
Structure-Based Predictive Models for Allosteric Hot
Spots
Omar N. A. Demerdash1,2, Michael D. Daily3, Julie C. Mitchell4,5*

1 Biophysics Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America, 2 Medical Scientist Training Program, University of Wisconsin-

Madison, Madison, Wisconsin, United States of America, 3 Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America,

4 Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America, 5 Department of Mathematics, University of Wisconsin-

Madison, Madison, Wisconsin, United States of America

Abstract

In allostery, a binding event at one site in a protein modulates the behavior of a distant site. Identifying residues that relay
the signal between sites remains a challenge. We have developed predictive models using support-vector machines, a
widely used machine-learning method. The training data set consisted of residues classified as either hotspots or non-
hotspots based on experimental characterization of point mutations from a diverse set of allosteric proteins. Each residue
had an associated set of calculated features. Two sets of features were used, one consisting of dynamical, structural,
network, and informatic measures, and another of structural measures defined by Daily and Gray [1]. The resulting models
performed well on an independent data set consisting of hotspots and non-hotspots from five allosteric proteins. For the
independent data set, our top 10 models using Feature Set 1 recalled 68–81% of known hotspots, and among total hotspot
predictions, 58–67% were actual hotspots. Hence, these models have precision P = 58–67% and recall R = 68–81%. The
corresponding models for Feature Set 2 had P = 55–59% and R = 81–92%. We combined the features from each set that
produced models with optimal predictive performance. The top 10 models using this hybrid feature set had R = 73–81% and
P = 64–71%, the best overall performance of any of the sets of models. Our methods identified hotspots in structural regions
of known allosteric significance. Moreover, our predicted hotspots form a network of contiguous residues in the interior of
the structures, in agreement with previous work. In conclusion, we have developed models that discriminate between
known allosteric hotspots and non-hotspots with high accuracy and sensitivity. Moreover, the pattern of predicted hotspots
corresponds to known functional motifs implicated in allostery, and is consistent with previous work describing sparse
networks of allosterically important residues.

Citation: Demerdash ONA, Daily MD, Mitchell JC (2009) Structure-Based Predictive Models for Allosteric Hot Spots. PLoS Comput Biol 5(10): e1000531.
doi:10.1371/journal.pcbi.1000531

Editor: Ruth Nussinov, National Cancer Institute, United States of America and Tel Aviv University, Israel

Received June 9, 2009; Accepted September 9, 2009; Published October 9, 2009

Copyright: � 2009 Demerdash et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Funding for this project was provided by the US Department of Energy Genomics:GTL and SciDAC Programs (DE-FG02-04ER25627). The funders had no
role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: jcmitchell@wisc.edu

Introduction

Allostery is the process whereby an effector molecule binds to

one site of a protein and concomitantly modulates the function of a

distant site. ‘‘Allostery’’ is derived from the Greek allos, ‘‘other,’’

and stereos, ‘‘solid’’ or ‘‘shape,’’ as the concept was originally

applied to proteins that changed their shape, or conformation,

upon binding the effector. Although the impact of effector

molecules on steady-state catalysis had been studied in the seminal

works of Terrell Hill [2] and Botts and Morales [3], structural

mechanisms underlying allostery were first proposed by Monod,

Wyman, and Changeux (MWC model; [4]) and by Koshland,

Nemethy, and Filmer (KNF model; [5]). The former model posits

that a protein undergoes an all-or-none, cooperative transition

from a low activity, inactive state to a high activity, active state,

with all subunits undergoing the transition together upon ligand

binding. Recently, the MWC model has been re-evaluated and

reformulated in light of new concepts of allostery. In this revised

interpretation, the MWC model considers the inactive state to be

an ensemble of conformers, a sub-ensemble of which samples the

active state with active state stabilization upon effector binding

[6,7]. In the second model, the KNF model, the protein undergoes

a transition consisting of sequential structural rearrangements

induced by effector binding, and the inactive state does not adopt

an active state in the absence of an effector as in the MWC model.

Over the past 40 years, much has been added to our knowledge

of allostery. In particular, the concept of allostery has been

extended to single subunit proteins, as allostery was originally

characterized in multimeric proteins. In the early 1970s, shortly

after the MWC and KNF models were expounded, Neet and

coworkers [8] described how hysteretic responses of monomeric

proteins to effectors or substrates (a phenomenon first described in

detail by Frieden [9]) are correlated with cooperative behavior, a

hallmark of allosteric proteins. Since then the presence of allostery

in monomeric proteins has been well documented [10–13].

Moreover, changes in protein dynamics, in addition to changes

in average structure, have been recognized as playing an

important role in allostery and protein function in general

[10,14–19]. Both NMR experiments and normal mode calcula-

tions suggest that the unbound state can adopt conformations

resembling a bound state [20–22]. This has led to the concept of

allosteric proteins existing as an ensemble of conformers, with a
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binding event shifting the ensemble toward a particular functional

state [11–13,23,24]. Moreover, several studies have documented

functionally significant dynamical coupling between residues in

allosteric proteins [14,16,17], as well as correlations between

dynamical coupling and coupling in free energy [17].

Since allostery relies on the communication of binding

information from one site to another in a protein, much

experimental work has been targeted at elucidating the network

of coupled interactions among residues that mediate the allosteric

transition. Di Cera and coworkers showed that a network of

structural changes connecting an allosteric site and a distant site

adjacent to the active site in thrombin is formed upon effector

binding to the allosteric site, inducing a key conformational

change that renders the active site able to bind substrate [25]. Di

Cera and coworkers also demonstrated that a network of hydrogen

bonds (some involving waters as well as protein residues) and salt

bridges links another key allosteric site, the Na+-binding site, to the

active site and that this structural network underlies the allosteric

transition between so-called slow and fast forms of the enzyme

[26]. Work by MacKinnon and coworkers on the voltage-gated

potassium channel revealed that residues that affect the gating

exist not only in the activation gate and selectivity filter, but also

along a path connecting these functional regions, and that these

residues are energetically coupled [27–29]. Sadovsky and Yifrach

further demonstrated that there exist higher order couplings

among these residues in addition to pairwise couplings [30].

Recent work on caspase-1 revealed that the network of hydrogen

bonds linking the effector and substrate sites changes upon effector

binding and that mutation of several residues participating in the

network causes reduction in catalytic efficiency [31]. In addition to

structurally linked residue networks, residues linked in terms of

their dynamic properties have been implicated in allostery.

Fuentes et al. showed that the peptide-binding site in a PDZ

domain of human tyrosine phosphatase 1E is linked to distant sites

via a contiguous network of residues that undergo significant

changes in side-chain dynamical properties as measured by NMR

[16,28]. In Pin 1, a peptidyl-prolyl isomerase, a pathway of

residues whose side-chains rigidified upon substrate binding linked

the active site and the interface between the two domains of the

protein [28,32].

