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Introduction
Nasopharyngeal carcinoma (NPC) is the most 
common head and neck cancer, with an extremely 
uneven distribution of disease burden worldwide. 
There are about 120,000 new cases worldwide 

annually, >50% of which are in east and south-
east Asia.1,2 Generally, NPC is a radiosensitive 
tumor, but with locoregional and distant aggres-
siveness. Despite the introduction of intensity 
modulated radiotherapy and chemotherapy, 
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Abstract
Background: To explore the prognostic value of radiomics-based and digital pathology-based 
imaging biomarkers from macroscopic magnetic resonance imaging (MRI) and microscopic 
whole-slide images for patients with nasopharyngeal carcinoma (NPC).
Methods: We recruited 220 NPC patients and divided them into training (n = 132), internal test 
(n = 44), and external test (n = 44) cohorts. The primary endpoint was failure-free survival (FFS). 
Radiomic features were extracted from pretreatment MRI and selected and integrated into a 
radiomic signature. The histopathological signature was extracted from whole-slide images 
of biopsy specimens using an end-to-end deep-learning method. Incorporating two signatures 
and independent clinical factors, a multi-scale nomogram was constructed. We also tested 
the correlation between the key imaging features and genetic alternations in an independent 
cohort of 16 patients (biological test cohort).
Results: Both radiomic and histopathologic signatures presented significant associations with 
treatment failure in the three cohorts (C-index: 0.689–0.779, all p < 0.050). The multi-scale 
nomogram showed a consistent significant improvement for predicting treatment failure 
compared with the clinical model in the training (C-index: 0.817 versus 0.730, p < 0.050), 
internal test (C-index: 0.828 versus 0.602, p < 0.050) and external test (C-index: 0.834 versus 
0.679, p < 0.050) cohorts. Furthermore, patients were stratified successfully into two groups 
with distinguishable prognosis (log-rank p < 0.0010) using our nomogram. We also found 
that two texture features were related to the genetic alternations of chromatin remodeling 
pathways in another independent cohort.
Conclusion: The multi-scale imaging features showed a complementary value in prognostic 
prediction and may improve individualized treatment in NPC.
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30–50% of patients still experience disease relapse 
after radical radio-chemotherapy.3,4 Variant prog-
noses were also found in patients with similar 
stage, pathologic subtype, and treatment.5 Based 
mainly on a manual anatomical and histopatho-
logic qualitative assessment of the extent of dis-
ease, the current tumor, nodes, and metastases 
(TNM) system and histopathologic classification 
are inadequate to guide research and clinical 
practice. Therefore, there is an urgent need for a 
more comprehensive and tailored biomarker.

Radiomics, an emerging field in medicine, applies 
computer-aided algorithms to extract and analyze 
quantitative macroscopic features from radiological 
images, and has achieved successful applications for 
the clinical diagnosis and treatment especially for 
malignancies.6–9 Several prognostic models based 
on macroscopic radiomic features have been pro-
posed to improve the risk stratification ability for 
NPC.10–13 Digital pathology driven artificial intelli-
gence enables the mining of microscopic morpho-
metric phenotypes from digitizing whole-slide 
images (WSI).14–16 Histopathologic properties such 
as histopathologic classification,17 immunological 
phenotype [such as tumor-infiltrating lymphocytes 
(TILs)]18 and handcrafted microscopic features 
from WSI are found to be independently prognostic 
for NPC.19 However, there have been no published 
reports on the integration of imaging features from 
radiological images and WSI for the prognostic pre-
diction of patients with cancer including NPC. 
Therefore, it is necessary and reasonable to inte-
grate histopathologic and radiomic features, as well 
as the known prognostic factors, to assess the mor-
phological features at multiple scale (cell, tissue, 
and patient level), thus enabling better characteriza-
tion of the aggressiveness of disease.8,20

Based on the above, we collected pretreatment 
multi-parametric MRI images and WSI from mul-
tiple cohorts. We aimed to develop a deep learn-
ing-based model to explore whether factors at 
different scales could improve the prognostic pre-
dictability of NPC, in order to support clinical 
decision-making for patients with NPC. In another 
independent cohort, gene-expression data analysis 
was further performed for biologic exploration.

