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A B S T R A C T

Infection by human T-cell lymphotropic virus type 1 (HTLV-1) occurs in lymphocytes,

which travel throughout the body, thus affecting several target organs and causing varied

clinical outcomes, particularly in populations that are underserved and do not have access

to healthcare. However, the mechanism of pathogenesis is not yet fully understood. The

TAX and HTLV-1 basic leucine zipper factor (HBZ) proteins maintain viral persistence and

affect pathogenesis through cell proliferation and immune and inflammatory responses

that accompany each clinical manifestation. TAX expression leads to inhibition of tran-

scription error control, OX40 overexpression, and cell proliferation in adult T-cell leukemia

(ATL). OX40 levels are elevated in the central nervous system (CNS), and the expression of

TAX in the CNS causes neuronal damage and loss of immune reactivity among patients

with HTLV-1-associated myelopathy (HAM). HBZ reduces viral replication and suppresses

the immune response. Its cell compartmentalization has been associated with the patho-

genesis of HAM (cytoplasmic localization) and ATL (nuclear localization). TAX and HBZ

seem to act antagonistically in immune responses, affecting the pathogenesis of HTLV-1

infection. The progression from HTLV-1 infection to disease is a consequence of HTLV-1

replication in CD4+ T and CD8+ T lymphocytes and the imbalance between proinflamma-

tory and anti-inflammatory cytokines. The compartmentalization of HBZ suggests that this

protein may be an additional tool for assessing immune and inflammatory responses, in

addition to those already recognized as potential biomarkers associated with progression

from infection to disease (including human leukocyte antigen (HLA), killer immunoglobu-

lin-like receptors (KIR), interleukin (IL)-6, IL-10, IL-28, Fas, Fas ligand, interferon (IFN)-g,

tumor necrosis factor (TNF)-a, and mannose-binding lectin).
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Introduction

Human T-cell lymphotropic virus type 1 (HTLV-1) was the first
human retrovirus described in lymphocytes from a patient
with cutaneous T-cell lymphoma [1,2], followed by the identi-
fication of human T-cell lymphotropic virus type 2 (HTLV-2)
in a patient with hairy cell leukemia and/or hairy cell tricho-
leukemia [3]. HTLV-3 and HTLV-4 have also been described in
isolated areas of forests in the Republic of Cameroon [4,5];
however, to date, they have not been found in other geo-
graphic areas or related to clinical manifestations [6,7]. There
are at least six HTLV-1 molecular subtypes (a, b, c, d, e, f)
[8−10] and four HTLV-2 molecular subtypes (a, b, c, d) [11−13].

HTLV-1/2 are classified in the family Retroviridae and genus

Deltaretrovirus. The viral particle is spherical and enveloped,

measuring between 100 and 120 nm [14,15] (Fig. 1). The glyco-

proteins gp21 and gp46 are located in the viral envelope and

are important for viral binding to the cell receptor and for

envelope fusion with the cell membrane [11,16−19]. The pro-

tein capsid (formed by p15, p19, and p24) contains the viral

genome, composed of two RNA molecules (single-stranded,

positive polarity, and identical) [19-21], protease, reverse tran-

scriptase (RT), integrase, and RNAse H, enzymes that facilitate

viral replication [19,21,22]. RT is responsible for the transcrip-

tion of single-stranded RNA into a double-stranded DNA mol-

ecule, which integrates into the genome of the host cell,

becoming proviral DNA [19,21,23].
HTLV-1/2 share molecular and biological characteristics

[11,21,24], and the integration of viral nucleic acids into the
Fig. 1 –Schematic representation of the morphological componen
teins (p24 − genome protection), viral genomic RNA (ssRNA+ - gen
scription), protease (p10 - hydrolysis of viral peptides), and integr
composed of the p19 protein and surrounds the nucleocapsid. Th
the viral glycoproteins gp21 and gp46.
cellular genome establishes viral persistence and maintains
and transmits the virus, which determines the various out-
comes of infection [21].

