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Abstract. The Li & Stephens (LS) hidden Markov model (HMM) models the process of reconstructing
a haplotype as a mosaic copy of haplotypes in a reference panel (haplotype threading). For small panels
the probabilistic parameterization of LS enables modeling the uncertainties of such mosaics, and has
been the foundational model for haplotype phasing and imputation. However, LS becomes inefficient
when sample size is large (tens of thousands to millions), because of its linear time complexity (O(MN),
where M is the number of haplotypes and N is the number of sites in the panel). Recently the PBWT,
an efficient data structure capturing the local haplotype matching among haplotypes, was proposed to
offer fast methods for giving some optimal solution (Viterbi) to the LS HMM. But the solution space of
the LS for large panels is still elusive. Previously we introduced the Minimal Positional Substring Cover
(MPSC) problem as an alternative formulation of LS whose objective is to cover a query haplotype by
a minimum number of segments from haplotypes in a reference panel. The MPSC formulation allows
the generation of a haplotype threading in time constant to sample size (O(N)). This allows haplotype
threading on very large biobank scale panels on which the LS model is infeasible. Here we present
new results on the solution space of the MPSC by first identifying a property that any MPSC will
have a set of required regions, and then proposing a MPSC graph. In addition, we derived a number
of optimal algorithms for MPSC, including solution enumerations, the Length Maximal MPSC, and
h-MPSC solutions. In doing so, our algorithms reveal the solution space of LS for large panels. Even
though we only solved an extreme case of LS where the emission probability is 0, our algorithms can be
made more robust by PBWT smoothing. We show that our method is informative in terms of revealing
the characteristics of biobank-scale data sets and can improve genotype imputation.
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1 Introduction

Human chromosomes are a mosaic of ancestral chromosomal segments, resulting from accumulated
recombination events. By way of transitivity, when querying a chromosomal haplotype against a
panel of haplotypes, one can view the query haplotype as a mosaic of identical-by-descent (IBD)
segments with haplotypes in the panel. Such mosaics, also called haplotype threadings, are the
foundational model for haplotype phasing, genotype imputation, and relatedness inference.

For many years, the state of the art haplotype threading method was the Li & Stephens (LS)
Model [7]. The Li & Stephens model produces a haplotype threading by using a Hidden Markov
Model (HMM) where penalties are incurred for mismatches and switching between different haplo-
types in adjacent sites the panel in the threading. When sample size is small, the matching segments,
i.e., the continuous streak of match with the same haplotype template in the panel, are typically
short, and the Li & Stephens model can be parameterized to achieve a balance between mismatch
tolerance and minimizing switching. Indeed, most current phasing and imputation methods are
based on the Li & Stephens model [1, 2, 4, 5, 8, 12].
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However, when sample size of the panel is large, Li & Stephens model becomes inefficient, as its
time complexity is linear to the size of the panel, O(MN), where M is the number of haplotypes
in the panel and N is the number of sites per haplotype. The latest imputation methods based on
LS have used PBWT to quickly identify a subset of templates as “surrogate parents” of the query,
but still use LS HMM to sample the threading over the subset [2, 12].

Recent work has attempted to obtain the optimal haplotype threading in the Li & Stephens
model in time sublinear to the size of the panel. Gerton Lunter described “fastLS”, an algorithm that
implements the Li & Stephens model and obtains the optimal haplotype threading through the use
of the Burrows-Wheeler transform [9]. His algorithm obtains the optimal haplotype threading orders
of magnitude faster than the Viterbi algorithm. Yohei Rosen and Benedict Paten also described an
algorithm that achieved runtime orders of magnitude faster than the Viterbi algorithm [11]. Their
method achieves this using the efficient sparse representation of haplotypes and the lazy evaluation
of dynamic programming. These algorithms have also been claimed to have runtime sublinear to
the size of the reference panel. However, this claim has only been shown empirically.

In this work, we discuss an alternative formulation of the haplotype threading problem. This
is based on the observation that when the size of the panel is large enough, approaching the size
of the population, the IBD segments shared between the query and the template haplotypes can
be much longer. Also, the error rates on modern large panels are very low (∼0.1%). Therefore, the
problem of haplotype threading for large panels is Li & Stephens model at the regime where the
mismatch rates and switch rate are very low. In other words, it is of interest to make combinatorial
formulations of the problem.

In a previous work, Sanaullah et al. introduced a new formulation of haplotype threading, the
Minimal Positional Substring Cover (MPSC) [13]. The MPSC problem is, given a query haplotype
z and a set of haplotypes X, find a smallest set of segments of haplotypes in X that covers z. This
formulation corresponds to LS model with 0 mismatch rate and the only objective is to minimize
the switch rate. Obviously, the MPSC formulation is too limited as it does not tolerate mismatches.
In a sense, MPSC is a more general formulation of haplotype threading. The traditional haplotype
threading is a special case of MPSC with non-overlapping segments. MPSC formulation captures the
fact that while the switching of templates indicates some recombination events, the exact breakpoint
of the recombination events may be anywhere within the overlapping region between the templates.
Furthermore, this combinatorial formulation is theoretically attractive because it is can be solved in
worst case O(N) time [13]. I.E. given a PBWT of the reference panel, a MPSC haplotype threading
of a query haplotype can be done in time independent to the number of haplotypes in the reference
panel. Further, a number of variations of the MPSC formulation can be solved efficiently, including
Leftmost and Rightmost MPSCs, MPSC composed of only set maximal matches, and h-MPSC.

In this work, we expand upon the abilities of the MPSC formulation of haplotype threading
greatly. Our major contributions are the exploration of the solution space of minimal positional
substring covers, the description and solving of a new variation of the MPSC problem, the Length
Maximal MPSC, the providing of an improved algorithm for the h-MPSC problem, and the demon-
stration of usefulness of the MPSC formulation haplotype threading through an imputation bench-
mark. Table 1 summarizes the major algorithmic contributions of this paper.

2 Background

By following the definitions in [13], a string z with N characters is indexed from 0 to N − 1. The
first character of z is z[0] and the last is z[N − 1]. The string z[i, j] is the substring of z that starts
at character i and ends at character j.
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Table 1. Summary of algorithms on haplotype threading
Functionalities Algorithm ID Time Complexity

Lunter [9] fastLS Alg. 4, 5 Expt. o(MN)

Rosen and Paten [11] LS Lazy Evaluation - Expt. o(MN)

Sanaullah et al. [13]
MPSC Alg. 1 O(N)

Set Maximal MPSC - O(N)
h-MPSC Alg. 2 O(h|C|+N)

This work

MPSC Graph - O(N)

Length Maximal MPSC Alg. 1† O(N)
Set Max. MPSC Solution Space Count - O(N)

Set Max. MPSC Solution Space Enumerate - O(N + Sc)

h-MPSC Alg. 9† O(N)

M is the number of sequences. N is the number of sites. C is the outputted cover. h is the coverage guaranteed. Sc

is the number of MPSCs outputted. † In Appendices.