Methods

Patient selection
The study workflow is displayed in Figure 1. We 
included retrospectively 176 consecutive patients 

with NPC between February 2014 and June 2017 
in the Fifth Affiliated Hospital of Sun Yat-sen 
University, Zhuhai, China (SYSU5 cohort). 
Computer-generated random numbers were used 
to allocate these patients into training (n = 132) 
and internal test (n = 44) cohorts. We also enrolled 
44 patients between January 2013 and November 
2016 in the Guilin Medical University Affiliated 
Hospital (GMH), Guilin, China (external test 
cohort). All these patients were (1) newly histo-
logically confirmed and non-metastatic NPC; (2) 
underwent pretreatment MRI of head and neck 
region [including the axial T1-weighted (T1WI), 
T2-weighted fat-suppressed (T2WI FS), contrast-
enhanced T1-weighted fat-suppressed (CE T1WI 
FS) sequences] and biopsy under nasopharyn-
gofiberscope with hematoxylin-eosin (H&E) 
staining slide before any anti-cancer treatment in 
the two institutions; (3) without prior or concom-
itant malignancy; (4) treated with definitive-
intent radiotherapy. Exclusion criteria included 
(1) incomplete pretreatment MRI of head and 
neck; (2) notable motion artifacts in MRI; (3) less 
than 1% tumor cells when assessing the histo-
pathological slides evaluated by the two patholo-
gists (D.Z. and Y.L.). This retrospective study 
was approved by the ethical review boards of 
SYSU5 (the approval ID SYSU5-K208-1) and 
GMH (the approval ID GLMU1A2018062). 
The requirement for informed consent was 
waived. Detailed information on the treatment is 
also summarized in Supplemental Text S1.

To investigate the underlying biology of the image 
features, we retrospectively enrolled another inde-
pendent cohort between June 2018 and November 
2019 in the SYSU5 (biological test cohort). There 
were 16 NPC patients with available pretreatment 
data of head and neck MRI and 508 tumor-related 
genes panel sequencing of primary tumor designed 
by Beijing Genomics institution (Supplemental 
Text S2). Of all patients, 81.3% (13/16) had path-
ological slides available. All 16 patients signed 
informed consent for the usage of their anonymized 
clinical and genetics data.

Imaging preparation
Multi-parametric MRI was obtained within 
2 weeks before any anti-cancer treatment for each 
patient. The acquisition details (contrast agents, 
image thickness, etc.) is displayed in Supplemental 
Text S3 and Table S1. The axial T1WI, T2WI 
FS and CE T1WI FS MRI sequences were 
retrieved from the institutional picture archiving 
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and communication system and loaded into 
ITK-SNAP software (version 2.2.0; www.itk-
snap.org) for manually segmenting the primary 
tumor on the axial MRI slices by two radiologists 
with 5 years (G.J.W.) and 10 years (Y.W.) experi-
ence with MRI.

The diagnostic glass slides for each patient were 
collected from H&E-stained sections of the forma-
lin-fixed, paraffin-embedded tumor tissue blocks 
acquired from nasopharyngeal lesion biopsy. 
Then, we converted these into WSI at 40× objec-
tive magnification (0.23 µm/pixel) by a digital slide 
scanner (Pannoramic 1000, Budapest, Hungary). 
All the WSI were evaluated by pathologist A (D.Z.) 
with 5 years experience and who was blinded to 
patients’ treatment and outcomes. A manual 
assessment included (1) intra-tumor necrosis, (2) 
2003 World Health Organization (WHO) patho-
logic classification, (3) presence of sarcomatoid 
tumor cells described with poor prognosis in a pre-
vious study,17 and (4) TILs grading according to 
the criteria proposed by the International Immuno-
Oncology Biomarker Working Group and by pre-
vious research.18,21 Representative regions of 
interest (ROIs, size: 25 × 25 μm) containing (1) 
tumor area with predominant tumor nuclei, (2) 

