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Abstract 

Candida albicans is a common cause of opportunistic mycoses worldwide and a major contributor in wound infec-
tions. The purpose of this study was to establish a fungal wound model and analyze the effects of a common antifun-
gal agent against the proliferation of three C. albicans strains. Second degree burns were created, and then inoculated 
with one of three different C. albicans ATCC strains: 10261 reference strain, 64550 fluconazole resistant and 26310 
fluconazole sensitive. After fungal inoculation, every wound was covered with dressings for 4 h to allow fungal coloni-
zation on every wound bed. After 4 h, the dressings were removed, and each wound was treated either once or twice 
daily with a topical terbinafine hydrochloride or left untreated. On days 2, 4 and 7 post inoculation, three wounds 
from each treatment group were scrub cultured and quantified. On day 2, wounds infected with the sensitive strains 
26310 and 10261 and treated twice showed a significant reduction when compared against those infected wounds 
receiving once daily treatment. On day 4, wounds which were infected with C. albicans fluconazole sensitive (ATCC 
26310) showed a significant reduction in fungal cell counts with treatment applied twice daily. A significant reduction 
in the colony counts was exhibited in all three strains at the seventh day with active as compared to the non-treated 
wounds. Twice daily treatment resulted in a lower fungal count than once daily treatment. Neither treatment was able 
to entirely eradicate C. albicans during the duration of this study. Establishing a reliable fungal wound model will help 
in the translational goal of identifying new antifungal that could be used clinically by wound care providers.
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Introduction
Superficial fungal infections, such as dermatophytosis, 
onychomycosis and superficial Candida infections, are 
common and can be caused by a wide range of fungi 
[1]. Fungal infections are a common cause of morbidity, 
mortality, and cost in critical care populations, includ-
ing burns [1–5]. Also fungus infection as Candidiasis has 
been found in chronic and surgical wounds [6, 7].

C. albicans is a normal component of the gastroin-
testinal tract, the oral cavity, and the vagina. It’s also an 
opportunistic pathogen, commonly causing infections 

such as denture stomatitis, thrush, burn infections and 
urinary tract infections. C. albicans can also cause more 
serious systemic infections, these infections are often 
transmitted in hospitals [8].

Thermal injury is a serious type of trauma requiring 
care in specialized units. It is estimated that about 2.5 
million individuals in the United States sustain burns 
requiring medical attention each year [9]. More than 
100,000 of these patients are hospitalized, and there 
are approximately 12,000 deaths per year due to ther-
mal injury [10]. Burn patients are cited as being among 
the highest risk groups for invasive fungal infections 
[11–16]. The burn patients loss the barrier function of 
the skin [17, 18], the use of topical and systemic anti-
biotics to control bacterial infections [8, 19, 20], and 
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the alteration of the immune system [21–23] leaves the 
thermally injured patient at an increased risk of infec-
tion by opportunistic organisms, including Candida. 
Several species of Candida have become common sec-
ondary pathogens that have become responsible for a 
growing number of deaths in burn patients [5, 6, 8, 17, 
24–26].

The list of antifungals used to treat infections with 
Candida is extensive. Some of these treatments include 
topical treatments such as chlorohexidine, clotrimazole, 
miconazole and ketoconazole; and oral therapies like 
amphotericin B, nystatin and itraconazole [27, 28]. The 
efficacy of each treatment depends of the specific viru-
lence of each Candida species and the area of the infec-
tion [29]. Terbinafine has been demonstrated to have 
antifungal activity in vitro [30–32]. Widely varying mini-
mum inhibitory concentration (MIC) have been reported 
for Candida species, and terbinafine has generally been 
considered to have limited activity against Candida albi-
cans yeasts in vitro [33]. In several in vitro studies ter-
binafine activity against C. albicans has been primarily 
fungistatic [34, 35]. The mechanism of action of terbin-
afine involves the specific inhibition of fungal squalene 
epoxidase, resulting in ergosterol deficiency and accumu-
lation of intracellular squalene that interfere with normal 
fungal membrane function in C. albicans [36–38].