In addition to these experimental studies, computational

methods for elucidating the network(s) of coupled interactions

among residues have been developed. Lockless and Ranganathan

[33] developed a bioinformatic method, statistical coupling

analysis (SCA), to discover co-evolved residues in families of

proteins, the rationale being that co-conservation reflects a

functional coupling. There are also molecular dynamics (MD)

techniques aimed at understanding the mechanism by which a

signal from one site is transduced to a distant site: pump-probe

dynamics [34] and anisotropic thermal diffusion [35]. When these

dynamics methods and SCA were applied to a PDZ domain, the

three methods yielded similarities in the residues identified as

important, but some differences as well, indicating that dynamic

and bioinformatic methods can be complementary. Dynamical

correlations have been probed using elastic network normal mode

analysis combined with a novel method of introducing a

theoretical mutation and have yielded significant insight into

residue coupling in myosin II [36], helicase [37], and DNA and

RNA polymerases [38]. Another method developed originally by

Hilser and Freire (COREX; [39]) to study folding pathways, has

demonstrated that local order/disorder transitions mediate

coupling among distant sites [40–42]. Daily et al. [43,44]

investigated coupling among residues by calculating networks of

contact rearrangement. Del Sol et al. represented allosteric

proteins as graphs of residue van der Waals interactions and

showed that residues responsible for maintaining short communi-

cation paths correlate with functional significance [45] and that

signaling is mediated by residues at the interface between

topologically delineated modules [46]. Lastly, Chennubhotla and

Bahar [47,48] developed a method based on Markov propagation

of information in a protein, where residues are nodes and inter-

residue contacts are edges, to identify sites of high allosteric

potential.

Despite providing insight into allosteric regulation, some of

these methods have drawbacks. Computational power constraints

limit MD-based methods to small systems. While COREX

provides significant insights, it uses a reduced model for the

degrees of conformational freedom available to a residue, as each

residue exists in either a folded or unfolded state. SCA’s drawback

is that evolutionary co-conservation of residues is not necessarily a

property specific to allosterically coupled residues. Finally, the

methods of Daily et al. and del Sol et al. rely on single static

structures of a protein, and thus lack dynamical measures.

By contrast, a computationally inexpensive meta-method that

incorporates a number of parameters putatively implicated in

allostery may overcome the drawbacks of individual approaches.

In this work, we seek to develop such a method that predicts

‘‘hotspot’’ residues important to allostery for large systems with

high sensitivity and specificity. First, we assembled a dataset of

residues that were classified as hotspots or non-hotspots (mutations

known not to perturb allostery) based on the results of published

mutagenesis experiments on allosteric proteins. Then, support

vector models were trained to distinguish the known hotspots from

the known non-hotspots in this dataset based on several calculated

structural, dynamical, network, and informatic features. Support-

vector machines are polynomial functions of the calculated

features that separate the feature spaces of the hotspots and non-

hotspots, thus discriminating between the two classes [49]. An

important advantage of SVMs compared with other techniques is

that they require no discretization of numerical data, as is the case

for machine learning using Bayesian networks. Finally, we also

compared our data-mining method with the Statistical Coupling

Author Summary

Allostery is the process whereby a molecule binds to one
site in a protein and alters the function of a distant site.
This phenomenon is ubiquitous, as proteins frequently
must adapt their behavior to changes in the cellular milieu.
The mechanism(s) underlying allostery remains incom-
pletely understood. In particular, predictive models are
needed that distinguish amino-acid residues that are
critical to allostery, or ‘‘hotspots’’, from non-hotspots. Here
we have used data-mining approaches to infer rules that
distinguish hotspots from non-hotspots. Starting with a
data set of known hotspot and non-hotspot residues from
a diverse set of allosteric proteins, the training data set, we
applied machine learning to this data to ‘‘learn’’ models, or
sets of rules, for distinguishing hotspots and non-hotspots
by inferring associations between the classification (hot-
spot or non-hotspot) and an associated set of calculated
attributes. Many models that showed the highest predic-
tive power on the training data also exhibited high
accuracy and sensitivity when applied to an independent
data set. Moreover, the pattern of predicted hotspots in
the proteins we studied was consistent with known
structure/function relationships and previous work sug-
gesting that a network of essential residues mediates the
allosteric transition.

Predictive Models for Allosteric Hot Spots
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Analysis (SCA) method of Lockless and Ranganathan [33], which

has been used to identify networks of allosterically important

residues in G-proteins [50,51] as well as in other families [51,52].

Results

Data Set and Support-Vector Machine Learning
The training data set consisted of point mutants of allosteric

enzymes, transcription factors, and signal transduction proteins

(Table 1). A residue was designated as a hotspot if a point mutation

of that residue reduced cooperativity, as measured by a significant

lowering of the Hill coefficient or an increase in IC-50 in the case

of negative allostery, or the reduction or abolition of a function

that only occurs in the presence of an allosteric effector. Although

the most rigorous criterion for classification as a hotspot would be

a measure of a residue’s perturbation on the allosteric coupling

free energy between effector and active site, such a measure is not

widely available in the experimental literature. It is thus

incumbent upon us to consider other measures that are correlates

of free energy coupling. Wyman, after whom the Monod, Wyman,

Changeux model of allostery is partly named, has shown that the

Hill coefficient is correlated with the coupling free energy between

effector and active sites [53] by the following relation (equation 9.4

in his study [53]):

DFI(XX )~
RT

�xx(1{�xx)
1{

1

n

� �
, ð1Þ

where DFI(XX) is the site-site coupling free energy (DDG in our

notation), �xx is the fractional saturation of protein with ligand, and

n is the Hill coefficient. Moreover, a recent study using point

mutants to probe the energetic coupling among residues in the

voltage-activated potassium channel revealed strong correlations

between second- and third order coupling free energies between

residues and the associated Hill coefficients (R2 = 0.89 and 0.97,

respectively) [30]. Based on these results, we assert that

perturbation of the Hill coefficient reflects perturbation in site-

site coupling free energy. Here, we extrapolate this assertion to

other non-energetic measures of site-site coupling, such as IC-50,

in vivo measures of inducibility (used for transcription factors), and

abrogation of the allosteric transtion. Since it has not been shown

before, we will make an argument for a relationship between

perturbation of the IC-50 of a mutation and the perturbation in

site-site coupling free energy. First, we define the coupling free

energy between sites as follows in the case where there is a

dissociation constant for substrate, KS, in the absence of allosteric

effector and KS’ in the presence of effector, in this case an inhibitor:

DDG~RT ln
K ’S
KS

� �
: ð2Þ

Since the Michaelis constant, KM, has been shown to be an

apparent dissociation constant, taking into account all substrate-

bound species of enzyme, and is directly proportional to KS, we

may replace KS with KM in (2) [54]. We then assume mixed

inhibition, where the inhibitor can bind to both the substrate-free

and substrate-bound states of the enzyme, since this is the most

general case of inhibition at a site distinct from the substrate site

[55]. The rate equation for mixed inhibition is given in [55] as:

V0~
Vmax S½ �

aKMza’½S� , ð3Þ

where [S] is the concentration of free substrate and a is defined as

Table 1. Training and Independent Data Sets of Proteins with PDB identifications for the inactive and active state structures for
various classes of molecules.