intra-tumoral necrosis (if found), (3) intra-tumoral 
lymphocytes infiltrating, and (4) stromal lympho-
cytes infiltrating area were also captured manually 
for each WSI avoiding artifacts (bubbles, signifi-
cant tissue section folds, overstaining, understain-
ing) via CaseViewer (version 2.12; 3DHISTECH, 
Budapest, Hungary) by pathologist A. To account 
for heterogeneity, at least two non-overlapping 
ROIs of the tumor area were selected from each 
patient. Assessment and capture were reviewed 
and confirmed by another pathologist (Y.L.) with 
15 years experience.

Imaging features extraction/selection and 
signatures construction
The radiomic features computation and extraction 
was performed according to guideline of Image 
Biomarker Standardisation Initiative.22 Based on 
the open platform (PyRadiomics, https://pypi.org/
project/pyradiomics/),23 a total of 2364 radiomic 
features were extracted from MRI images (788 
features for each MRI sequence), including five 
groups: histogram, shape, gray level dependency 
matrix (GLDM), gray level run length matrix 
(GLRLM), gray level size zone matrix (GLSZM) 
and gray level co-occurrence matrix (GLCM).

Figure 1. (a) Imaging analysis and (b) data flow of this study. The multi-scale nomogram was developed to predict FFS based on the 
clinical, radiomic, and histopathologic data from the training cohort, and in the internal and external test cohorts. The biological test 
cohort was used to test the correlation with the key imaging features and signatures.
FFS, failure-free survival; GMH, Guilin Medical University Affiliated Hospital; MRI, magnetic resonance imaging; SYSU5, Fifth Affiliated Hospital of 
Sun Yat-sen University; TIL, tumor-infiltrating lymphocytes; WSI, whole-slide images.
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A radiomic signature was developed in the SYSU5 
cohort as follows: (1) the intra/inter-class correla-
tion coefficient (ICC) was used to select radiomic 
features with great reliability (ICC > 0.75) 6; (2) 
we employed univariate analysis, minimal redun-
dancy maximum relevance, and random forest to 
select key features associated with FFS using 
3-fold cross validation, which was used to con-
struct CPH models; (3) in order to obtain a 
robust model, we performed randomly 3-fold 
cross-validation for 100 times, followed by the 
repeating construction and validation of the CPH 
models. We choose the CPH models whose per-
formance on both the training cohort and the 
holdout test cohort are close to average perfor-
mance among 100 repetitions. The maximum 
value of the selected CPHs was set as the radi-
omic signature (detailed in Supplemental Text S4 
and Figure S1).

A histopathologic signature was developed in the 
training cohort as follows: (1) we standardized 
the stain color of ROIs of WSI to reduce undesir-
able staining deviation24; (2) a deep convolutional 
neural network (DCNN), ResNet-18,25 was used 
to end-to-end predict FFS based on the standard-
ized ROIs under the multiple instance learning 
assumption,26 with DeepSurv as a loss function.27 
We used ImageNet-pretrained ResNet-18 for 
transfer learning, to get a good starting of weight 
values. In training process, we adopted label 
smoothing, early stopping and dropout layers to 
avoid overfitting. The output value of the model 
was set to be the histopathologic signature. 
Training details and network structure are shown 
in Supplemental Text S4, Table S2 and Figure S2.

Development and validation of an individualized 
multi-scale nomogram
The primary endpoint was FFS (time to locore-
gional failure, distant failure, or death from any 
cause, whichever occurred first). The secondary 
endpoints included overall survival (OS, time to 
death from any cause), distant FFS (D-FFS, time 
to distant failure), and locoregional FFS (LR-FFS, 
time to local or regional failure or both).

We used the training cohort to explore the associ-
ation between clinical risk factors and FFS using 
univariate CPH analysis, and identified independ-
ent prognostic factors for predicting FFS using 
multivariate CPH analysis. Then, modelCRH was 

developed by integrating independent clinical fac-
tors, radiomic, and histopathologic signatures. 
Finally, an individualized multiscale nomogram 
was constructed for FFS estimation using the 
above regression coefficients.