HTLV-1/2 infect lymphocytes that are found in various
body fluids, including blood, semen, vaginal secretions, and
breast milk. The virus, which affects several target organs, is
transmitted by blood and blood component transfusion, use
of injectable drugs, organ transplantation, and unprotected
sex [25−30]. There is therefore great variability in clinical
manifestations associated with infection [31].

The mechanism of HTLV-1 pathogenesis is not yet fully
understood. Among all of the regulatory proteins encoded
by proviral DNA, the proteins TAX and HTLV-1 basic leucine
zipper factor (HBZ) are essential for maintaining viral per-
sistence and pathogenesis, possibly by inducing cell prolif-
eration associated with the induction of immune responses
[32].

HTLV-1 is a viral infectious agent with unique biological
characteristics and diverse clinical manifestations. Because it
still goes unnoticed in human populations, it is important to
recognize the disease mechanisms previously associated
with infection that result in the various known clinical mani-
festations.

The present review describes the main aspects of the
immunopathogenesis of diseases associated with HTLV-1; it
highlights the role of the viral proteins TAX and HBZ in the
control of cell proliferation and activation of immune and
inflammatory responses, and describes the multifactorial
nature of diseases related to infection associated with the
presence of immunogenic biomarkers in the host.
ts of HTLV-1/2. The nucleocapsid is composed of capsid pro-
etic code), reverse transcriptase (p55 − RNA reverse tran-
ase (p32 − DNA proviral integration). The viral matrix is
e viral envelope is externally composed of a lipid bilayer plus
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The role of HBZ and TAX in HTLV-1 infection

Two HTLV-1 genes, TAX and HBZ, are extremely important in
determining the infectivity of HTLV-1 and the leukemogenic
process through regulation of the growth and survival of
tumor cells [33−35]. TAX is an immunodominant HTLV-1
antigen with transformation and transactivation activities
and is associated with dysregulation of immune responses in
patients with HTLV-1-associated myelopathy (HAM), which
leads to the main immunological changes observed in these
patients [36−37]. TAX expression leads to persistent cell pro-
liferation characterized by abnormal expansion of infected
cells, generating DNA lesions characteristic of adult T-cell
leukemia/lymphoma (ATLL) [38−41]. Inhibition of cell check-
point activity to control transcription errors allows the prolif-
eration of infected cells with damaged DNA [32].

TAX is involved in the overexpression of OX40, a member
of the TNF receptor costimulation family capable of promot-
ing proliferation and survival of effector and memory T cells
and suppressing differentiation and activity of T regulatory
cells (Tregs) [42]. Elevated levels of soluble OX40 have been
detected in the central nervous system (CNS) of patients with
HAM [43]. Expression of TAX in the CNS of patients with HAM
can lead to direct or indirect neuronal damage through the
loss of cells capable of activating and generating a specific
immune response against TAX [44].

An association between a higher frequency of TAX-specific
CD8+ T cells in the CNS of patients with HAM has been
described, suggesting the active participation of these cells in
the pathogenesis of the disease [45,46]. The presence of intra-
thecal antibodies against HTLV-1 has been associated with
protective and pathogenic effects. Although the levels of
intrathecal antibodies specific for HTLV-1 are inversely corre-
lated with the proviral load, antibodies against TAX and Gag
may cross-react with CNS tissues and lead to neurological
damage [47−49].

Similar to TAX, HBZ is an immunogenic protein recognized
by specific cytotoxic cell clones [50,51]. Expression of the HBZ
protein induces a reduction in viral replication and suppres-
sion of immune responses [52−54]. HBZ is present in cells
infected with HTLV-1, in both asymptomatic carriers and
patients with HAM or ATL, and promotes the growth and sur-
vival of leukemic cells [55]. HBZ expression increases HTLV-1
infectivity, cell proliferation, and lymphoma [54,56]. Localiza-
tion of HBZ in the nucleus suggests that HTLV-1 may increase
viral persistence by reducing the translation of HBZ so that
infected cells escape the immune response directed to this
protein [57]. In turn, localization of HBZ in the cytoplasm of
peripheral blood mononuclear cells (PBMCs) of patients with
HAM occurs almost exclusively in CD4+ T cells and is indepen-
dent of coexpression of CD25 [58]. These findings suggest that
HBZ expression can be compartmentalized or co-occur with
TAX expression, facilitating evasion of the virus from the
host immune system and contributing to the pathogenesis of
HAM.