PDB of effector ligand-unbound
(inactive state)

PDB of effector ligand-bound
(active state)

Training Data Set Proteins

CheY (signal transduction) 3chy 1fqw

PurR repressor (transcription factor) 1dbq 1wet

Tet repressor (transcription factor) 2trt 1qpi

Hemoglobin (carrier protein/enzyme) 4hhb 1hho

Phosphofructokinase (enzyme) 6pfk 4pfk

phosphoglycerate dehydrogenase (enzyme) 1psd 1yba

fructose-1,6-bisphosphatase (enzyme) 1eyj 1eyi

Aspartate transcarbamoylase (enzyme) 1rac 1d09

RhoA (signal transduction) 1ftn 1a2b

CDC-42 (signal transduction) 1an0 1nf3

glycogen phosphorylase (transcription factor) 1gpb 7gpb

Independent Data Set Proteins

glucokinase (enzyme) 1v4t 1v4s

glutamate dehydrogenase (enzyme) 1nr7 1hwz

lac repressor (transcription factor) 1tlf 1efa

myosin II (motor protein/enzyme) 1vom 1fmw

thrombin (enzyme) 1sgi 1sg8

doi:10.1371/journal.pcbi.1000531.t001

Predictive Models for Allosteric Hot Spots
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a~1z
I½ �

KI

, ð4Þ

where [I] is the inhibitor concentration and KI is the dissociation

constant of inhibitor [55]; a’ is defined in the same fashion. As the

apparent Michaelis constant in the presence of inhibitor is aKM,

the coupling free energy between the inhibitor site and the

substrate-binding site after substituting aKM and KM for KS’ and KS,

respectively, in (2) is:

DDG~RT ln a: ð5Þ

The Cheng-Prusoff equation relates the IC-50 to the dissociation

constant of inhibitor [56]:

KI~
IC{50

1z
½S�
KM

: ð6Þ

Substituting (6) for KI in (4), we have

a~1z
I½ �

IC{50
: 1z

S½ �
KM

� �
: ð7Þ

By substituting (7) in (5), we thus are able to establish a

relationship between coupling free energy and IC-50. Clearly, a

perturbation in this coupling energy due to mutation with an

associated coefficient amut can be expressed as follows:

DDDG~RT ln
amut

a

� �
, ð8Þ

where amut reflects an altered IC-50 according to (7).

In the case of allosteric transcription factors, inducibility of the

effector was measured using in vivo reporter gene assays. Assuming

that inducibility is directly related to the differential affinity for

DNA in the presence and absence of effector, it can consequently

take on an associated coupling free energy, DDG. If, in turn,

differential expression of a reporter gene is correlated with

differential affinity for DNA in the presence and absence of

effector, we can establish a link between the reporter gene assay

and the coupling free energy.

In this study, care was taken not to include mutations in effector

sites, as perturbations in allosteric properties resulting from such

mutations could be attributed to altered binding free energy. Also,

no mutations were included that completely abolished the

protein’s function, as such a case could be attributed to perturbed

folding of the protein. Hence, our training set was chosen to

represent residues that mediate coupling between sites using

criteria that are reasonable proxies of energetic coupling. The

training data set comprised 44 hotspots and 50 non-hotspots (See

Table S1).

Support-vector machine models for predicting allosteric hot-

spots were initially developed using two sets of features. Feature

Set 1 (Table 2) consisted of a combination of dynamical features

calculated from normal modes, as well as structural, network, and

informatic (primarily sequence-based) features. Feature Set 2

(Table 3) consisted of various structural metrics describing

differences between inactive and active state conformations. Please

refer to Methods for a complete description of each feature set. All

possible combinations of features from Set 1 were tested; however,

due to the larger size of Feature Set 2, all possible combinations of

features could not be tested. In particular, combinations using

between 8 and 14 features at a time could not be tested due to the

astronomical number of possible combinations.

Both second- and third-degree polynomial kernels were used in

the training. In the context of SVMs, the kernel is the following

expression:

(~aa(i):~aa)n, ð9Þ

where ~aa(i) is the ith support vector defining the optimal

hyperplane (often referred to as the maximal margin hyperplane)

separating two classes (here, hotspot and non-hotspot); ~aa is a test

instance; and n is an integer representing the degree of the kernel

[57]. The complete function that is at the core of the SVM

algorithm is as follows:

x~bz
X

i

aiyi(~aa(i):~aa)n, ð10Þ

where yi is the class corresponding to support vector ~aa(i), and b

and aI are parameters to be determined. Linear (first-degree)

kernels were tried initially, but they performed less well in

preliminary tests than the other two kernels tested. Higher order

polynomials were not tried, as their use can result in overfitting of

the models to the data due to the greater number of parameters

Table 2. Feature Set 1.

Feature Set 1 Abbreviation

Dynamical Features

Deformation Energy of the inactive state def-energ-i

Mean Squared Fluctuation of the inactive state msf-i

Mean Squared Fluctuation of the active state msf-a

Difference in Mean Squared Fluctuation between
inactive and active states

diff-msf

Mutual Information in the inactive state mut-info-i

Structural Features

B-factor of the inactive state bfac-i

B-factor of the active state bfac-a

Difference in B-factor between the inactive and active states diff-bfac

No. Potential Hydrogen Bonds in the active state hbond-a

No. Potential Hydrogen Bonds in the inactive state hbond-i

Difference in No. of Potential Hyd. Bonds between the
inactive and active states

diff-hbond

Average Local Atomic Density in the inactive state at-dens-i

Average Local Atomic Density in the active state at-dens-a

Difference in Atomic Density between the inactive and
active states

diff-at-dens

Network Features

Node degree in inactive state node-deg-i

Perturbation in Clustering Coefficient upon Node
Removal in inactive state

pert-clust-coef-i

Informatic Features

Evolutionary Conservation cons

Local Structural Entropy lse

doi:10.1371/journal.pcbi.1000531.t002
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involved, particularly in situations like ours where the size of the

training data set is relatively small.

Results for Cross-Validation Training/Testing
Each feature/kernel degree combination tested in the training

was evaluated for predictive performance. For each combination,

a nine-fold cross-validation was performed, where a model was

trained on 8 portions of the training data and tested on the ninth.

Here, each portions consists of one protein’s hotspots and non-

hotspots, except in cases for which only hotspots or non-hotspots

existed in the data set. For these cases, the hotspots of a protein

without non-hotspots were grouped with the non-hotspots of a

protein having no hotspots. Thus, each feature/kernel degree

combination resulted in nine support-vector-machine models. This

procedure is designed to prevent overtraining, or over-fitting, of

the support-vector machine parameters, which results from

training on all the data at once and yields inflated performance

measures. Precision, recall, and F1 were calculated for each

feature/kernel combination by pooling the true positives, false

positives, true negatives, and false negatives from each of the nine

folds (models). Each feature/kernel degree combination was

ranked by F1. The top 20 feature/kernel degree combinations

by F1 using Feature Set 1 are given in Table 4. Using Feature Set

1, precision ranged from 0.54–0.64, recall from 0.68–0.91, and F1

from 0.66–0.68 for the top 20 feature/kernel degree combinations.

A similar range in performance was seen in the top 300 feature/

kernel degree combinations, where precision ranged from 0.51–

0.66, recall from 0.61–0.91, and F1 from 0.63–0.68 (Table 5).

For the top 300 feature/kernel degree combinations using Set 2,

precision was lower compared with Feature Set 1 (0.53–0.61;

p = 4.2e-10), but recall (0.80–0.95; p,2.2e-16) and F1 (0.68–0.71;

p,2.2e-16) were higher (Table 5). The top 20 feature/kernel

degree combinations using Feature Set 2 are given in Table 6.

Again, the performance of the top 20 feature/kernel degree

combinations of this feature set was similar to the top 300, with

precision ranging from 0.55–0.61, recall from 0.84–0.95, and F1

from 0.70–0.71.