The performance of the multiscale nomogram was 
assessed in the training cohort and tested in the 
internal and external cohorts using Harrell’s con-
cordance index (C-index) and time-independent 
receiver operating characteristic (TI-ROC) analy-
sis. Comparisons between C-indices were con-
ducted using Student t test.28 The calibration 
curves and Hosmer-Lemeshow test were used to 
evaluate the agreement between nomogram pre-
dicted FFS and observed FFS. In addition, risk 
stratification and stratified analysis were con-
ducted to test the discriminability and stability of 
the multiscale nomogram. The biological basis of 
the key radiomic features and histopathologic sig-
nature was evaluated using Wilcoxon signed-rank 
test on the biological test cohort.

Statistical analysis
Image preprocessing for MRI and WSI was con-
ducted in MATLAB R2018a (MathWorks, 
Natick, MA, USA). ResNet-18 survival model 
were implemented with open-source Python 
v3.6.5 and Pytorch v1.1.0, and statistical analysis 
was conducted in open-source R v3.6.1. We used 
two-sided p-value < 0.050 as the level of statistical 
significance. A description of the  statistical meth-
ods is shown in detail in Supplemental Text S6.

Results

Baseline clinic-pathological characteristics
The distribution of host, stage, radiologic, and 
pathologic characteristics were well balanced 
between the three cohorts (Table 1), except 
worse anemia occurred in the external test cohort 
(61.36% versus 21.21–22.73%). Median follow-
up was 37.1 months [interquartile range (IQR) 
27.5–46.4], 39.1 months (IQR 25.5–47.0), and 
37.6 months (IQR 27.5–50.6) in the training, 
internal, and external test cohorts, respectively. 
At the last follow up (30 September 2019), we 
respectively found 32/132 (24%), 11/44 (25%), 
and 11/44 (25%) patients who had experienced 
a confirmed treatment failure in these three 
cohorts (p = 0.99).

https://journals.sagepub.com/home/tam
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Table 1. Baseline clinical characteristics in the training, internal and external test cohorts.

Training cohort Internal test cohort External test cohort p value

 (n = 132) (n = 44) (n = 44)

 No. (%) No. (%) No. (%)

Age (years) 0.095c

Median (range) 48 (19–83) 49 (27–78) 44 (24–70)  

Sex 0.89d

Male 96 (72.73%) 33 (75.00%) 31 (70.45%)  

Female 36 (27.27%) 11 (25.00%) 13 (29.56%)  

WHO pathological type 0.23d

I 0 (0.00%) 0 (0.00%) 0 (0.00%)  

II 7 (5.30%) 1 (2.27%) 0 (0.00%)  

III 125 (94.70%) 43 (97.73%) 44 (100.00%)  

Total stage 0.55d

I 1 (0.76%) 1 (2.27%) 0 (0.00%)  

II 19 (14.39%) 6 (13.64%) 4 (9.09%)  

III 74 (56.06%) 21 (47.73%) 21 (47.73%)  

IV 38 (28.79%) 16 (36.36%) 19 (43.18%)  

T stage 0.28d

T1 32 (24.24%) 10 (22.73%) 7 (15.91%)  

T2 13 (9.85%) 8 (18.18%) 4 (9.09%)  

T3 69 (52.27%) 22 (50.00%) 22 (50.00%)  

T4 18 (13.64%) 4 (9.09%) 11 (25.00%)  

N stage 0.30d

N0 2 (1.52%) 2 (4.55%) 2 (4.55%)  

N1 48 (36.36%) 13 (29.55%) 14 (31.82%)  

N2 59 (44.70%) 15 (34.09%) 16 (36.36%)  

N3 23 (17.42%) 14 (31.82%) 12 (27.27%)  

Anemia <0.0010d

Yes 28 (21.21%) 10 (22.73%) 27 (61.36%)  

No 104 (78.79%) 34 (77.27%) 17 (38.64%)  

Intra-tumoral necrosisa 0.077d

No 104 (78.79%) 34 (77.27%) 41 (93.18%)  