A positional substring of a string z is a 3-tuple, (i, j, z), where i and j are nonegative integers,
i ≤ j+1 ≤ |z|, and z is the “source” of the substring. The substring corresponding to the positional
substring (i, j, z) is z[i, j]. If i = j+1, then (i, j, z) corresponds to the empty string, ϵ. A non-empty
positional substring (i, j, z) is contained in a string s if 0 ≤ i ≤ j < |s| and s[i, j] = z[i, j]. An empty
positional substring (i, i− 1, z) is contained in a string s iff 0 ≤ i ≤ |s|. Two positional substrings,
(i, j, s) and (k, l, t) are equal iff i = k, j = l, and s[i, j] = t[k, l]. The length of a positional substring
(i, j, s) is j − i+ 1.

A positional substring cover, C, of a string z by a set of strings X is a set of positional
substrings such that every character of z is contained in a positional substring and every positional
substring in the set is present in z and a string in X. The “source,” s, of a positional substring
(i, j, s) in a positional substring cover can be any string s s.t. s[i, j] = x[i, j] = z[i, j] for some
x ∈ X. The size of a positional substring cover is the number of positional substrings it contains.
The length of a positional substring cover is the sum of the lengths of its positional substrings.

π is a projection on tuples. π1(i, j, z) = i, π2(i, j, z) = j, and π3(i, j, z) = z.

2.1 PBWT

The algorithms described in this paper require a prebuilt positional Burrows-Wheeler transform.
The positional Burrows-Wheeler transform (PBWT) is a data structure that allows memory efficient
representation of a set of binary haplotypes of the same length [6]. The PBWT also allows time
efficient outputting of matches between haplotypes in the panel. Here we provide a brief description
of the PBWT and its algorithms.

The PBWT stores X, a set of M binary strings of length N . It also stores four arrays of size
roughly M by N . The first array is the positional prefix array, a. The positional prefix array has
size M×(N+1), it has N+1 columns of height M . Column i (a[i]) contains the strings in X sorted
by their reversed prefixes of length i. If two strings have the same reversed prefixes of length i,
their relative order is the same in a[i] and a[0]. a[i][0] contains the string with the lexicographically
smallest reversed prefix of length i and a[i][N − 1] contains the string with the lexicographically
largest reversed prefix of length i. The divergence array, d, is size M × (N + 1). d[i][j] contains
the starting position of the longest match between a[i][j] and a[i][j − 1] that ends at position i− 1
(inclusive). If no such match exists, d[i][j] = i. The last two arrays are the u and v arrays, each of
size M ×N . These arrays keep track of the position a[i][j] would have in a[i+ 1] if it had 0 and 1
at index i respectively. I.E. u[i][j] = the position in a[i+ 1] that a[i][j] would have if it had a 0 at
index i. v[i][j] = the position in a[i+ 1] that a[i][j] would have if it had a 1 at index i.
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In this paper, we will use a variation of the PBWT that allows an alphabet of arbitrary size.
The key difference is that instead of using the u and v arrays to keep track of next position, we
use a three dimensional array, w, of size M × N × |Σ|, where Σ is the alphabet. w[i][j][c] holds
the position a[i][j] would have in a[i + 1] if it had c at index i. This variation of the PBWT uses
O(MN |Σ|) space instead of the previous O(MN). However, the set maximal match query time
complexity remains the same as before (O(N + c) where c is the number of matches found). This
variation of the PBWT has been explored by Naseri et al. [10].

We use Durbin’s definitions of local and set maximal matches [6]. This description is from [13].
A match between two strings s and t, (i, j, s) = (i, j, t) is locally maximal if it can’t be extended
in any direction and still match. (s[i− 1] ̸= t[i− 1] or i = 0) and (s[j + 1] ̸= t[j + 1] or j = N − 1).
For a string s /∈ X, a match between s and x ∈ X ((i, j, s) = (i, j, x)) is set maximal from s to
X if there does not exist a match from s to a string in X that is larger and contains this match.
∀t ∈ X∀k ∈ {0, . . . , i}∀l ∈ {j, . . . ,M}, (k = i and l = j) or t[k, l] ̸= s[k, l].

2.2 Minimal Positional Substring Cover (MPSC)

Sanaullah et al. formulated the haplotype threading as the Minimal Positional Substring Cover
problem [13]. The Minimal Positional Substring Cover (MPSC) problem is, given a query string
z and set of strings X, find a positional substring cover of z by X with the smallest size of all
positional substring covers of z by X.

Sanaullah et al. provided an algorithm that outputted an MPSC of z by X in O(N) time given
a PBWT of X, where N is the length of z. They also provided algorithms for outputting leftmost,
rightmost, and set maximal match only MPSCs in O(N) time given a PBWT of X. Lastly, they
provided an algorithm that outputted an h-MPSC of z by X in O(h|C|+N) time, where C is the
outputted h-MPSC.

A leftmost MPSC of z by X is an MPSC where each i-th positional substring starts as early
as the i-th positional substring of every MPSC of z by X. Similarly, a rightmost MPSC of z by
X is an MPSC where every i-th positional substring ends as late as every i-th positional substring
in an MPSC of z by X. A set maximal match only MPSC of z by X is an MPSC of z by X such
that every positional substring it contains corresponds to a set maximal match from z to X. Lastly,
an h-MPSC of z by X is the smallest positional substring cover of z by X such that all of the
positional substrings it contains are contained in h strings in X. By the definitions on positional
substring covers, the size of an MPSC is the number of positional substrings it contains and the
length of an MPSC is the sum of the lengths of its positional substrings.

3 Methods

3.1 MPSC Solution Space

Although a minimal positional substring cover of a query haplotype z by a panel X is an inference
for haplotype threading, there may be many possible minimal positional substring covers of z by X.
The MPSC outputted may not be the most accurate haplotype threading. Therefore, we consider
the set of all possible MPSCs of z by X.