Identifying the features that were used most frequently in the

top 300 feature/kernel degree combinations can yield insights into

properties that may, when taken together, indicate signatures of an

allosteric hotspot residue. Dominant features in the top 300 feature

combinations of Set 1 were mean squared fluctuation in the

inactive and active conformers; difference in atomic density

between inactive and active conformers; deformation energy of the

inactive state; difference in the number of hydrogen bonds

between inactive and active states; B-factor in the active state;

difference in B-factor between the inactive and active states; and

local structural entropy (Figure 1). Features from Set 2 that were

dominant when considering the top 300 different combinations

were as follows: alpha-carbon displacement; total residue solvent-

accessible surface area in the inactive and active states, and the

average of the two; side-chain solvent-accessible surface area in

both states, and the average; backbone solvent-accessible surface

area in the active state, and the average of this value in the inactive

and active states (Figure 2).

Since many allosteric proteins have only a single solved

structure on which to base hotspot predictions, we identified

feature/kernel degree combinations in the top 300 from the Set 1

analysis consisting solely of features calculated from a single

structure (either the inactive or active state) or a single structure

plus sequence-based features. Seventeen such combinations exist

for which precision, recall, and F1 ranges were 0.53–0.56, 0.73–

0.80, and 0.63–0.65, respectively (Table 7). Strikingly, in all of

these 17 combinations, the single structure required is the inactive

structure. No feature/kernel degree combinations in the top 300

required only the active state structure.

To ascertain whether there are general discrepancies in the

predictive behavior of models generated with Feature Set 1 and 2,

we assessed the overlap in the predictions between the two feature

sets. Here, we considered how many predictions were the same

using a pair of feature/kernel degree combinations and how many

were different, where one combination was based on Feature Set 1

and the other on Feature Set 2. All pair-wise combinations of

models were tested. On average, the models agreed on 61.4% of

their predictions and disagreed 38.6% of the time.

We hypothesized that residues important for allostery may

reside in hinge regions that undergo a change in their deformation

properties upon binding an allosteric effector. To test this, we

assessed whether adding features related to active state deforma-

tions would result in more accurate models. We augmented the

top 8 features as ranked by their frequency in the top 300 feature/

kernel combinations (deformation energy in the inactive state;

mean-squared fluctuation in the inactive and active states;

difference in the number of H-bonds between inactive and active

states; local structural entropy; difference in atomic density

between inactive and active states; B-factor in the active state;

and the difference in B-factor between the inactive and active

states) with the deformation energy of the active state and the

difference in the deformation energy between inactive and active

states. We then evaluated all possible combinations of those

features using kernel degree 2 or 3 and cross-validation on the

training data set. The top 20 scoring feature/kernel degree

Table 3. Feature Set 2.

Feature Set 2 Abbreviation

Alpha-carbon Displacement Ca-disp

Side-Chain RMS Distance between inactive and active states sc-rms

Rotation of Alpha Carbon-Beta Carbon bond from the
inactive to active state

sc-flip

Difference in Phi Angle between inactive state and active states dphi

Difference in Psi Angle between inactive state and active states dpsi

Maximum of dphi and dpsi maxdihed

Difference in Chi1 Angle between inactive state and active
states

dchi1

Difference in Chi2 Angle between inactive state and active
states

dchi2

Maximum of dchi1 and dchi2 maxdchi

Fractional Change in Contact Environment relative to inactive
state

fI

Fractional Change in Contact Environment relative to active
state

fA

Maximum of fI and fA fmax

All-Atom Solvent-Accessible Surface Area in inactive state asa1

All-Atom Solvent-Accessible Surface Area in active state asa2

Average of asa1 and asa2 asaavg

Side-Chain Solvent-Accessible Surface Area in inactive state asasc1

Side-Chain Solvent-Accessible Surface Area in active state asasc2

Average of asasc1 and asasc2 asascavg

Backbone Solvent-Accessible Surface Area in inactive state asabb1

Backbone Solvent-Accessible Surface Area in active state asabb2

Average of asabb1 and asabb2 asabbavg

doi:10.1371/journal.pcbi.1000531.t003

Predictive Models for Allosteric Hot Spots
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combinations using this feature set (referred to henceforth as

Augmented Feature Set 1) scored about 2 points higher in F1 than

Feature Set 1 (Table 8), and nearly all of these made use of the

additional active state features. For the top 300 models, the F1

ranged from 0.60–0.71 (Table 5).

Results for Testing on the Independent Data Set
We tested our top models on an independent data set to further

assess their predictive performance, because a useful predictive

model should perform well on data that is unseen during the

training. The top 300 feature/kernel degree combinations of Set 1

and Set 2 were used to train support-vector models. Here we

created a single support-vector model by training on the entire

training data set at once (rather than doing a cross-validation as in

the previous section, where each fold in the training generated a

model), and then tested this model on an independent data set.

The independent data set consisted of 87 experimentally

determined hotspots and non-hotspots from five allosteric proteins

(Table 1). 22 of the top 300 Feature Set 1-models had an F1

ranging from 0.60–0.73 (Table 5; See Table 9 for the top 20

models). 293 of the top 300 models (Table 5) for Feature Set 2 had

an F1 that ranged from 0.60–0.68 (See Table 10 for the top 20

models.). Although Feature Set 2 had higher F1 scores than Set 1

on the independent data set (p = 7.7e-5), the top 20 highest scoring

Set 1 models on the independent data set were more precise

(p = 1.0e-8) than the corresponding top 20 Set 2 models (Refer to

Table 9 and 10). For Feature Set 1, mean square fluctuation,

hydrogen bonding, and atomic density predominated in the top 20

models. For Feature Set 2, the dominant features for the top

models related to solvent-accessible surface area and alpha-carbon

displacement, similar to the results for the cross-validated training/

testing.

We also evaluated the performance of the top 300 inactive state-

and/or sequence-based (i.e., single structure-based) Feature Set 1

Table 4. Top 20 highest performing feature/kernel degree combinations (as ranked by F1) using Feature Set 1.

F1 Precision Recall Feature Combination Kernel Degree

0.68 0.62 0.75 def-energ-i, msf-i, diff-msf, at-dens-a, diff-at-dens, diff-bfac, lse 3

0.68 0.58 0.82 msf-i, msf-a, diff-hbond, bfac-a, node-deg-i, lse 2

0.68 0.54 0.91 msf-i, msf-a, diff-hbond 3

0.67 0.63 0.73 def-energ-i, msf-i, diff-msf, at-dens-i, at-dens-a, diff-at-dens, diff-bfac, lse 3

0.67 0.61 0.75 msf-a, diff-hbond, diff-at-dens, bfac-a, lse 2

0.67 0.60 0.77 msf-i, msf-a, mut-info-i, diff-hbond, diff-at-dens, bfac-a, lse 2

0.67 0.57 0.82 msf-i, diff-hbond, node-deg-i, lse 3

0.67 0.57 0.82 msf-i, msf-a, hbond-i, diff-hbond, bfac-a, lse 2

0.67 0.57 0.82 def-energ-i, msf-i, diff-hbond, lse 3

0.67 0.62 0.73 msf-a, diff-msf, diff-hbond, at-dens-a, diff-at-dens, bfac-a, lse 2

0.67 0.56 0.82 msf-i, msf-a, diff-hbond, diff-bfac, lse 3

0.66 0.56 0.80 def-energ-i, msf-i, diff-hbond, diff-at-dens, diff-bfac, lse 3

0.66 0.56 0.80 def-energ-i, msf-i, msf-a, diff-msf, diff-hbond, diff-at-dens, lse 3

0.66 0.58 0.77 msf-i, hbond-i, diff-hbond, node-deg-i, lse 2

0.66 0.58 0.77 def-energ-i, msf-i, diff-hbond, lse 2

0.66 0.59 0.75 def-energ-i, msf-a, diff-hbond, diff-at-dens, diff-bfac, lse 3

0.66 0.60 0.73 def-energ-i, msf-a, diff-hbond, diff-at-dens, bfac-a, node-deg-i, lse 2

0.66 0.62 0.70 def-energ-i, msf-a, diff-msf, diff-hbond, diff-at-dens, diff-bfac, node-deg-i, lse 3

0.66 0.62 0.70 def-energ-i, msf-i, diff-msf, diff-hbond, at-dens-a, diff-at-dens, diff-bfac, lse 3

0.66 0.64 0.68 def-energ-i, msf-a, diff-hbond, diff-at-dens, diff-bfac, node-deg-i, lse 3

Precision, recall, and F1 scores calculated from the results of the nine-fold cross-validation on the training set. Refer to Table 2 for explanations of feature abbreviations.
doi:10.1371/journal.pcbi.1000531.t004

Table 5. Summary of the performance of the four feature sets.