Yes 28 (21.21%) 10 (22.73%) 3 (6.82%)  

(Continued)

https://journals.sagepub.com/home/tam
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Development and validation of macroscopic 
radiomic signature
A total of 12 key radiomic features were finally 
selected after (Supplemental Table S3), and incor-
porated into the radiomic signature (Supplemental 
Table S4). The radiomic signature exhibited 
strong association with FFS in the training cohort 
[concordance index (C-index): 0.721, 95% confi-
dence interval (CI): 0.630–0.812] that was vali-
dated in the internal test (C-index: 0.777, 95% CI: 
0.657–0.896) and external test (C-index: 0.711, 
95% CI: 0.534–0.889) cohorts.

Development and validation of microscopic 
histopathologic signature
The histopathologic signature was computed 
by the DCNN in an end-to-end way. The 

histopathologic signature yielded a good 
C-index of 0.741 (95% CI: 0.662–0.819) and 
remained a statistically significant prognostic 
factor in the internal test cohort (C-index, 
0.779, 95% CI, 0.679–0.880) and external test 
cohort: C-index, 0.689, 95% CI, 0.552–0.826). 
For comparison, a Cox proportional hazard 
(CPH) model (Modelpathologist) was constructed 
according to manual measurements for WSIs 
by the pathologists. Modelpathologist identified 
sarcomatoid tumor cells and TILs grading as 
independent variables and obtained a slightly 
inferior performance than the histopathologic 
signature in the training cohort (C-index: 
0.667, 95% CI: 0.558–0.796), internal test 
cohort (C-index: 0.737, 95% CI: 0.493–0.982), 
and external test cohort (C-index: 0.679, 95% 
CI: 0.411–0.947).

Training cohort Internal test cohort External test cohort p value

 (n = 132) (n = 44) (n = 44)

 No. (%) No. (%) No. (%)

TILs gradinga 0.44d

High 64 (48.49%) 26 (59.09%) 24 (54.55%)  

Low 68 (51.52%) 18 (40.91%) 20 (45.46%)  

Presence of sarcomatoid tumor cellsa 0.66d

No 102 (77.27%) 31 (70.46%) 33 (75.00%)  

Yes 30 (22.73%) 13 (29.55%) 11 (25.00%)  

Lymph node necrosisb 0.41d

No 94 (71.21%) 32 (72.73%) 27 (61.36%)  

Yes 38 (28.79%) 12 (27.27%) 17 (38.64%)  

The remaining 65 (49.24%) 17 (38.64%) 17 (38.64%)  

pEBV DNA level NAe

<4000 62 (46.97%) 26 (59.09%) 0 (0.00%)  

⩾4000 7 (5.30%) 2 (4.55%) 0 (0.00%)  

Missing data 63 (47.73%) 16 (36.36%) 44 (100.00%)  

aIntra-tumoral necrosis, TIL grading, and presence of sarcomatoid tumor cells were manual evaluated by pathologists on 
WSI.
bLymph node necrosis was manual identified by radiologists on MRI.
cp values were calculated by Student t test.
dp values were calculated by chi-square test.
ep values were not calculated because of large amount of missing data.
MRI, magnetic resonance imaging; pEBV DNA, plasma Epstein–Barr Virus DNA; TILs, tumoral infiltrating lymphocytes; 
WHO, World Health Organization; WSI, whole slide images.

Table 1. (Continued)
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Development and validation of the 
individualized multiscale nomogram
In univariate analysis, clinical parameters in 
Table  1 were explored, and sex [hazard ratio 
(HR): 0.34, p = 0.037], N-stage (HR: 2.93, 
p = 0.013), and TILs grading (HR: 0.49, p = 0.049) 
were found to be significantly associated with FFS 
(Table S5). A clinical CPH (Modelclinic) model 
was built according to sex, N-stage, and TILs 
grading after adjusting for covariables [C-index 
0.730 (95% CI: 0.613–0.847) in the training 
cohort, 0.602 (95% CI: 0.416–0.788) in the inter-
nal test cohort and 0.679 (95% CI: 0.442–0.917) 
in the internal test cohort]. To integrate the  
three independent clinical factors, radiomic  
and  histopathologic signature, we built a clinical-
radio- histopathologic CPH model (ModelCRH), 
which was visualized into a multiscale nomogram 
for clinicians (Figure 2a).