We begin the exploration of the solution space of minimal positional substring covers of z by
X by attempting to bound it. We already have two useful bounds that can be efficiently obtained,
namely the leftmost and rightmost MPSCs. The starting point of every i-th positional substring in
an MPSC of z by X must be at least π1(Cl[i]), the starting point of the i-th positional substring of
Cl, the leftmost MPSC. Likewise, the ending point of every i-th positional substring in an MPSC
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z 1 1 1 0 1 0 1 1 0 0 1 1 1 0 0

x0 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0
x1 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0
x2 1 0 1 0 1 0 0 1 0 0 0 1 1 0 0
x3 1 1 1 0 1 1 1 1 0 0 1 0 0 0 0
x4 0 1 0 1 0 0 0 0 1 1 0 1 0 0 1
x5 1 0 1 0 1 1 1 1 0 0 1 1 0 0 0

Required Regions

Leftmost MPSC

Rightmost MPSC

Fig. 1. Required regions for MPSC of z by X. The i-th required region is bounded by the i+ 1-th
positional substring in the Leftmost MPSC and the i− 1-th positional substring in the Rightmost
MPSC.

of z by X is at most π2(Cr[i]), the ending point of the i-th positional substring of Cr, the rightmost
MPSC. Sanauallah et al. proved the existence of leftmost and rightmost MPSCs for any z and X
where there exists an MPSC of z by X [13]. Formally, an MPSC Cl is leftmost if ∀D ∈ {MPSCs of z
by X},∀i ∈ {0, . . . , |Cl| − 1}, π1(Cl[i]) ≤ π1(D[i]). While an MPSC Cr is rightmost if ∀D ∈ {MPSCs
of z by X},∀i ∈ {0, . . . , |Cr| − 1}, π2(Cr[i]) ≥ π2(D[i]).

We have even tighter bounds of the solution space of MPSCs. Sanaullah et al. showed that if the
i-th positional substring in a leftmost MPSC of z by X begins at index j, every i− 1-th positional
substring in an MPSC of z by X contains the index j − 1 [13]. Here, we show a similar property
for rightmost MPSCs.

Claim 1. Every i + 1-th positional substring in any MPSC of z by X contains index π2(C[i]) + 1.
Where C is a rightmost MPSC of z by X.

Proof. Suppose there existed an i ∈ {0, . . . , |C| − 2} and D, MPSC of z by X, s.t. π2(C[i]) + 1 <
π1(D[i + 1]). Then, since D is a cover of z by X, it contains a positional substring that contains
index π1(C[i]) + 1, call it D[j]. If j < i + 1, then by definition of i-th positional substring, C is
not rightmost since π2(D[i]) > π2(C[i]). If j > i + 1, the definition of i-th positional substring is
contradicted since π1(D[j]) < π1(D[i+ 1]) and j > i+ 1. Therefore, no such i and D exist.

Suppose there existed an i ∈ {0, . . . , |C| − 2} and D, MPSC of z by X, s.t. π2(C[i]) + 1 >
π2(D[i+ 1]). Then, the set {D[j] : i+ 2 ≤ j < |C|} covers the indices [π2(D[i+ 1]) + 1, |z| − 1] with
|C| − i − 2 positional substrings and the set {C[j] : 0 ≤ j ≤ i} covers the indices [0, π2(D[i + 1])]
with i+ 1 positional substrings. Their union is a positional substring cover of z by X with |C| − 1
positional substrings. This contradicts the fact that C is an MPSC of z by X. Therefore, no such i
and D exist. ⊓⊔

For every i-th positional substring in a minimal positional substring cover of z by X, we now
have two positions that it is guaranteed to contain: π2(Cr[i − 1]) + 1 and π1(Cl[i + 1] − 1). Where
Cl is a leftmost MPSC of z by X and Cr is a rightmost MPSC of z by X. Furthermore, there are
MPSCs of z by X where the positions just after and before these positions are not contained in the
i-th positional substrings (rightmost and leftmost MPSCs of z by X with no overlap, respectively).
Therefore, we have the exact range of sites common to all i-th positional substrings in MPSCs
of z by X. Call it the i-th required region. The i-th required region is contained in every i-th
positional substring in an MPSC of z by X. The i-th required region is exactly the first site after
the i− 1-th positional substring in a rightmost MPSC to the last site before the i+1-th positional
substring in a leftmost MPSC. See Fig. 1 for a depiction of required regions and how they are
obtained. The i-th required region is defined and its properties proven in Lemma 1.

Lemma 1 (Required Regions). There exists a contiguous nonempty range of sites for every
i ∈ {0, . . . , |C| − 1}, such that C[i] contains this range of sites for all MPSCs C of z by X. Call the
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largest such range the i-th required region. For i ∈ {1, . . . , |C| − 2}, this range is [π2(Cr[i − 1]) +
1, π1(Cl[i+1])− 1], where Cr and Cl are rightmost and leftmost MPSCs of z by X respectively. The
required region for C[0] is [0, π1(Cl[1])− 1], and for C[|C| − 1], [π2(Cr[|C| − 2]), |z| − 1].

Proof. By Claim 1, every i-th substring must contain index π2(Cr[i−1])+1 for i ∈ {1, . . . , |C|−1}.
The 0-th substring must contain index 0 by definition of MPSC and i-th substring (every site is
covered and C[0] has the smallest starting point of all positional substrings in C). Therefore, the
required region exists and is nonempty for all i.

In their Claim 5, Sanaullah et al. showed that every i-th substring must contain index π1(Cl[i+
1]) − 1 for i ∈ {0, . . . , |C| − 2} [13]. Furthermore, the |C| − 1-th positional substring must contain
index |z| − 1 by definition of MPSC and i-th substring (every site is covered and C[|C| − 1] has the
largest ending point of all positional substrings in C).

Positional substrings cover a contiguous range of sites. Therefore the i-th required regions for
i ∈ {1, . . . , |C| − 2} contains indices [π2(Cr[i − 1]) + 1, π1(Cl[i + 1]) − 1]. C[0] and C[|C| − 1] must
contain indices 0 and |z| − 1 respectively by definition of MPSC and i-th positional substring.

Lastly, these ranges are the complete required regions. For i ∈ {1, . . . , |C| − 1}, there exists an
MPSC in which the i-th positional substring doesn’t contain index π2(Cr[i−1]), namely a rightmost
MPSC with its i-th positional substring trimmed to only include sites not covered by its i − 1-th
substring. For i ∈ {0, . . . , |C| − 2}, there exists an MPSC in which the i-th positional substring
doesn’t contain π1(Cl[i+1]), namely a leftmost MPSC with its i-th positional substring trimmed to
only include sites not covered by its i+ 1-th substring. Finally, −1 is not part of the 0-th required
region and |z| is not part of the |C|−1-th required region because it is impossible for either of these
indices to be contained in an MPSC of z by X. ⊓⊔

MPSC Graph. We attempt to represent the solution space of MPSCs as a graph. Positional
substrings are vertices in the graph and edges occur between positional substrings that are adjacent
or overlapping. Consider the naive graph G = (V,E) where the set of nodes V is the set of positional
substrings that are contained in both z and X with z as the source string. I.E. v = (i, j, z) ∈ V ⇐⇒
(i, j, z) is present in z and x ∈ X. There is an edge between two positional substrings u and v if
u starts before v and u and v are adjacent or overlapping (π1(u) ≤ π1(v) and π2(u) ≥ π1(v) − 1).
In this graph, all shortest paths from (−1, 0, z) to (N − 1, N, z) correspond to minimal positional
substring covers of z by X. Furthermore, all minimal positional substring covers are represented by
a shortest path from (−1, 0, z) to (N−1, N, z). However, there are possibly O(N2) nodes and O(N4)
edges in this graph, so a shortest path finding algorithm would run in O(N4) time. Therefore, we
attempt to simplify the graph. We begin with the following observations.