Feature Set
Range of F1 of top 300 models
for training data set

No. of models of top 300 w/F1
.0.60 on ind. data set

F1 of top model on
ind. data set

Feature Set 1 0.63–0.68 22 0.73

Feature Set 2 0.68–0.71 293 0.68

Aug. Feature Set 1 0.60–0.71 31 0.68

Hybrid Feature Set 0.63–0.73** 26,113** 0.73

**80,000 feature/kernel degree combinations using the Hybrid Feature Set had F1 scores in the range of 0.63–0.73 on the training data set, and all of these feature/
kernel degree combinations were tested on the independent data set. 26,113 models of the 80,000 had an F1 greater than 0.60 on the independent data set.
Abbreviation: ind. = independent.

doi:10.1371/journal.pcbi.1000531.t005
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models on the independent data (Table 11). These models had an

F1 in the range of 0.49–0.56, and all except one yielded a precision

greater than or equal 0.53. Thus, although the models based on

inactive state and sequence may not have had high F1 or recall,

the high precision is noteworthy. In cases where only an inactive

state structure is known, this provides the experimentalist with a

good starting point for further exploration of the computational

predictions.

Further, the performance of the top 300 models using

Augmented Feature Set 1 on the independent data was evaluated.

The performance of the top 20 highest scoring models is given in

Table 12. 31 models of the top 300 scored an F1 of 0.60–0.68 on

the independent data set (Table 5). Similar to Feature Set 1,

although the F1 scores of the top 20 highest scoring models using

this feature set were lower than those of Set 2 (2.2e-5), precision

scores were significantly higher than those of Set 2 (p = 4.8e-12).

Parsimony of Feature Usage/Feature Enrichment in
Feature Set 1 SVM Models

To assess how much each feature contributes to the predictive

ability of a given feature/kernel degree combination, we

considered a feature combination from the top 300 that also

performed well on the independent data set and analyzed the

effect of successive feature addition. In this analysis, the starting

point is one feature contained in a top-300 feature/kernel degree

combination, followed by a 2-feature model, etc. (Figure 3). The

greatest improvement in F1 occurred with the combination of two

features (mean-squared fluctuation in the active and inactive

states), followed by a modest improvement after the addition of

some third feature. Additional features did not appreciably

improve the F1 scores. This suggests that mean-squared

fluctuations in the two states are ‘‘anchor’’ features for this

particular model, and successive features finely tune the perfor-

mance.

Naturally, a parsimonious model that makes accurate predic-

tions with fewer parameters (or features, in our case) is more

favorable than one that requires a large number of features.

Having fewer features reduces the number of required calculations

for test cases, and lowers propensity for overfitting. Thus, we

investigated whether any of the top 300 feature/kernel degree

combinations consisted of just 2 or 3 features. Twenty-three such

feature/kernel degree combinations were found within the top

300. Feature usage in these combinations reflected that of the top

300 feature/kernel degree combinations, with mean-squared

fluctuation and local structural entropy predominating (Table 13).

Combining Feature Set 1 and Set 2
Because each feature set had its unique strengths in terms of

predictive power, and there was limited consensus of predictions

between models using the two feature sets, we formed a hybrid

feature set consisting of the features of Set 1 and 2 that were

most prevalent in top models. Specifically, we pooled the top 8

features from Set 1 as ranked by frequency in the top 300

feature/kernel degree combinations trained solely on this

feature set (deformation energy in the inactive state; mean-

squared fluctuation in the inactive and active states; difference

in the number of H-bonds between inactive and active states;

local structural entropy; difference in atomic density between

inactive and active states; B-factor in the active state; and the

difference in B-factor between the inactive and active states –

see Figure 1) and the top 9 features from Set 2 as ranked in the

same fashion (a-carbon displacement; percent all-atom SASA in

inactive and active states, and the average of the two; percent

side chain SASA in inactive and active states, and the average of

Table 6. Top 20 highest performing feature/kernel degree combinations (as ranked by F1) using Feature Set 2.

F1 Precision Recall Feature Combination Kernel Degree

0.71 0.58 0.93 Ca-disp, sc-flip, asa1, asa2, asasc1 3

0.71 0.58 0.93 Ca-disp, sc-flip, asa1, asa2, asasc1 3

0.71 0.58 0.91 dpsi, asaavg, asascavg, asabbavg 3

0.71 0.56 0.95 Ca-disp, sc-flip, asa1, asa2, asasc1, asascavg 3

0.70 0.61 0.84 dpsi, dchi1, asascavg 2

0.70 0.57 0.91 maxdchi, asa2, asasc1, asascavg, asabb1, asabbavg 2

0.70 0.57 0.91 maxdchi, asa2, asaavg, asasc1, asabb1, asabbavg 2

0.70 0.57 0.91 maxdchi, asa1, asaavg, asasc2, asabbavg 2

0.70 0.57 0.91 maxdchi, asa1, asa2, asasc1, asascavg, asabbavg 2

0.70 0.57 0.91 maxdchi, asa1, asa2, asasc1, asascavg, asabb1, asabbavg 2

0.70 0.57 0.91 maxdchi, asa1, asa2, asasc1, asasc2, asabbavg 2

0.70 0.57 0.91 maxdchi, asa1, asa2, asasc1, asasc2, asascavg, asabbavg 2

0.70 0.56 0.93 sc-flip, asa2, asasc1, asascavg, asabb1, asabbavg 3

0.70 0.56 0.93 asa2, asaavg, asasc2, asabb1 3

0.70 0.56 0.93 Ca-disp, sc-flip, dchi2, asa1, asa2, asaavg 3

0.70 0.56 0.93 Ca-disp, sc-flip, asa2, asaavg, asasc1 2

0.70 0.56 0.93 Ca-disp, sc-flip, asa1, asa2, asaavg, asascavg 3

0.70 0.55 0.95 Ca-disp, sc-flip, asa2, asaavg, asasc1 3

0.70 0.55 0.95 Ca-disp, sc-flip, asa2, asaavg, asasc1 3

0.70 0.58 0.86 dpsi, dchi1, asa1, asasc2, asabb1 2

Precision, recall, and F1 scores calculated from the results of the nine-fold cross-validation on the training set. Refer to Table 3 for explanations of feature abbreviations.
doi:10.1371/journal.pcbi.1000531.t006
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the two; percent backbone SASA in the inactive state and the

average of this measure in the inactive and active states – see

Figure 2). We then trained hybrid models using all possible

combinations of this mixture of the top Set 1 and 2 features

(Hybrid Feature Set). The Hybrid Feature Set yielded the

highest scoring feature/kernel degree combinations in terms of

F1 on the training data set (Table 14; p,2.2e-16, when

comparing F1 of the top 300 Hybrid Feature Set-feature/kernel

degree combinations with those of Set 2, the one that performed

the best on the training data). For the top 300 feature/kernel

degree combinations, F1 ranged from 0.71–0.73, precision

ranged from 0.56–0.70 (296 of these had precision greater than

0.60), and recall ranged from 0.73–0.93. 80,000 feature/kernel

degree combinations had an F1 score greater than or equal to

0.63 in the cross-validation on the training data (Table 5). Thus,

the hybrid set produces a much higher proportion of good- to

excellent-quality models than either feature set 1 or 2 alone.