The multiscale nomogram showed the best per-
formance, with a C-index of 0.817 (95% CI: 
0.758–0.876) in the training cohort, 0.828 (95% 

CI: 0.741–0.915) in the internal test cohort, and 
0.834 (95% CI: 0.736–0.932) in the external test 
cohort. Moreover, the multiscale nomogram 
showed a consistently significant improvement 
over the TNM staging system, as well as the 
Modelclinic in the three cohorts (all p < 0.050). 
The calibration curves of the multiscale nomo-
gram demonstrated good agreement between the 
nomogram-estimated FFS rate and the observed 
FFS rate (Figure 2b).

We identified the threshold score of the multi-
scale nomogram as 0.644 corresponding to a 
total point of 139.6 in the training cohort. In the 
training cohort, the high-risk group exhibited 
short-lived FFS compared with that in the low-
risk group (HR 2.718, 95% CI 2.039–3.624, 
p < 0.0010; Figure 2c1). This trend was validated 
in the two test cohorts [internal test cohort: HR 
2.771 (95% CI 1.584–4.850); external test 
cohort: HR 2.331 (95% CI 1.302–4.174), Figure 
2c2–2c3]. Similarly, the multiscale nomogram 
successfully allowed risk stratification with 

Figure 2. (a) Multiscale nomogram, (b) its calibration curves, and (c) Kaplan–Meier curves in the three cohorts.
Ext-test, external test; FFS, failure-free survival; HR, hazard ratio; Int-test, internal test; TILs, tumor-infiltrating lymphocytes.

https://journals.sagepub.com/home/tam
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secondary endpoints (log-rank: all p < 0.050, 
Supplemental Figure S3). When stratified by age 
(<52 or ⩾52), T-stage (I–II or III–IV), anemia 
(yes or no), and overall-stage (I–III or IV); the 
multiscale nomogram achieved a satisfactory 
prognostic ability (Supplemental Figure S4). 
Furthermore, time-dependent receiver operat-
ing characteristic (TD-ROC) analysis also veri-
fied its superior performance for predicting FFS 
compared with other models or variables 
(Supplemental Figure S5). Performance of all 
models in the three cohorts is shown in Table 2 
in detail.

Data on pretreatment plasma Epstein–Barr Virus 
DNA (pEBV DNA) is available only for 107 
patients in the SYSU5 cohort; therefore, we did 
not include it into the nomogram. However, we 
found that pEBV DNA slightly improved the per-
formance of the nomogram on the sub-group 
(C-index from 0.870 to 0.875), but not signifi-
cantly (p = 0.74).

Genetic investigation of the imaging features
To evaluate the biological basis of the imaging fea-
tures, we further investigated the genetic land-
scape of the biological test cohort (Supplemental 
Figure S6) using pathway analysis as described 
previously.29 We used a heatmap to display the 
association of the imaging features with the genetic 

alternations (Figure 3). Two texture features of 
radiomics were found to be significantly associ-
ated with genetic alternations in chromatin remod-
eling pathway. No significant association was 
found between the other radiomic features and 
histopathologic signature and specific mutations.

Discussion
Based on the hypothesis that treatment out-
come is determined by tumoral biology on dif-
ferent spatial scales (e.g., individual, tissue, cell 
and molecule), we explored currently available 
factors from physical examination, radiology, 
pathology, and laboratories in clinics for NPC. 
Using machine learning methods including 
deep learning, we developed and validated a 
multi-scale nomogram for predicting treatment 
failure of NPC, which consistently exhibited 
superior performances compared with a clinical 
model. We also identified significant links 
between the imaging predictors and mutations 
of chromatin remodeling pathways in another 
independent cohort. To the best of our knowl-
edge, this is the first study incorporating multi-
scale prognostic features based on digital 
pathology and radiomics to enhance the prog-
nosis prediction for NPC. Our study also pro-
vides a feasible protocol to mine prognostic 
features from the multi-scale images in the 
clinic for other malignancies.