While other animal models have been used to test the 
efficacy of antifungals, the majority of these use rats, 
mice and guinea pigs [39–44]. Since swine have skin that 
is anatomically and physiologically similar to humans and 
a strong correlation in wound healing studies have been 
seen, we used them as our experimental animal [45–50]. 
The purpose of this study was to describe a porcine burn 
model for the study of C. albicans wound infections and 
determine if over-the-counter (OTC) treatments are 
effective against different antibiotic resistant strains. This 
porcine burn model has been used previously to evalu-
ate several agents in vivo on bacterial infections [51–53]. 
In this model we studied three (3) different C. albicans 
strains including a commonly used strain, a fluconazole 
resistant and a fluconazole sensitive strains [54, 55]. The 
selected strains of American Type Culture Collection 
(ATCC) were selected to effectively compare the treat-
ment groups in this model. C. albicans ATCC 10261 is a 
commonly used reference strain to challenge antifungal 
agents [56–58]. C. albicans ATCC 64550 has been used 
as a fluconazole-resistant Candida strain in previous 
studies [59, 60]. C. albicans ATCC 26310 utilized as a flu-
conazole-sensitive strain in several studies [61–63]. This 
study also compared once versus twice topical terbinafine 
hydrochloride treatment regimens to determine if the 
frequency of treatment application made any differences 
in antifungal activity.

Methods and materials
Experimental animals
Two young female specific pathogen free (SPF) pigs 
(Sus scrofa domesticus) were purchased from Looper 
Farm (Granite Falls, NC) weighing 25–30 kg were kept 
in house for two weeks prior to initiating the experi-
ment. These animals were fed a basal diet ad libitum 
and housed individually in our animal facilities (meet-
ing USDA compliance) with controlled temperature 
(19–21 °C) and lights (12 h/12 h LD).

Anesthetics, analgesics and euthanasia
The animals were anesthetized with a cocktail dose 
(intramuscular injection) prepared with their corre-
sponding weights. The cocktail used for sedation was 
made with Telazol HCl (100  mg/mL), given at a dose 
of 1.4 mg per kilogram; Xylazine (100 mg/mL), given at 
a dose of 2.0 mg per kilogram; and Atropine (0.54 mg/
mL) given at a dose of 0.05  mg per kilogram. Once 
sedated, animals had endotracheal tube inhalation of 
an isoflurane and oxygen combination during each pro-
cedure. For analgesics, each animal received a fentanyl 
transdermal patch (50 µg per hour) and Buprenorphine 
(0.3 mg/mL), given at a dose of 0.03 mg per kilogram. 
Upon the completion of the wound recoveries, the ani-
mals were first anesthetized and after the procedure 
was finished each animal by euthanized by receiving 
via an intramuscular injection Euthasol (pentobarbital 
sodium 390 mg/mL), given at a dose of 1 mL per 10 lbs.

Wounding
Prior to surgery the animals were anesthetized, the 
hair on the back of the pigs was clipped with standard 
animal clippers. Skin on both sides of the animals was 
prepared by washing with a non-antibiotic soap (Neu-
trogena®) and sterile water. The animals were blotted 
dry with sterile gauze. Eighty one (81) second-degree 
burn wounds were made in the paravertebral and tho-
racic area on each animal by using specially designed 
cylindrical brass rods weighing 358 g that was heated in 
a boiling water bath to 100 °C [64]. A rod was removed 
from the water bath and wiped dry before it is applied 
to the skin surface to prevent water droplets from cre-
ating a steam burn on the skin. The brass rod was held 
at a vertical position on the skin (six seconds), with all 
pressure supplied by gravity, to make a burn wound 
8.5  mm diameter × 0.8  mm deep. Immediately after 
burning, the roof of the burn blister was removed with 
a sterile spatula. Eighty-one burns were created on each 
animal for a total of one hundred sixty-two wounds.
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Experimental Design
On each animal, twenty-seven (27) burn wounds were 
assigned to one of three C. albicans strains. (Fig.  1: 
strains below). Nine burns were allocated for three treat-
ment regimens (described below). The burn wounds were 
made approximately 3–5  cm from each other. Groups 
of burns were inoculated, treated, and recovered as 
described below.

Inoculation
Fresh cultures of pathogenic isolates were obtained 
directly from American Type Culture Collection (ATCC, 
Rockville, Maryland). The inoculums were Candida 
albicans ATCC 10261 (reference strain), Candida albi-
cans ATCC 64550 fluconazole-resistant and Candida 
albicans ATCC 26310 fluconazole-sensitive. The frozen 
fungus was recovered from glycerol stock (15% glycerol, 
-80 °C). All inoculums’ suspensions were made by scrap-
ing the overnight growth from a culture plate into 5 ml 
of normal saline. This resulted in a suspension concen-
tration of approximately 10 [8] colony forming units/ml 
(CFU/ml). A small amount of the inoculum suspension 
was plated onto culture media BBL™ CHROMagar™ 
Candida Medium (Becton Dickinson GmbH, Heidel-
berg/Germany) to quantify the exact amount of viable 
organisms. The inoculum suspension was used directly 
to inoculate each site. A 0.025  ml (25  μl) aliquot of the 
suspension was deposited into the center of each burn. 
The suspension was lightly scrubbed into the test site 
for ten seconds using a sterile Teflon spatula and left for 
3 min prior to covering with a polyurethane film dressing 

(Tegaderm Transparent Dressing; 3  M Health Care, St. 
Paul, MN USA) for 4 h to allow the organism colonized 
the burn area. The film dressings were secured in place 
with tape and the animals were wrapped with self-adher-
ent bandages.

