnosis. In this context, we
strongly believe that our novel three-feature biosignature could potentially have a clinical
application in early CRC screening. Upon perspective clinical validation, our model, built
on qMSP rather than whole-genome deep-sequencing methodologies, may offer a feasible
liquid biopsy-based solution for early CRC diagnosis that can be implemented in any
standard molecular diagnostic laboratory. It is important to mention that for successful
clinical implementation, a standard operational procedure for ccfDNA preanalytical prepa-
ration should be adopted between labs. However, limitations of our study, including the
small number of participants in the available patient study groups, may be responsible
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for restricting putative correlations between CRFR1 and CRFR2 methylation levels and
clinicopathological features such as tumor stage and metastasis. For future clinical implica-
tions, our preclinical model’s performance needs to be validated in a larger independent
group of patients and confirmed in a prospective clinical study, which is the greatest chal-
lenge in translating such findings into clinical practice. Furthermore, studies employing
in vitro models should clarify the exact timing of methylation events during the malignant
transformation process and their results in receptor protein expression. Percentages of
methylation detection in patient groups are a clear finding of our study without, however,
some statistical significance. Based on our methodology, samples showing no methylation
are unmethylated rather than unsuitable for methylation detection due to low sample qual-
ity or abundance. Given that ccfDNA is a valuable source for tracing molecular alterations
of a tumor, detected changes in the methylation profile of important genes could reflect a
dynamic tumor burden. Our results show that although the detection of CRFR1 and CRFR2
methylation in ccfDNA does not hold a diagnostic value, methylation levels considered
in the context of an ML-built biosignature can help in differentiating healthy individuals
from CRC patients.

5. Conclusions

CRC is one of the most lethal cancers due to a long asymptomatic phase and difficulties
in diagnosis, prognosis and disease management. Our presented data introduce the
methylation levels of both CRFR1 and CRFR2 as putative biomarkers in CRC based on our
novel biosignature. The prognostic significance of the CRFR1 methylation status is further
supported by the findings showing that decreased ccfDNA CRFR1 methylation levels
among CRC patients are correlated with tumor aggressiveness and poor clinical outcomes.
Along with our previously reported findings [20,26], we suggest here that the CRFR2
hypermethylation patterns in CRC determined by bioinformatic analysis may be associated
with decreased receptor expression, which in turn contributes to CRC progression and
metastatic potential in accordance with our previous findings. In addition, we demonstrate
that the CRFR1 methylation levels assessed in liquid biopsy could offer a minimally
invasive approach, overcoming current obstacles in CRC tissue methylation monitoring.
To this end, a three-feature biosignature was built, which can help ensure accurate disease
diagnosis upon prospective evaluation.
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