Claim 2. Every non-empty positional substring m = (i, j, z) contained in z and a string in X is
contained in a set maximal match from z to X.

Proof. If m is a set maximal match, it is contained in a set maximal match (itself). If m is not a
set maximal match, then there exists a larger match, n, between z and s ∈ X that contains m.
If n is set maximal, we are done, otherwise, there exists a match larger than n that contains it
(and therefore m). We can repeat this logic until a set maximal match containing m is found. This
process is guaranteed to stop because there are a finite amount of matches from z to X (since z
and X are finite) and each match is considered at most once. ⊓⊔

Claim 3. For any two set maximal matches from z to X, m = (i, j, s) and n = (k, l, t), i = k ⇐⇒
j = l.
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z 0 1 1 1 0 1 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

x0 0 0 1 0 1 0 1 1 1 0 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0
x1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0
x2 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 1 1 0 1 1 1 1 0 1 1
x3 0 0 0 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 0 1
x4 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
x5 1 1 1 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 1 0 1 0 1
x6 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 1 1 0 1
x7 0 0 1 0 1 1 0 0 0 0 1 1 0 0 0 1 0 1 0 1 1 1 0 1 1
x8 0 1 1 0 0 1 0 1 1 1 1 0 0 0 0 0 1 0 0 1 1 0 0 0 1
x9 0 1 1 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 1 0 0 1 0

(0, 2, x9)

(1, 4, x5)

(3, 6, x6)

(4, 8, x8)

(6, 9, x2)

(7, 11, x0)

(9, 14, x4)

(10, 15, x6)

(11, 17, x2)

(15, 19, x3)

(17, 22, x1)

(20, 24, x0)

Required Regions Set Maximal Matches Length Maximal MPSC

Fig. 2. Constructed MPSC graph of z by X. In gray are the required regions for z and X. High-
lighted in blue are the set maximal matches from z to X. Highlighted in red is the Length Maximal
MPSC of z by X.

Proof. For two set maximal matches with the same starting position, if they have different ending
positions, the smaller one is contained in the larger one and is not a set maximal match. Similarly,
for two set maximal matches with the same ending position, if the have different starting positions,
the smaller one is contained in the larger one and is not set maximal. Therefore, two set maximal
matches have the same starting position if and only if they have the same ending position. ⊓⊔

Therefore, we consider a graph where the set of nodes is the set of set maximal match positions
from z to X. Every possible non-empty match is contained in at least one of these nodes. There is an
edge between nodes u and v with the same conditions as before: π1(u) ≤ π2(v) and π2(u) ≥ π1(v)−1.
Call the node with index 0 the source node, s. Call the node with index N−1 the sink node, t. s and
t are unique by Claim 3. There is a one-to-one correspondence between shortest paths from s to t
in this graph and minimal positional substring covers of z by X composed of set maximal matches.
Furthermore, there is a one-to-one correspondence between shortest paths in the graph from s to
t and MPSCs of z by X. The i-th positional substring in the MPSC is contained in the i-th node
in the path it maps to. By Claim 3, the number of nodes in this graph is O(S) ⊆ O(N). However,
the number of edges in this graph may be O(S2), therefore a shortest path finding algorithm on
this graph would still take O(S2) ⊆ O(N2) time. We simplify the graph of the solution space again,
this time considering the i-th required regions.

We will construct a graph where the set of nodes is the set of set maximal match positions from
z to X. However, we will also consider the information gained from the i-th required regions. For
two nodes u, v, there is an edge from u to v in the graph if the previous requirements are fulfilled,
u contains the complete i-th required region, and v contains the complete i+ 1-th required region.
The following property is useful in this construction.

Claim 4. For every positional substring that is contained in z and a string in X, if it contains a
full required region, it doesn’t contains sites from any other required region.

Proof. If there existed a positional substring m that fully contains i-th required region and a site
from another required region, then m must contain sites from either the i − 1-th or the i + 1-th
required region. If it contains sites from the i− 1-th required region, we can show that these sites
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do not belong in the i − 1-th required region by replacing Cl[i] with m and removing any overlap
of Cl[i− 1] and Cl[i] from Cl[i− 1] (for leftmost MPSC of z by X, Cl).

Similarly, if m contains sites from the i + 1-th required region, we can show that they are
not required by replacing Cr[i] with m and removing any overlap between Cr[i] and Cr[i + 1] from
Cr[i+1] (for rightmost MPSC of z by X, Cr). These are contradictions, therefore no such positional
substring m exists. ⊓⊔

If u contains the i-th required region and v contains the i+ 1-th required region, then u starts
before v. Therefore, there is an edge from u to v in this graph iff u contains the i-th required region,
v contains the i + 1-th required region, and u and v are adjacent or overlapping. See Fig. 2 for a
depiction of this graph for z and X. All paths from s to t in this graph correspond to a MPSC
of z by X composed of only set maximal matches. Furthermore, all MPSCs of z by X correspond
to a path from s to t in the graph where the i-th positional substring is contained in the i-th set
maximal match position in the path.

This graph can be constructed very efficiently. As before, there are O(S) ⊆ O(N) nodes in the
graph. These nodes can be found in O(N) time. All i-th required regions can be obtained in O(N)
time. This is done by first calculating a leftmost MPSC and a rightmost MPSC of z by X in O(N)
time[13]. Then, each i-th required region can be obtained in constant time by Lemma 1. The set
maximal match positions can be obtained in O(N) time [14]. The last step is the creation of the
edges between nodes. Although there may be O(S2) ⊆ O(N2) edges in this graph, we avoid the
explicit construction of all of them by exploiting the following property. Call Ri the set of nodes
that contained the i-th required region. Call Ri[j] the node in Ri with the j-th smallest starting
position, j ∈ {0, . . . , |Ri| − 1}. Then,

Lemma 2. The set of nodes Ri[j] has an edge to is a subset of the set of nodes Ri[j + 1] has an
edge to.