Four hours post-fungal inoculation, wounds were 
uncovered and treated with antifungal agent (topical 
terbinafine hydrochloride). Wounds remained either 
untreated or received either once or twice daily treatment 
for six days. Inoculated wounds were randomized around 
the animal within their designated group. Approximately 
250 µl of the treatment was applied over each wound and 
then gently spread over the wound and adjacent nor-
mal skin with a sterile applicator. Treatments including 
untreated control were covered with same dressing as 
previously described to prevent any cross contamination 
of treatments.

Microbiological recovery
Nine burns were cultured from each group at Days 2, 
4 and 7 post inoculation from each C. albicans strain. 
Each burn was cultured only once. The area was encom-
passed by a sterile stainless-steel cylinder (22 mm out-
side diameter) held in place by two handles. One ml 
of scrub solution was pipetted into the stainless-steel 
cylinder and the site was scrubbed with a sterile Tef-
lon spatula for 30  s using a modified scrub technique 
[65]. Serial dilutions of all recoveries were made and 
recovered bacteria was quantified using the Spiral 
Plater System, which deposits a small-defined amount 
(50 µl) of suspension over the surface of a rotating agar 

Fig. 1  Experimental Design
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plate. Candida albicans was grown on selective BBL™ 
CHROMagar™ Candida Medium (Becton Dickinson 
GmbH, Heidelberg/Germany) overnight at 37 °C. Colo-
nies on the plates were counted and the colony forming 
units per mL (CFU/ml) calculated.

Results
A total of one hundred ninety-eight (198) wounds were 
evaluated. Treatment application for once or twice 
daily resulted in significant (p < 0.05) reductions for 
all C. albicans strains in comparison to the untreated 
control group as shown in Figs.  2, 3 and 4. The data 
also shows those wounds treated twice exhibiting 

Fig. 2  C. albicans (ATCC 10261) reference strain count. Comparison between different treatment regimens per assessment days. * p < 0.05 
compared to other two treatment regimens,+ p < 0.05 compared to Untreated

Fig. 3  C. albicans (ATCC 64550) fluconazole-resistant count. Comparison between different treatment regimens per assessment days. + p < 0.05 
compared to untreated
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lower fungal activity than those wounds treated once. 
The application of treatment twice daily resulted in a 
greater than 2.0 Log CFU/ml (p < 0.05) reduction of all 
strains of C. albicans compared to the untreated con-
trol on day 7 (Figs. 2, 3 and 4). For the reference strain 
C. albicans 10261 the twice daily treatment showed 
significantly (p < 0.05) better efficacy as compared to 
both once daily and untreated control on days 2 and 4 
(Fig. 2). On day 7, treated twice daily wounds contin-
ued having significantly (p < 0.05) lower fungal counts 
when compared to those wounds left untreated, while 
remaining lower than those wounds treated once daily. 
Wounds infected with C. albicans 64550 (fluconazole 
resistant strain), on day 2 treated twice daily were 
significantly (p < 0.05) lower than those wounds left 
untreated a shown in Fig. 3. Both treatment regimens 
showed significantly (p < 0.05) lower fungal activ-
ity than untreated control (days 4 and 7). The counts 
for C. albicans 26310 (fluconazole sensitive) were 
significantly (p < 0.05) lower than untreated by both 
treatment regimens during all three assessment days 
(Fig.  4). On day 2, those wounds treated twice daily 
showed significantly (p < 0.05) lower counts than both 
treated once wounds and Untreated control. Those 
wounds treated twice daily on day 7 were substantially 
lower than those wounds left untreated, exhibiting the 
lowest fungal count for any of the three strains.