These 80,000 were then used for training on the entire training

data set, and the resulting models were tested on the

independent data set.

The models that scored highest on the independent data set are

listed in Table 15. 26,113 models of the 80,000 had an F1 score

greater than or equal to 0.60 on the independent data set (Table 5).

F1 scores on the independent data set for the top 20 Hybrid Feature

Set models ranged from 0.71–0.73 and were higher than those of

Set 1, Set 2, or Augmented Feature Set 1 on the independent data

set (p = 5.8e-9, p,2.2e-16, and p = 3.7e-12 when compared with

Set 1, Set 2, and Augmented Feature Set 1, respectively).

Structural Analysis of Predicted Hotspots
To investigate the topology of predicted allosteric hotspots, we

considered the predictions made by the top 9 most precise Hybrid

Feature Set models for each residue of each protein in the

independent data set (Table 16). That is, each residue was labeled

in the protein structure by color according to the number of the

top 9 highest-precision models that predicted a hotspot for that

residue (Table S3). Naturally, one could simply consider the top-

scoring model only, but we assert that such a voting scheme gives a

more realistic picture of the pattern of hotspots, because it offsets

the limitations of any single model alone. Moreover, adopting this

voting scheme and labeling residues according to the number of

votes they receive from the models for hotspot or non-hotspot

reveals residues that are intermediate in terms of their hotspot/

non-hotspot character, rather than yielding a simple binary

prediction. We used the 9 most precise models for this analysis,

because this ensures a minimum of false positive predictions and

thus has the greatest likelihood to uncover the sparse network of

interactions consisting of only the most definite hotspot predic-

tions. The Hybrid Feature Set models were used, as this feature set

performed the best overall compared with the other feature sets.

In doing this analysis, we assessed whether predicted hotspots

form a network pattern in the protein structure, in light of previous

work showing the existence of networks of contiguous residues

connecting effector and substrate sites in allosteric proteins

[25,30,44,50–52]. Qualitative inspection of the spatial distribution

of predicted hotspot residues in the five proteins in the

independent data set showed that predicted hotspots tended to

Figure 1. Feature usage in the top 300 SVM models using Feature Set 1. For each feature, the number of models (frequency) in the top 300,
as ranked by F1 performance on the training data, that used that particular feature was tabulated.
doi:10.1371/journal.pcbi.1000531.g001
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be centrally located in the protein molecules and form a dense

network pattern, while predicted non-hotspots tended to be

solvent-exposed or on the periphery. This is consistent with the

idea that residues that relay allosteric signals form a communica-

tion network within the molecule.

Furthermore, the locations of predicted hotspots and non-

hotspots in the protein structure and the known functions of the

structural elements of each protein system gave insight into the

functional significance of the predictions. For lac repressor, a large

number of predicted hotspots were found at the monomer-

monomer interface (Figure 4a; Table S3), especially where the

respective N-terminal domains of the two monomers interact. At

this interface, significant alterations of residue-residue interactions

occur in the allosteric transition [58–60]. Mutations in this region

result in a non-inducible (i.e. allosterically unresponsive) pheno-

type [61,62]. In addition to residues designated as hotspots and

non-hotspots that were included in the independent data set, a key

interaction at the monomer-monomer interface, a salt bridge

between His 74 and Asp 278 that has been found to be important

for the allosteric transition in this system [63], is highlighted in

Figure 4a. Both of these residues were predicted hotspots by a

majority of the models. A striking observation is the asymmetry of

some of the predictions between the monomers. For instance, Lys

84, a known hotspot in the independent data set, is a predicted

hotspot by 8 out of 9 models in chain A, but in chain B, it is a

predicted hotspot by 4 out of 9 models (Table S3). This is

consistent with the observed crystallographic asymmetry between

the monomers, especially in the vicinity of Asp 149 [60,64,65].

Indeed, we found an all-atom RMSD of 5.55 Å between chain A

and B in the inducer-bound state (PDB code 1TLF). Moreover,

our finding is supported by the MD simulation study of Flynn et al.

[64], who observe structural asymmetry between monomers

during targeted MD simulations of the allosteric transition from

the DNA-bound to the inducer-bound state and even during the

equilibration phase, with an allosteric signal originating in the

‘‘trigger’’ monomer propagating to the ‘‘response’’ monomer.

The top-precision Hybrid Feature Set models predicted many

residues with known functional significance to be hotspots in the

myosin II motor domain (Figure 5; Table S3). The models

predicted hotspots in regions implicated in the coupling of ATP

hydrolysis with movement along actin filaments, in particular, a

large portion of the relay helix proximal to the ATP binding site

and the entirety of Switch II. Specifically, the models identified in

the relay helix Ile 499 as an intermediate hotspot, and Thr 474,

Glu 476, and Phe 506 as strong hotspots, consistent with

experimental data showing that mutations at these sites uncouple

ATPase activity and motor function [66–68]. In addition, Cys 678

in the SH2 helix, which, along with the SH1 and relay helix, holds

the converter domain in place, was identified as a hotspot.

Mutations at this residue have been found to reduce the velocity of

movement of myosin along actin [69]. The fact that the top-

precision models predicted all of Switch II residues (454–459) to be

hotspots is also noteworthy, for this region, which is close to the

nucleotide-binding site, couples ATP hydrolysis with motor

activity and is also homologous to the Switch II loop of G-

proteins, which connects the GTPase site to the effector binding

region, putatively playing a key role in coupling nucleotide

hydrolysis to effector affinity and activity [70,71].

Figure 2. Feature usage in the top 300 SVM models using Feature Set 2. For each feature, the number of models (frequency) in the top 300,
as ranked by F1 performance on the training data, that used that particular feature was tabulated.
doi:10.1371/journal.pcbi.1000531.g002
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Glucokinase is an enzyme that plays a role in regulating blood

glucose levels through its function as a glucose sensor. Congenital

mutations in this protein are associated with maturity-onset

diabetes of the young [72]. The models identified a number of

residues whose mutations cause this disease, which are the hotspots

labeled in Figure S1 [73–76]. Interestingly, the models predicted

residues that form contacts with the drug Compound A to be

hotspots. This drug enhances the enzyme’s affinity and enzymatic

activity, and has been considered as a candidate for treatment of

maturity-onset diabetes of the young [77]. This observation

suggests that solvent-exposed predicted hotspots might be targets

for drugs that have allosteric effects.