Proof. All of the nodes Ri[j] has an edge to are in Ri+1. The set maximal match of every node in
Ri+1 starts after the i-th required region by Claim 4. Ri[j] ends before Ri[j + 1], and both start
at or before the start of the i-th required region. Therefore, every set maximal match in Ri+1 that
overlaps or is directly after Ri[j] overlaps Ri[j + 1]. Therefore, the set of nodes Ri[j] has an edge
to is a subset of the set of nodes Ri[j + 1] has an edge to. ⊓⊔

Therefore, during the construction of our graph, we don’t directly construct all O(N2) edges. For
every node Ri[j+1], we only construct edges to nodes that Ri[j] does not have an edge to. Although,
there may be O(N2) edges in the complete graph, we fully encode them with O(S) ⊆ O(N) edges.
With these edges in place and the property in Lemma 2 in mind, we have constructed a graph that
fully describes the solution space of MPSCs of z by X in O(N) time. The combination of this graph
and the PBWT supports many efficient queries through the exploitation of Lemma 2. This includes
the counting of the number of set maximal match only MPSCs of z byX, the counting of the number
of MPSCs a positional substring is an element of, and the counting of Length Maximal MPSCs, all
in O(N) time. Furthermore, each of these sets of MPSCs can be enumerated in O(N + Sc) time,
where Sc is the number of MPSCs outputted. These problems are very useful for the efficient and
accurate imputation and phasing of haplotypes.

3.2 Length Maximal MPSC

The Length Maximal Minimal Positional Substring Cover problem is, given a set X of M strings
of and a string z, find a MPSC of z by X that has the largest length out of all MPSCs of z by X.
Note that by Claim 2 of [13], the length of any MPSC of z by X is less than or equal to 2N .
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Fig. 3. Obtaining the longest paths of the set maximal matches in Ri from the longest paths of
the set maximal matches in Ri+1 in O(|Ri|+ |Ri+1|) time. Subgraph of Fig. 2, i = 2.

Lemma 3. Every positional substring in any Length Maximal MPSC of z by X is a set maximal
match from z to X.

Proof. Suppose there existed a length maximal MPSC of z by X, C, that contained a positional
substring that is not a set maximal match. Then, replacing it with a positional substring that is a
set maximal match that contains it yields another MPSC C′ with a larger length. Such a positional
substring always exists by Claim 2. C′ is an MPSC because it covers all the sites C covered and
has the same size. Its length is larger because the only difference between C and C′ is a positional
substring in C was replaced by a larger one C. This contradicts the fact C is a length maximal MPSC
of z by X. Therefore, every length maximal MPSC of z by X is composed of only set maximal
matches. ⊓⊔

Considering Lemma 3, we begin with the MPSC graph in Fig. 2 and modify it in the following
fashion. For every edge (u, v), we assign it a weight of the length of u. In this directed acyclic graph,
every directed path from s to t still corresponds to a MPSC of z by X composed of only set maximal
matches. As before, every MPSC of z by X composed of only set maximal matches corresponds
to a directed path in the graph from s to t, there is a one-to-one correspondence. Therefore, the
length maximal MPSC of z by X corresponds to a path in the graph by Lemma 3. In fact, there
is a one-to-one correspondence between longest directed paths in the graph from s to t and Length
Maximal MPSCs of z by X (where the length of a path is the sum of the weights of its edges).

Therefore, we can obtain a Length Maximal MPSC by constructing this graph and finding a
longest path in it from s to t. This is easy given a PBWT of X. We begin by finding leftmost and
rightmost MPSCs of z by X. This can be done in O(N) given a PBWT of X (where N is |z|). This
was shown by Sanaullah et al. [13]. We can then obtain all required regions in O(|C|) time, where
|C| is the size of an MPSC of z by X. The calculation of each required region takes constant time.
They can be calculated simply using the leftmost and rightmost MPSCs and Lemma 1. Next, we
output all set maximal match positions and one string in X that each contains each set maximal
match in O(N) time. This can be done with a simple modification of the set maximal match
query algorithm by Sanaullah et al. [14]. We maintain the sorted order of the set maximal match
positions provided by the query algorithm. Lastly, we keep track of which set maximal matches
contain which complete required regions. This can be done in a simple sweeping fashion in O(S)
time due to Claim 4. So far, the algorithm has taken O(N) time.

We now have all the required information to build the graph. We create the nodes of the graph
in O(S) time where S is the number of set maximal match positions, S ≤ N . We create the edges
leaving s and entering t in O(S) time. Lastly, for every set maximal match position, if it fully
contains a required region, we create an edge from it to nodes whose positional substrings fully
contain the next required region and are adjacent or overlapping. This last step of construction of
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Fig. 4. Frequency within self reported ethnic background of # of segments in haplotype threading
of haplotypes in UK Biobank. Haplotype threading is generated with reference panel as the rest
of the UK Biobank. Frequency is plotted by self reported ethnic background for the four most
common in the UK Biobank: British, Irish, Indian, and Caribbean, with 860,584, 25,436, 11,320,
and 8,598 haplotypes respectively.

the graph takes O(S2) ⊆ O(N2) time. We can find the longest path in this directed acylic graph
in O(V + E) = O(S + E) ⊆ O(S2) ⊆ O(N2) time. This can be done using a shortest path finding
algorithm on the graph with the weights negated. The overall time complexity for this method of
outputting a length maximal MPSC is O(N + S2). However, we have yet to exploit the property
of the graph shown in Lemma 2.

We will now show that the longest path in the graph can be obtained in time linear to the
number of nodes in the graph, O(S) through the exploitation of Lemma 2. Therefore, a Length
Maximal MPSC of z by X can be outputted in O(N) time. Call the set of set maximal match
positions (or the corresponding nodes) containing the i-th required region Ri. The key idea is the
following. Given the longest paths from all nodes in Ri+1 to t, the longest paths from all nodes
in Ri to t can be obtained in O(|Ri+1| + |Ri|) time. This is despite the fact that there may be
|Ri+1| × |Ri| edges between these nodes. We denote the set maximal match of Ri with the j-th
smallest starting position as Ri[j]. I.E. Ri[0] is the set maximal match in Ri with the smallest
starting position, Ri[1] has the next smallest starting position, etc. The calculation of the longest
paths from Ri to t in linear time depends on Lemma 2. The set of nodes Ri[j] has an edge to is
a subset of the set of nodes Ri[j + 1] has an edge to. Given this property, we can calculate the
longest paths in a straightforward fashion that evaluates the longest path from each node in Ri+1

to t at most once. This is done by calculating longest paths of nodes in order of starting position of
the corresponding set maximal match, least to greatest. See Fig. 3 for a depiction of this process.
Pseudocode of this process is provided in Algorithm 8 in Appendix A.