Table 2. Performance of models in the three cohorts.

Models Training cohort Internal test cohort External test cohort

C-index (95% CI) p value C-index (95% CI) p value C-index (95% CI) p value

Histopathologic 
signature

0.741 (0.662–0.819) <0.0010 0.779 (0.679–0.880) <0.0010 0.689 (0.552–0.826) 0.0070

Radiomic signature 0.721 (0.630–0.812) <0.0010 0.777 (0.657–0.896) <0.0010 0.711 (0.534–0.889) 0.020

ModelTNM 0.737 (0.614–0.861) <0.0010 0.593 (0.358–0.828) 0.44 0.654 (0.411–0.896) 0.22

Modelclinic 0.730 (0.613–0.847) <0.0010 0.602 (0.416–0.788) 0.28 0.679 (0.442–0.917) 0.14

ModelRH 0.801 (0.732–0.870) <0.0010 0.850 (0.757–0.943) <0.0010 0.811 (0.698–0.925) <0.0010

ModelCRH 0.817 (0.758–0.876) <0.0010 0.828 (0.741–0.915) <0.0010 0.834 (0.736–0.932) <0.0010

Modelpathologist 0.677 (0.558–0.796) 0.0040 0.737 (0.493–0.982) 0.057 0.679 (0.411–0.947) 0.19

ModelTNM was constructed by T-stage and N-stage. Modelclinic was constructed by sex, N-stage, TILs grading; ModelRH was constructed by radiomic 
and histopathologic signatures; ModelCRH, which is the multiscale nomogram, was constructed by radiomic and histopathologic signatures and above 
three independent clinical factors; Modelpathologist was constructed by manual assessments of sarcomatoid tumor cells presence and TILs grading.
CI, confidence interval.
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At microscopic scale, we used a DCNN to con-
struct the histopathologic signature from WSI, 
which showed superior performance to the 
pathologists’ assessment (C-index 0.741 versus 
0.677). A recent study about NPC showed a sig-
nature based on handcrafted features from WSI 
as an independent prognostic factor, with a simi-
lar performance (C-index 0.723).19 In contrast, 
our histopathologic signature was constructed in 
an end-to-end method, avoiding incompleteness 
and instabilities of artificial setting. To interpret 
the histopathologic signature, we visualized 
DCNN using the attention map,30 and found the 
hotspots located on the tumor cells with multiple 
nucleoli (Figure 4a), vesicular nuclei (Figure 4b), 
and spindle shape (Figure 4c, as sarcomatoid 
tumor cells). These are characteristic appearances 
of the high proliferation and pleomorphism and 
of the poor differentiation, and are related to the 
prognoses, according to Wang’s study.17 In addi-
tion to the prognostic morphology of tumor cells, 
we also found the attention map also focused on 
the sites of the tumoral infiltrating lymphocytes 
(Figure 4d). Intriguingly, TIL grading was also 

included in our nomogram. Given that, we specu-
lated that the proposed nomogram might also 
involve immune morphology that influenced dis-
ease aggressiveness for NPC.18

Whereas at macroscopic scale, our model selected 
a set of key radiomic features from the multi-par-
ametric MRI (Supplemental Table S1), which 
depict the shape (size and border influenced by 
tumor growth) and texture (density and perfusion 
heterogeneity caused by the tumor cell density, 
inflammation, neovascularization, and necrosis) 
of the whole tumor tissue.8 Compared with previ-
ous radiomic models,10 more features from wave-
let category and T2WI sequencing were selected 
by our model, suggesting texture details still 
require further mining for better reflect disease 
aggressiveness(e.g., necrosis displayed in T2WI 
sequencing), which is in accord with findings in 
other two studies.11,13 Several typical images were 
displayed in Figure S7, manifesting different lev-
els of the radiomic signatures in two patients with 
similar stage and pathological signature, while 
their outcomes were distinct.