Glutamate dehydrogenase is an enzyme that plays an important

role in nitrogen/carbon metabolism, oxidatively deaminating

glutamate to 2-oxoglutarate, which is supplied to the TCA cycle

[78,79]. Like glucokinase, certain key mutations in this enzyme are

of clinical relevance, as those that reduce sensitivity to the allosteric

inhibitor GTP are associated with hyperinsulinism/hyperammone-

mia syndrome [80–83]. Mutations that result in this set of genetic

diseases are localized to a region known as the antenna domain that

contributes to allosteric regulation by mediating communication

among the enzyme subunits [84,85]. Like the other examples, a

network- or mosaic-like pattern of predicted hotspots was revealed

in the interior of the protein (Figure S2). However, the voting

scheme performed only moderately well at predicting mutations

implicated in hyperinsulinism/hyperammonemia syndrome, with

two correctly predicted hotspots (Ser 444 and Gly 452) and one

correctly predicted non-hotspot (Arg 466). This poorer performance

may result from our model’s tendency to predict hotspots in regions

of the protein with low solvent accessibility.

Table 7. Feature/kernel degree combinations from the top
300 models which used only sequence or inactive state
structural information.

F1 Precision Recall Feature Combination
Kernel
Degree

0.65 0.56 0.80 msf-i, lse 3

0.65 0.55 0.80 msf-i, lse, mut-info-i 3

0.65 0.55 0.80 msf-i, hbond-i, lse 3

0.65 0.56 0.77 msf-i, lse, mut-info-i 2

0.65 0.56 0.77 msf-i, lse, node-deg-i 3

0.64 0.56 0.75 msf-i, bfac-i, lse, node-deg-i 2

0.64 0.56 0.75 def-energ-i, msf-i, lse, mut-info-i 2

0.63 0.55 0.75 msf-i, lse, node-deg-i, mut-info-i 3

0.63 0.55 0.75 msf-i, lse 2

0.63 0.55 0.75 msf-i, bfac-i, hbond-i, lse 2

0.63 0.56 0.73 msf-i, hbond-i, lse, node-deg-i 3

0.63 0.56 0.73 def-energ-i, msf-i, lse 3

0.63 0.56 0.73 def-energ-i, msf-i, lse 2

0.63 0.53 0.77 msf-i, bfac-i, lse, mut-info-i 3

0.63 0.53 0.77 msf-i, bfac-i, mut-info-i 3

0.63 0.54 0.75 msf-i, bfac-i, lse, mut-info-i 2

0.63 0.54 0.75 def-energ-i, msf-i, hbond-i, lse 3

Precision, recall, and F1 scores calculated from the results of the nine-fold cross-
validation on the training set.
doi:10.1371/journal.pcbi.1000531.t007

Table 8. Top 20 highest performing feature/kernel degree combinations (as ranked by F1) using top 8 Set 1 features augmented
with deformation energy of the active state (abbreviated def-energ-r in the table) and the difference in deformation energy
between the inactive and active states (abbreviated diff-def-energ), Augmented Feature Set 1.

F1 Precision Recall Feature Combination Kernel Degree

0.71 0.64 0.80 msf-i, diff-hbond, lse, diff-at-dens, msf-a, bfac-a, def-energ-a 2

0.70 0.66 0.75 diff-hbond, lse, diff-at-dens, msf-a, def-energ-a 3

0.70 0.64 0.77 msf-i, diff-hbond, lse, diff-at-dens, diff-bfac, def-energ-a 3

0.69 0.63 0.77 diff-hbond, lse, diff-at-dens, msf-a, bfac-a, def-energ-a 3

0.69 0.61 0.80 msf-i, diff-hbond, lse, diff-at-dens, msf-a, bfac-a, diff-bfac, def-energ-a 2

0.69 0.63 0.75 def-energ-i, diff-hbond, lse, diff-at-dens, msf-a, bfac-a, def-energ-a 2

0.69 0.63 0.75 def-energ-i, diff-hbond, lse, diff-at-dens, msf-a, bfac-a, diff-def-energ 2

0.69 0.59 0.82 diff-hbond, lse, msf-a, diff-def-energ 3

0.69 0.58 0.84 def-energ-i, msf-i, lse, diff-def-energ 3

0.68 0.64 0.73 diff-hbond, lse, diff-at-dens, msf-a, bfac-a, def-energ-a, diff-def-energ 2

0.68 0.62 0.75 diff-hbond, lse, diff-at-dens, msf-a, bfac-a, def-energ-a 2

0.68 0.62 0.75 def-energ-i, diff-hbond, lse, diff-at-dens, msf-a, bfac-a 2

0.68 0.62 0.75 def-energ-i, msf-i, diff-hbond, lse, diff-at-dens, msf-a, diff-bfac, def-energ-a 3

0.68 0.61 0.77 msf-i, diff-hbond, lse, diff-at-dens, msf-a, diff-bfac, def-energ-a 3

0.68 0.54 0.91 msf-i, diff-hbond, msf-a 3

0.67 0.63 0.73 def-energ-i, diff-hbond, lse, diff-at-dens, msf-a, diff-def-energ 3

0.67 0.63 0.73 def-energ-i, msf-i, diff-hbond, lse, diff-at-dens, msf-a, bfac-a, def-energ-a 2

0.67 0.61 0.75 diff-hbond, lse, diff-at-dens, msf-a, bfac-a 2

0.67 0.61 0.75 def-energ-i, diff-hbond, lse, diff-at-dens, msf-a, diff-bfac 3

Precision, recall, and F1 scores calculated from the results of the nine-fold cross-validation on the training set.
doi:10.1371/journal.pcbi.1000531.t008
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Thrombin is a serine protease that plays key roles in both

promoting and preventing clotting [86–91]. Although thrombin is

regulated in many ways, one of its most well documented allosteric

regulators is Na+ [87,92,93], whose binding shifts the conforma-

tion from the ‘‘slow’’ form with anticoagulant activity to a ‘‘fast’’

form with procoagulant activity [87,94–100]. Of the residues that

were observed by Pineda et al. to be critical to the allosteric

transition, based on a three-fold change in the specificity ratio

upon mutation to alanine [26], Asp 189, Ser 214, and Val 163

were identified in our analysis as strong hotspots, and Thr 172 was

an intermediate hotspot (predicted by 6 out of 9 models; Table S3

and Figure S3). Additionally, Asp 221, another key hotspot

according to Pineda et al. [26], was a predicted hotspot in 4 out of

9 models. Asp 189 plays an important structural role in thrombin

allostery, coordinating waters to which the allosteric ligand, Na+, is

bound [87,101] and forming important interactions with the active

site in the slow-to-fast transition. Thr 172 stabilizes the 220-loop of

the Na+ binding site and links Glu 217 of the allosteric core to the

active site [26,87,102]. Ser 214, as well, makes important links

between the allosteric core and the active site [26,103]. Strikingly,

all residues that exhibited no change in their specificity ratios

according to Pineda et al. [26] were predicted as strong non-

hotspots (Table S3 and Figure S3). These residues are Asp 60E,

Lys 60F, Asn 60G, His 71, Thr 74, Trp 96, Arg 97, Glu 97A, Arg

175, and Trp 245 (Table S3 and Figure S3).

In addition, Tyr 225 and Tyr 184A, two residues designated as

part of the allosteric core [26,103], were strong (predicted by 9 out

of 9) and intermediate (predicted by 6 out of 9) hotspots,

respectively. However, we did not include these residues in the

independent data set, as their mutations to alanine did not meet

the significance threshold (.three-fold) for the change in

specificity ratio [26]. Tyr 225 is crucial for Na+ allostery, allowing

Lys 224 to adopt a conformation able to coordinate Na+ and

forming the water channel that connects the Na+ allosteric site to

the substrate-binding site [26,104]. Tyr 184A stabilizes one of the

water molecules to which Na+ is coordinated.