After the lengths of the longest paths from each node to t is calculated, the longest path from
s to t can be calculated in a simple linear backtracking step. Start with s. For each i-th required
region for i = 1 → |C| − 1, take the first node with length of longest path to t equal to the length
of the longest path to t of the i − 1-th node in the path so far minus the length of the substring
of the i− 1-th node in the path so far. See Algorithm 6 in Appendix A for the pseudocode of this
process. With this process for outputting the longest path in the graph from s to t in O(S) time, we
can find the longest path in the graph without explicitly constructing the graph. Therefore, given
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Fig. 5. Frequency by panel size of # of segments in British only haplotype threading of haplotypes
in UK Biobank. Haplotype threading is generated with reference panel random subset of the British
only haplotypes in the UK Biobank. Plotted by panel size forM ∈ {1,000, 10,000, 100,000, 860,022}.
Note that frequencies exclude haplotypes for which no threading was found.

a PBWT of X, we output a length maximal minimal positional substring cover of z by X in O(N)
time. The pseudocode of this algorithm can be seen in Algorithm 1 in Appendix A.

3.3 h-MPSC

An h-MPSC of a query string z by a set of strings X is a smallest set of positional substrings that
forms a positional substring cover of z by X and are each contained in at least h strings in X. An
MPSC of z by X is an h-MPSC of z by X where h = 1. Sanaullah et al. provided an algorithm for
outputting an h-MPSC, C, of z by X in O(h|C| + N) time given a PBWT of X [13]. We suspect
their algorithm outputs a “leftmost” h-MPSC. Here we describe an algorithm that improves on the
previous h-MPSC algorithm running time. It outputs an h-MPSC of z by X in O(N) time. We
believe the h-MPSC it outputs is “rightmost”.

The original h-MPSC algorithm traversed the PBWT from index N to 0. Here, we traverse in
the opposite direction, from 0 to N . We begin at index 0 and keep track of the block of strings
that match with z on the range [i, j). The block is denoted by [f, g) where f is the first string in
the block in the prefix sorting and g is the first string not in the block after f . If f = g, the block
is empty. At site 0, f and g are initialized to f = 0, g = M . i and j are initialized to 0. The f and
g blocks are updated in constant time per site using the w array between sites. Once the block at
site j+1 has less than h strings, the positional substring of the previous block (i, j− 1, z) is added
to the h-MPSC. This is repeated until all sites are covered by a positional substring contained in
h strings in X. This algorithm runs in O(N) time because the is traversed from index 0 to N and
each site takes constant time to update the f and g block. Furthermore, the addition of a positional
substring to the h-MPSC can happen at most once per site and takes constant time. A proof that
the positional substring cover is an h-MPSC can be seen through a fairly simple modification of
Lemma 2 in [13]. The pseudocode of this algorithm can be seen in Algorithm 9 in Appendix B.
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Fig. 6. The number of Set Maximal Match only MPSCs per haplotype in British only UK Biobank
panel in ascending order.

4 Results

4.1 Haplotype Threading Properties

We explored the properties of haplotype threadings of the MPSC formulation. The dataset used
was the UK Biobank (UKB) [3]. The UKB has 974,818 haplotypes and around 700,000 sites (mi-
croarray). We used chromosome 21, which has 9,793 sites. For each haplotype in the UKB, we
run our method to identify an MPSC of it using all other haplotypes in the UKB as the reference
panel. We also evaluate a rudimentary method of handling mismatches in the MPSC formulation of
haplotype threading by using P-smoother [15]. P-smoother is a method for smoothing out sporadic
mismatches in otherwise well-matched PBWT blocks, to attempt to remove very rare mutations
and genotyping errors from the British only UKB panel. P-smoother was run on the default settings
and flipped the alleles of roughly 1.4% of the data. The smoothed panel is expected to tolerate mis-
matches, resulting in longer match segments, and smaller MPSC sizes. The benchmarking source
code is available at genome.ucf.edu/MPSC for all benchmarks.

We found that the MPSC segment count of an individual has an overall distribution due to the
fact that not every one’s relatives are sampled evenly. However, the mode of MPSC segment count
is inversely correlated with the number of templates with closely related ethnic background (Fig. 4).
This behavior is even more clear when we run the experiment with varied sample sizes (Fig. 5).
We plot the number of segments in each haplotype threading by self reported ethnic background
in Fig. 4. The x-axis is the number of segments in the haplotype threading and the y-axis is
the frequency of that number within each self reported ethnic background. The plotted ethnic
backgrounds are the 4 most commonly reported ethnic backgrounds in the UKB: British, Irish,
Indian, and Caribbean (860,584, 25,436, 11,320, and 8,598 haplotypes respectively). A haplotype
is classified as one of these ethnic backgrounds if it was the first ethnic background the individual
who owns the haplotype reported themselves as. We also plot MPSC size distributions for random
subsets of the UKB of varying sizes. No threading was found for (7.3%, 0.32%, 0.003%, and 0%)
of the haplotypes for M=(1,000, 10,000, 100,000, and 860,022) respectively. M = 10 and 100 were
also tried, but no haplotype threadings were found in either panel. These haplotypes are left out
of the frequency calculation.

A more interesting property we consider is the MPSC solution space. This is the number of
possible coverings of the query with equally small number of switches, which would be all considered
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Fig. 7. The distributions of lengths of Length Maximal MPSCs for all British only haplotypes in
the UKB. Length is represented as a ratio of genome length. The min ratio of an MPSC is 1 and
the max ratio is 2. The min and max ratios observed are 1 and 1.974.

a Viterbi solution for the LS model. We plot the count of Set Maximal Match only MPSCs for each
haplotype in the British only UKB dataset (860,022 haplotypes) in Fig. 6 in ascending order. The
median solution space size was 120. The 90th and 99th percentile solution space sizes were 72,756
and 3.4×109 respectively. As expected, the median solution space size of the P-smoothed panel was
40. The fact that the number of solutions in MPSC solution space is surprisingly small validated
that UKB belongs to the regime where MPSC could be a much more efficient alternative for the
fully-parameterized Li & Stephens model.

The last property of the MPSC formulation of haplotype threading we explore is the distribu-
tions of lengths of the Length Maximal MPSCs. Note this length l is N ≤ l ≤ 2N , and thus the size
of the overlap region, l − N or l−N

N , provides one way of quantifying the potential computations
(much more than a linear factor!) saved by MPSC compared to enumerating solutions of stan-
dard LS. We plot this length distribution of Length Maximal MPSCs for British only haplotypes
in Fig. 7. P-smoother results in a smaller Length Maximal MPSC length. The length maximal
MPSC provides about at average 1.21X (1.20X after smoothing) coverage of the chromosome, in-
dicating about 20% of the genome belongs to the overlap regions of Length Maximal MPSC where
location of recombination breakpoints cannot be unequivocally determined.