Discussion
As shown in this study, the in vivo porcine model offers 
a useful model that can provide reliable translational 
data on wound infections on the epidermis and dermis 
layers. Swine skin structure is very similar to human 
skin, including having similar epithelial thickness of the 
stratum corneum [66]. Additionally, the swine model 
can provide a reliable model because of dermatophytes 
requiring keratin structures [67] found in said stratum 
corneum and pigs having a hair density comparable to 
human [68]. Candida species can be found as a normal 
flora in humans, commonly in infections related to hair 
and nails which can cause a systemic infection in the 
human body [69–71]. Candida albicans has been shown 
to be both sensitive and resistant to fluconazole [37, 38]. 
Polymicrobial communities is well known that could 
colonize chronic wounds, this colonization can delay 
the healing process [72, 73]. Recent studies showed that 
Candida albicans species could be found in a 22% of the 
isolations in chronic wounds [74]. Fungistatic character-
istics of antifungal drugs, low doses of the drug, duration 
of the treatment as well interaction with other treatments 
are some of the reasons why limited treatment efficacy 
has been seen in patients with fungal infections as well 
for the resistance of different strains to the drugs [75]. 
Therapies such as azole fluconazole have been effective 
against most Candida species and are widely used as 

Fig. 4  C. albicans (ATCC 26310) fluconazole-sensitive count. Comparison between different treatment regimens per assessment days. * p < 0.05 
compared to other two treatment regimens,    + p < 0.05 compared to untreated
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the first treatment option showed in an in vitro study to 
decrease the level of a Candidiasis [76]. In this in vitro 
study, Serpa et  al. [73] tested a azole fluconazole treat-
ment against Candida albicans ATCC 64550 fluconazole 
resistant showing a decrease in the counts after 7 days of 
treatments, cells were treated twice versus once, previous 
studies [50, 77] demonstrated that this strain have resist-
ance to fluconazole treatments. Using Candida albicans 
ATCC 10261 as reference strain tested in vitro showed a 
low MIC when was challenged against fluconazole [78, 
79]. In our study, Candida albicans ATCC 26310 flu-
conazole sensitive showed a decrease in the counts com-
pared to untreated infected wounds however after 7 days 
the counts were higher to those wounds infected with 
the fluconazole resistance strain, others studies showed 
before that this strain decrease the counts after extended 
period of time more than 7 days [80].

Even when the wounds were treated twice for 6 days it 
was still insufficient amount to completely eradicate the 
fungal infection. Other authors demonstrated in vitro the 
combination of therapies as an effective methodology to 
reduce the candidiasis [81–83]. Cyclosporine in combi-
nation with fluconazole could be an effective treatment 
to complete eradication of fungal infection since increase 
the susceptibility to fluconazole due to efflux pump dele-
tion or alteration of stress response caused by calcineurin 
during azole therapy [84].

Current literature has provided evidence for antifun-
gal compounds to be active against other C. albicans 
strains. Pandolfi et  al. [56] has reported evaluations of 
compounds having the same effects in different strains, 
with C. albicans ATCC 10261 showing a comparable bio-
film activity as the other strains used in an in vitro study. 
Similarly, other in vitro studies challenging a range of 
10–15 C. albicans strains have analyzed of other antifun-
gal compounds not finding any collective difference in 
the results, such as a comparison including C. albicans 
ATCC 64550 [51].

We have developed a burn infection model which 
allows the colonization of Candida sp to examine the effi-
cacy of topical and/or systemic antifungal therapies. One 
of the limitations with this study and all animal mod-
els used to assess the activity of antifungals is that they 
tend to be short‐term without underlying comorbidities, 
and do not necessarily replicate a true clinical infection, 
with clinical variables such as size, depth and aetiology 
[85–87].

Conclusions
This study demonstrates the usefulness of a porcine 
second-degree burn model in evaluating treatment 
efficacy against C. albicans infections by developing a 

platform to compare different treatment groups against 
different strains. These results indicate that wounds 
treated with a topical terbinafine hydrochloride formu-
lation had substantial reductions against C. albicans 
when comparing to untreated wounds. Despite the fun-
gal presence not being fully eliminated on all wounds, 
the data in this study shows the significant reduction 
by treated twice wounds with terbinafine hydrochloride 
when compared to those wounds left untreated, thereby 
it can be extrapolated that the fungal bioburden can be 
eradicated with additional days.

Overall, we found that terbinafine treatments applied 
either once or twice a day exhibited lower reductions 
as the days progressed. Both treatment groups with 
terbinafine hydrochloride showed a desirable rate of 
reduction, which should further be investigated with 
additional assessment days or the in tandem applica-
tion of another antifungal modality. This model will be 
beneficial to identify novel therapies that may be use 
clinically.
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