Figure 3. Association between the key imaging features and gene sets. Two texture features were found to 
be related to genetic alternations of chromatin remodeling pathway mutations (log.sigma.3.0.mm.3D_glrlm_
LowGrayLevelRunEmphasis from T2WI FS sequence and wavelet.HH_glrlm_ShortRunLowGrayLevelEmphasis 
from CE T1WI FS sequence).
CE-T1WI FS, contrast-enhanced T1-weighted fat-suppressed image; gldm, gray level dependency matrix; glrlm, gray level 
run length matrix; T1WI, T1-weighted image; T2WI FS, T2-weighted fat-suppressed image; WSI, whole slide images.
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Impressively, we found that clinic, histopatho-
logic, and radiomic signatures exhibited comple-
mentary value in pretreatment individualized 
prediction of prognoses, with the best perfor-
mance in pretreatment individualized prediction 
of prognoses in two test cohorts (Table 2). 
Compared with previous radiomic and histo-
pathologic models (C-index 0.723–0.761),10,19 
our results also showed an impressive improve-
ment (C-index > 0.8 in three cohorts). We 
believed these improvements might come from 
the maximum mining of clinic data on different 
spatial scales. Moreover, the multiscale nomo-
gram maintained good and stable performance in 
the prediction of the secondary endpoints 
(Supplemental Figure S3) and in the stratified 
analysis (Supplemental Figure S4). These find-
ings might potentially improve clinic practice for 
NPC. For example, patients with stage I–II and 
high risk might need enhancing treatment (the 
3 year FFS lower than 60%, Supplemental Figure 
S4), while intensive treatment like induction 
chemotherapy should be re-examined in patients 
with stage III–IV and low risk (the 3 year FFS 
higher than 90%, Supplemental Figure S4).

To date, the underlying biology of imaging pre-
dictors for NPC have barely been studied bef
ore.10,12,13,19,31 Herein, we performed a prelimi-
nary investigation of the association between gene 
expression and the imaging features of our model. 
Notably, we identified two texture features related 

to the genetic alterations of chromatin remode-
ling pathway, which is regarded as a mark of sub-
clone diversity during tumor evolution, and is 
correlated to higher mutational burden, EBV 
burden, and poor prognoses.29,32 These findings 
revealed that gene-driven tumor heterogeneity 
can be captured by texture features via radiomic 
analysis of prognoses. No significant association 
was found between the other radiomic features 
and histopathologic signature and specific muta-
tions. The main reason might be the relatively 
infrequent targetable genetic lesions in NPC 
(mostly <10%), and, secondly, the limitation of 
the panel sequencing (only 508 tumor-related 
genes) and small sample size (n = 16). For tumors 
with low mutation rate, further radiogenomics 
studies should involve more comprehensive gene 
data, for example, transcriptomics.33

Our study has several limitations. First, due to the 
retrospective nature and relatively small sample 
size of our data, we were unable to examine the 
optimal chemotherapy strategy for NPC patients. 
Future prospective studies with a large sample 
will be necessary. Secondly, a molecular profile 
was not included in the multi-scale model. Our 
sub-analysis showed a trend of complementary 
value from pEBV DNA. It is needed to fully 
incorporate molecular profiles like pEBV DNA 
and genomics. Thirdly, though validated in a 
multi-cohort setting, the current study was based 
on subjects that were all Chinese cohorts. Thus, 

Figure 4. Attention map of the histopathologic signature. The hotspot located at the regions of tumor cells 
with (a) vesicular nuclei, (b) multiple nucleoli, (c) spindle shape, and (d) TILs.
TILs, tumor-infiltrating lymphocytes.
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the applicability of our model needs to be verified 
in a non-Asian cohort.

Conclusion
By integrating the risk prognostic features from 
cell to patient level, a multiscale nomogram was 
established and validated to predict the prognosis 
of NPC before treatment. Our multi-scale nomo-
gram may serve as a noninvasive, cost-effective, 
and useful tool for facilitating individualized 
treatment and future decision-making in NPC.
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