4.2 Run Time

We measure the run time of obtaining the Length Maximal MPSC for various M and N . Note that
the run time of obtaining a Length Maximal MPSC is strictly larger than the run time of obtaining
an MPSC, a Leftmost MPSC, a Rightmost MPSC, and a Set Maximal Match only MPSC. This is
because the first three algorithms are subroutines of the Length Maximal MPSC algorithm. The
run time of obtaining a Length Maximal MPSC is strictly larger than the run time of obtaining a
Set Maximal Match only MPSC because a Length Maximal MPSC is a Set Maximal Match only
MPSC. The results of these tests can be seen in Fig. 8.

4.3 Imputation Benchmark

We implemented an imputation benchmark to demonstrate the usefulness of the MPSC formulation
of haplotype threading. The imputation algorithm is naive outside of the haplotype threading: Given
a haplotype threading of the haplotype to be imputed at a site, obtain the positional substrings
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Fig. 8. Run time vs varying M and N . Average run time for the Length Maximal MPSC compu-
tation of 1,000 random haplotypes in the UKB British only dataset for varying number of sites,
N ∈ {1,000, 2,000, 3,000, 4,000, 5,000, 6,000, 7,000, 8,000, 9,000, and 9,793}, is on the left. On
the right, average run time for the Length Maximal MPSC computation of 1,000 random haplo-
types in the UKB British only dataset for varying number of haplotypes in the reference panel,
M ∈ {100,000, 200,000, 300,000, 400,000, 500,000, 600,000, 700,00, 800,000, 900,000, and 973,818},
is plotted.

adjacent to it in the haplotype threading. For every haplotype that contains one of these positional
substrings, vote once per positional substring it contains towards the allele this haplotype has at
the site to be imputed. Impute an allele if the votes are unanimous. We also evaluate the use of
a P-smoothed panel. In this method, the haplotype threading is generated using the P-smoothed
panel and query haplotype. Votes are counted for haplotypes who have the positional substring in
the P-smoothed panel. However, allele votes are counted using the original panel.

This imputation method generalizes to all of the variations of MPSC haplotype threading,
therefore we test it on many of the MPSC variations, including Length Maximal MPSC, voting by
Set Maximal MPSC Solution Space, and the h-MPSC with various choices of h. The imputation
benchmark was performed in the following fashion: Select 1,000 random haplotypes from the UKB
British only dataset (chromosome 21). Remove a random 8,814 sites (90%) from these haplotypes.
Impute these haplotypes using the rest of the UKB British only haplotypes (M = 859,022) as the
reference panel using the above-mentioned MPSC-based imputation methods and Beagle (version
5.4), a state of the art imputation method [2].

As shown in Table 2, all tested MPSC-based imputation methods have an imputation accuracy
comparable to Beagle. Interestingly, while MPSC-based methods do not cover all sites, the sites they
covered are mostly “easier” sites as Beagle also have higher accuracies on those sites than the average
of all sites. Over the covered sites, MSPC-based methods have roughly same accuracies compared
to Beagle. Importantly, for a few cases, MPSC-based methods outperform Beagle, especially for
Set Maximal MPSC Solution Space (SM MPSC SS), where MPSC methods beat Beagle in both
based on the original panel and the P-smoothed panel. This is useful because one can immediately
improve the current Beagle results by repainting the Beagle imputation results with MPSC results
where MPSC methods cover. Our results also offer a way of studying behaviors of Li & Stephens-
based methods. It seems when we increase the h in h-MPSC, the coverage of MPSC is gravitated
towards “easier” regions where both Beagle and MPSC methods have high accuracy. Thus MPSC’s
h offers a measure of imputation confidence. Finally, the P-smoothed panel increases the power and
accuracy of every MPSC threading imputation method.
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Table 2. Imputation performance in percentages on a random 1,000 British only UKB haplotypes

Method
Original Panel P-smoothed Panel

Accuracy Accuracy
Beagle MPSC Sites Imputed Beagle MPSC Sites Imputed

Beagle 5.4 97.94 100.00

LM MPSC 98.45 98.43 97.15 98.43 98.46 97.23
SM MPSC SS 99.10 99.19 88.20 99.05 99.21 88.22

2-MPSC 98.70 98.32 93.14 98.67 98.36 93.32
3-MPSC 98.89 98.62 90.21 98.87 98.66 90.33
4-MPSC 99.00 98.79 87.81 98.99 98.84 87.92
5-MPSC 99.12 98.96 85.71 99.10 98.99 85.86
8-MPSC 99.30 99.20 80.45 99.27 99.21 80.69

16-MPSC 99.52 99.50 71.68 99.49 99.50 72.01

Reference panel is the rest of the UKB British only haplotypes. Imputed haplotypes have a random 90% of their sites
missing. For each MPSC imputation method, its accuracy and Beagle’s accuracy on the imputed sites are shown. LM
MPSC stands for Length Maximal MPSC and SM MPSC SS stands for Set Maximal MPSC Solution Space. MPSC
imputation methods that have higher accuracy than Beagle on imputed sites are in bold.

5 Conclusion and Discussion

In this paper, we have advanced the MPSC formulation of haplotype threading. We introduced
the MPSC graph, a method of representing the solution space of MPSC haplotype threadings of a
haplotype that allows many efficient algorithms. These include the enumeration of all MPSCs, Set
Maximal Match only MPSCs in optimal time. It also allows the counting of the number of MPSCs
a particular positional substring is part of in O(N) time. Furthermore, we introduced a new MPSC
formulation, the Length Maximal MPSC, that maximizes the sum of the lengths of the segments
of the haplotype threading over all MPSC haplotype threadings. We provided an algorithm that
outputs a Length Maximal MPSC of z by a reference panel X in O(N) time given a PBWT of X,
linear to the number of sites and independent to the number of haplotypes in the panel. We also
provided an improved algorithm for the h-MPSC problem, where each segment in the threading
must be contained in h haplotypes in the reference panel.

Beyond algorithmic contributions, our algorithmic developments established the theoretical ba-
sis for linking PBWT and LS-style haplotype threading. When using these algorithms for analyzing
properties of MPSC haplotype threadings for the UK Biobank dataset, we demonstrate the use-
fulness of the MPSC haplotype threadings through an imputation benchmark. We showed that,
while the simple MPSC-based imputation does not impute all sites, when it does, the accuracy may
be higher than the state-of-the-art imputation method Beagle. Especially, the variations of MPSC
algorithms that offer Solution Space, Length Maximal, and high h (16) h-MPSC can outperform
Beagle. In addition, our imputation results verified that P-smoother can be leveraged to soften
the mismatch-intolerant MPSC solutions and makes MPSC more robust to real data. We believe
further developments based on our sets of algorithms will empower practical applications based on
LS such as phasing and imputation.
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Appendices

A Length Maximal MPSC Algorithm

Two versions of the LongestPaths subroutine are provided. The LongestPaths subroutine calculates
the length of the longest path from each node to t in the graph. There is an in-place and out-of-place
version of the subroutine. The out-of-place version is provided because it is easier to understand.
Both versions have time complexity O(S) ⊆ O(N).