The role of HBZ associated with its nuclear or cytoplasmic
localization is related to the increased risk of developing HAM
or ATLL. The intensity of the immune response and HBZ acti-
vation define the type of behavior of HTLV-1 infection [58].
The correlation between the intracellular compartmentation
of the HBZ protein and the clinical outcomes of infection was
reported, and it was proposed that the cytoplasmic presence
of HBZ in leukocytes of patients with HAM is a biomarker of
progression from infection to disease [39,58].

The available data suggest a crucial role of TAX and HBZ in
the immune changes found in patients with HAM; however,
the mechanism involved in the expression and regulation of
these genes is still poorly understood. The most recent evi-
dence indicates that TAX and HBZ exhibit antagonistic behav-
iors [59], with the action of HBZ being central in the
pathogenesis of HTLV-1 infection; through its pleiotropic
functions, HBZ initiates a viral strategy to increase the effec-
tiveness of cell-to-cell transmission.
Immunopathogenesis

HTLV-1 infects different cell types (dendritic cells, macro-
phages, monocytes, CD8+ T lymphocytes) but mainly CD4+ T
lymphocytes, which act as reservoirs for the virus [60]. In
CD4+ T lymphocytes, HTLV-1 can remain latent for a long
period [61] by maintaining a low rate of replication, which can
cause genetic changes, induce cell proliferation, or even dam-
age the CNS as the result of an inflammatory immune
response [62−64].

Infection of CD4+ T and CD8+ T lymphocytes plays an impor-
tant role in the immunopathogenesis of HAM [46,65] because it
induces the production of proinflammatory cytokines, such as
tumor necrosis factor (TNF)-a, interferon (IFN)-g, interleukin
(IL)-1b, IL-12, and IL-6, which are involved in the mediation of
inflammatory immune responses observed in infection
[66,67,68]. Inflammatory chemokines, such as CXCL9 and CXCL-
10, are also involved in the pathogenesis of HAM [69].

According to H€ollsberg (1997), the pathophysiology of HAM
is explained by three main mechanisms [70]: direct toxicity,
autoimmunity, and surrounding damage. In the direct or
cytotoxic toxicity theory, glial cells infected by HTLV-1
express surface viral antigens, and specific cytotoxic CD8+ T
cells cross the blood-brain barrier to destroy infected glial
cells through direct cytotoxic activity or the release of cyto-
kines [71,72]. In turn, the autoimmunity theory suggests that
a host antigen mimics an HTLV-1 antigen and triggers an
autoimmune inflammatory process, resulting in neural injury
[73,74]. The surrounding damage theory suggests that anti-
HTLV-1-specific CD4+ T and CD8+ T lymphocytes migrate
through the blood-brain barrier, reaching the CNS, where glial
cells undergo cell damage because of the release of cytokines
in response to lymphocytes infected by HTLV-1 [46,75−78].

TNF-a and INF-g, which are secreted by CD4+ T lympho-
cytes (Th1 subpopulation), are the cytokines with the highest
concentration in the cerebrospinal fluid (CSF) of patients with
HAM [79]. Furthermore, other studies have shown that in
addition to the predominance of Th1 cytokines (TNF-a, IFN-g,
IL-12), Th2 cytokines (IL-4, IL-10) are decreased in patients
with neurological disease [66,80]. Patients with HAM show
increased number of CD4+ T lymphocytes (Th1 subpopula-
tion), with a higher proportion of IFN-g- and TNF-a-producing
cells than IL-10-producing cells [81]. This increase is also
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observed for CD8+ T lymphocytes that express the same cyto-
kine pattern. A classification of disease activity in patients
with HAM was proposed based on the concentration of
CXCL10 and neopterin in the CSF. Patients with high levels of
these cytokines have greater disease activity and appear to
benefit most from the use of anti-inflammatory treatment [82
−84]. Asymptomatic HTLV-1 carriers have an immunoregula-
tory mechanism characterized by increased IL-10 cytokine
levels as a way to counteract the effects of TNF-a [65,81].