Algorithm 1: Output a Length Maximal MPSC of z by X given a PBWT of X

t, dmin = VirtualInsert(z, PBWT);
Cl = LeftmostMPSC(dmin, z);
if |Cl| = 0 then

output “No MPSC exists”;
return;

Cr = RightmostMPSC(dmin, z);
S = SetMaximalMatchPositions(dmin, z);
L = LongestPaths(S, Cl, Cr);
C = Backtracking(L, S);
return C;

Algorithm 2: VirtualInsert: Calculate Prefix and Divergence values of query z in a PBWT

t[0] = 0;
for j = 0 → N − 1 do

if t[j] ̸= M then
t[j + 1] = w[t[j]][j][z[j]];

else
t[j + 1] = w[M − 1][j][z[j]];
if z[j] = xa[M−1][j][j] then

t[j + 1] + +;

dz[N + 1] = db[N + 1] = dmin[N + 1] = N ;
for j = N → 0 do

dz[j] = min(dz[j + 1], j);
db[j] = min(db[j + 1], j);
if t[j] ̸= 0 then

while dz[j] > 0 and z[dz[j]− 1] = xa[t[j]−1][j][dz[j]− 1] do

dz[j]−−;

if t[j] ̸= M then
while db[j] > 0 and z[db[j]− 1] = xa[t[j]][j][db[j]− 1] do

db[j]−−;

dmin[j] = min(dz[j], db[j]);

return t, dmin;
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Algorithm 3: LeftmostMPSC: Output Leftmost MPSC of z by X

k = dmin[N ];
kold = N ;
while k ̸= kold do

Cl.enqueue((k, kold − 1, z));
kold = k;
k = dmin[k];

if k ̸= 0 then
return ∅;

return Cl;

Algorithm 4: RightmostMPSC: Output Rightmost MPSC of z by X

// Assumes a positional substring cover of z by X exists

j = N ;
k = N ;
while j > 0 do

while dmin[k] < j do
j −−;
b[j] = k − 1;

k −−;

i = 0;
while i ̸= N do

Cr.push back((i, b[i], z));
i = b[i] + 1;

return Cr;

Algorithm 5: SetMaximalMatchPositions: Output positions of set maximal matches from
z to X

// Assumes a positional substring cover of z by X exists

for i = 0 → N − 1 do
if dmin[i] < dmin[i+ 1] then

S.push back((dmin[i], i− 1, z));

return S;

Algorithm 6: Backtracking: Output Length Maximal MPSC by backtracking through
graph

// Assumes a positional substring cover of z by X exists

C = {S[0]};
l = L[0];
s = |S[0]|;
for i = 1 → |S| − 1 do

if L[i] = l − s then
C = C ∪ S[i];
l = L[i];
s = |S[i]|;

return C;
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Algorithm 7: LongestPaths: Calculate length of Longest Path from every node (out-of-
place)

// Assumes a positional substring cover of z by X exists and |Cl| > 1
R0[0] = 0;
R|Cl|−1[0] = |S| − 1;

j = 1;
for i = |Cl| − 2 → 1 do

reqReg = (π2(Cr[i− 1]) + 1, π1(Cl[i+ 1]− 1, z);
while π2(S[j]) < π2(reqReg) do

j ++;
while π1(S[j] ≤ π1(reqReg) do

Ri.push back(j);
j ++;

for i = |Cl| − 2 → 1 do
L[Ri[0]] = |S[Ri[0]]|+ L[Ri+1[0]];
l = 0;
while l + 1 < |Ri+1| and π2(S[Ri[0]]) ≥ π1(S[Ri+1[l + 1]])− 1 do

L[Ri[0]] = max(L[Ri[0]], L[Ri+1[l + 1]] + |S[Ri[0]]|);
l ++;

for k = 1 → |Ri| − 1 do
L[Ri[k]] = L[Ri[k − 1]]− |S[Ri[k − 1]]|+ |S[Ri[k]]|;
while l + 1 < |Ri+1| and π2(S[Ri[k]]) ≥ π1(S[Ri+1[l + 1]])− 1 do

L[Ri[k]] = max(L[Ri[k]], L[Ri+1[l + 1]] + |S[Ri[k]]|);
l ++;

return L;
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Algorithm 8: LongestPaths: Calculate length of Longest Path from every node (in-place)

// Assumes a positional substring cover of z by X exists and |Cl| > 1
jold = kold = |S| − 1;
L[jold] = |S[jold]|;
for i = |Cl| − 2 → 1 do

reqReg = (π2(Cr[i− 1]) + 1, π1(Cl[i+ 1]− 1, z);
k = jold − 1;
while π1(S[k]) > π1(reqReg) do

L[k] = −1;
k −−;

j = k;
while π2(S[j − 1]) ≥ π2(reqReg) do

j −−;
jnext = j;
L[j] = |S[j]|+ L[jold];
jold ++;
while jold ≤ kold and π2(S[k]) ≥ π1(S[jold])− 1 do

L[j] = max(L[j], |S[j]|+ L[jold]);
jold ++;

j ++;
while j ≤ k do

L[j] = L[j − 1]− |S[j − 1]|+ |S[j]|;
while jold ≤ kold and π2(S[j]) ≥ π1(S[jold])− 1 do

L[j] = max(L[j], |S[j]|+ L[jold]);
jold ++;

j ++;

jold = jnext;
kold = k;

L[0] = |S[0]|+ L[jold];
jold ++;
while jold ≤ kold and π2(S[0]) ≥ π1(S[jold])− 1 do

L[0] = max(L[0], |S[0]|+ L[jold]);
jold ++;

return L;
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B h-MPSC

Algorithm 9: h-MPSC: Output h-MPSC of z by X in O(N) time

i = f = 0;
g = M ;
C = ∅;
for j = 0 → N do

if j = N then
f ′ = g′ = 0;

else
if f ̸= M then

f ′ = w[f ][j][z[j]];
else

f ′ = w[M − 1][j][z[j]];
if z[j] = xa[M−1][j][j] then

f ′ ++;

if g ̸= M then
g′ = w[g][j][z[j]];

else
g′ = w[M − 1][j][z[j]];
if z[j] = xa[M−1][j][j] then

g′ ++;

if f ′ − g′ < h then
if i = j then

output “No h-MPSC of z by X exists”;
return ∅;

C = C ∪ {(i, j − 1, z)};
i = j;
if j ̸= N then

j −− ; // to repeat current value of j in loop

f = 0;
g = M ;

else
f = f ′;
g = g′;

return C;

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 6, 2023. ; https://doi.org/10.1101/2023.01.04.522803doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.04.522803
http://creativecommons.org/licenses/by-nc-nd/4.0/