Asymptomatic patients with a high proviral load, as well
as those with HAM, have higher IFN-g expression than IL-10
expression [85,86], whereas asymptomatic patients with a
low proviral load have similar levels of IFN-g and IL-10
expression. This finding suggests that the imbalance between
proinflammatory and anti-inflammatory cytokines is related
to the development of HAM; that is, the pattern of the
immune response in the host cell to HTLV-1 infection, com-
bined with a high proviral load, may be important for the
development of this severe neurological disease [65,87].
Recently, it was reported that the increased expression of
adhesion molecules, such as CD49d, in T lymphocytes may
contribute to the pathogenesis of HTLV-1-associated neuro-
logical disease in both asymptomatic and oligosymptomatic
individuals [88].
Immunogenic profile of the host

The interaction mechanisms of HTLV-1 with host responses
and immunogenetic characteristics are important factors in
the pathogenesis of HAM, ATLL, and other clinical manifesta-
tions associated with HTLV-1. It is still unknown why some
individuals develop severe HAM or ATLL, others have moder-
ate disease, and many others are asymptomatic. HTLV-1 is a
genetically stable virus, and the same viral strain can gener-
ate various clinical outcomes. Numerous data on host genetic
variations associated with immune responses to HTLV-1
infection, including human leukocyte antigen (HLA), killer
immunoglobulin-like receptors (KIR), IL-6, IL-10, IL-28, Fas,
Fas ligand, IFN-g, TNF-a, and mannose-binding lectin, have
been described as potential biomarkers associated with pro-
gression from infection to disease [89-91].

Recently, one study reported an association between poly-
morphisms in the TREX and SAMHD1 genes and increased
proviral load of HTLV-1 among people with HAM [92,93]; simi-
lar results had also been described previously [88,94−96].
These data reinforce the need for further epidemiological
genetic studies involving a larger number of people infected
with HTLV-1 to better understand the effect of these markers
on the pathogenesis and natural history of HAM.

There is also evidence of an association between genetic
biomarkers and ATLL; that is, the genetic profile of the host
can contribute to prognosis and can be an important addi-
tional tool in the management of affected individuals if prop-
erly implemented in endemic areas [97−101]. This finding
demonstrates the importance of implementing these
approaches in our environment.

HTLV-1 has a wide variety of interactions with the host
and is associated with clinical manifestations that may
involve the CNS, blood, eyes, skin, lungs, joints, intestine,
bladder, thyroid, and heart, among other organs and systems
[31]. The clinical complexity of the infection requires multi-
disciplinary care of the infected patient. Although the fre-
quency of unfavorable clinical outcomes of HTLV-1 infections
is considered low (5-10%), HTLV-1 infectionmay be associated
with other clinical processes that need to be better defined.
[102−104]. The increased frequency of reports of diseases
associated with HTLV-2 [3,94,105−111] requires attention to
rule out the participation of HTLV-2 in clinical outcomes,
especially in areas endemic for this virus [112].
Summary and perspectives

HTLV-1 induces a persistent chronic infection. The develop-
ment of associated diseases, such as HAM and ATLL, is multi-
factorial, involving factors related to the virus and to the
immune and inflammatory responses of the host. The virus
induces genetic changes in infected cells, cell proliferation,
and even CNS injury from inflammatory immune responses.
The genetic profile of the host is clearly associated with the
balance between inflammatory and regulatory responses,
predisposing or protecting against inflammatory diseases,
such as HAM, caused by the virus. The development of ATLL
is also related to the immunogenetic profile of individuals.
Identification of prognostic markers in HTLV-1 infection is
essential for predicting clinical outcomes and developing
strategies for their prevention and management. In this
sense, genome-wide association studies (GWAS) should be
performed to screen possible new biomarkers.

A high HTLV-1 proviral load, HBZ, and some inflammatory
cytokines are potential biomarkers for the development of
diseases associated with HTLV-1.
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