Since lac repressor has been subjected to the most exhaustive

site-directed mutagenesis of any of the protein systems in the

independent data set [61], we considered lac repressor as a model

system for comparing our predictions with the ‘‘true’’ distribution

of hotspots in a protein. That is, lac repressor allows us to evaluate

the sparsity of a network of experimentally determined hotspots

and the degree of overlap between the true network and the

predicted network. This is not possible with the other proteins in

our independent data set, because they were mutated to one or

two other residues at most in their respective experimental studies,

giving an incomplete picture of the propensity of mutations to

perturb allostery. Markiewicz et al., on the other hand, substituted

every residue in lac repressor with 12–13 others. Additionally, only

a small fraction of residues in the other proteins were studied by

mutagenesis, while all the residues in lac repressor were studied.

For our analysis, we considered all residues that caused the IS

phenotype (unresponsive to allosteric inducer). This is a larger set

of hotspots than was included in the independent data set, because

this larger set includes residues that result in a strong I2 phenotype

(nonfunctional) after certain substitutions. Hotspots of the

independent data set were a subset of the residues associated with

IS for which no substitution caused a strong I2 phenotype, as we

wanted to focus the evaluation of our models specifically on

residues relevant only to allostery and not to stability or folding.

First, we counted the number of residues associated with IS. 113

residues out of the 329 that were studied by Markiewicz et al. [61]

Table 9. Performance of the top Feature Set 1-models on the independent data set.

F1 Precision Recall Feature Combination Kernel Degree

0.73 0.67 0.81 msf-i, diff-hbond, mut-info-i, msf-a, diff-msf 3

0.68 0.60 0.78 msf-i, mut-info-i, msf-a 3

0.68 0.59 0.81 msf-i, diff-hbond, mut-info-i, msf-a 3

0.67 0.61 0.76 msf-i, diff-hbond, msf-a, diff-msf 3

0.67 0.61 0.73 msf-i, hbond-a, msf-a 3

0.67 0.58 0.78 msf-i, diff-hbond, diff-at-dens, mut-info-i, msf-a 3

0.66 0.58 0.76 msf-i, diff-hbond, msf-a 3

0.66 0.58 0.76 msf-i, bfac-i, msf-a 3

0.66 0.62 0.70 msf-i, msf-a, diff-msf 3

0.66 0.64 0.68 msf-i, diff-hbond, msf-a 2

0.66 0.64 0.68 msf-i, diff-hbond, diff-at-dens, msf-a 2

0.66 0.70 0.62 hbond-a, hbond-i, lse, mut-info-i, msf-a, diff-msf 3

0.65 0.63 0.68 msf-i, bfac-i, diff-hbond, msf-a 3

0.64 0.57 0.73 msf-i, diff-hbond, diff-at-dens, msf-a 3

0.64 0.61 0.68 def-eng-i, msf-i, diff-hbond, msf-a 3

0.63 0.67 0.59 hbond-a, hbond-i, lse, msf-a, diff-msf 3

0.62 0.68 0.57 hbond-a, hbond-i, lse, diff-at-dens, msf-a, diff-msf 3

0.61 0.61 0.62 hbond-i, lse, diff-at-dens, msf-a, diff-msf 3

0.60 0.61 0.59 diff-hbond, lse, diff-at-dens, pert-clust-coeff-i, msf-a, bfac-a 2

0.60 0.61 0.59 msf-i, diff-hbond, lse, at-dens-a, diff-at-dens, pert-clust-coeff-i, msf-a, bfac-a 2

Each of the top 300 feature/kernel degree combinations (as determined by the leave-one-out cross-validation) was used to train a model on the entire training data set.
The resulting models were tested on the independent data set.
doi:10.1371/journal.pcbi.1000531.t009

Predictive Models for Allosteric Hot Spots

PLoS Computational Biology | www.ploscompbiol.org 11 October 2009 | Volume 5 | Issue 10 | e1000531



had at least one substitution which resulted in IS. When we labeled

the structure with all the IS mutations, a dense pattern of mostly

buried residues surrounding the inducer site emerged with

appreciable aggreement with our predicted hotspots (Figure 4b;

Table S4). Although this experimental finding seems contrary to

the assertion that a sparse network of residues mediates allostery,

we emphasize that this analysis considers all residues important in

allostery and not just the most critical ones. Indeed, the most

critical interactions, or those that most perturb the allosteric

coupling free energy, may form a sparse network topology. The

fact that our residues overlap appreciably with the complete set of

residues observed experimentally to be important for allostery

suggests that our models ‘‘cast a wide net,’’ identifying residues

that are strongly important in allostery as well as those that have

more modest effects when mutated. Additionally, we calculated

the recall of the top–precision Hybrid Feature Set models on all IS

mutations. Given the asymmetry in the predictions owing to

asymmetry in the dynamical properties and structure of lac

repressor, we defined a true positive prediction as a residue

predicted to be a hotspot by at least 5 of 9 models in at least one

chain (Table S4). The recall was 0.83.

Comparison of Machine-Learning Models with Statistical
Coupling Analysis

We compared the performance of our best models with

Statistical Coupling Analysis (SCA; [33]), a method used

previously to investigate allosteric coupling [50–52], using code

provided by the Ranganathan laboratory. The method relies on a

multiple sequence alignment, followed by calculation of pairwise

DDG values and hierarchical clustering of the matrix DDG. The

multiple sequence alignment was done using the parameters

prescribed by the developers of the method in other allostery

studies [50–52]. All clustered matrices along with dendrograms are

available in Supplementary Information. We identified clusters of

residues based on simultaneous inspection of the clustered matrix

of DDG values and dendrograms (Figure S4). Clusters of

allosterically important residues were defined by regions in the

clustered DDG matrix that contained significant amounts of points

greater than or equal to 1.6 kT, which also coincided with cluster

demarcations naturally defined by groups of branches in the

dendrogram. For the training data set (consisting of 94 data

points), SCA yielded a precision of 0.44, a recall of 0.16, and an F1

of 0.23. For the independent data set (consisting of 87 data points),

SCA did considerably better, with a precision of 0.56, a recall of

0.51, and an F1 of 0.54. Considering all the data at once, SCA had

a precision of 0.52, a recall of 0.32, and an F1 of 0.40.

Discussion

In this work, we assembled a data set of residues that have been

found experimentally to either perturb allostery (hotspots) or not

(non-hotspots). We then calculated features for each data point, i.e.,

mutation site, to train machine-learning models that can predict a

mutation’s impact on allostery. We compared the performance of

models based on structural, dynamic, network, and informatic

features (Feature Set 1 and Augmented Feature Set 1) with ones

trained on structural features requiring both inactive and active

state structures (Feature Set 2). An advantage of our approach is that

the models make automatic predictions about whether a residue is a

hotspot or non-hotspot, avoiding the need for qualitative assessment

or manual data analysis, and make use of a broad range of residue-

level attributes implicated in allostery. Furthermore, our methods

Table 10. Performance of top Feature Set 2-models on the independent data set.

F1 Precision Recall Feature Combination Kernel Degree

0.69 0.56 0.89 Ca-disp, dchi2, asa1, asaavg, asasc1, asabb1 3

0.69 0.56 0.89 Ca-disp, dpsi, dchi2, asaavg, asascavg, asabb1 3

0.69 0.56 0.89 Ca-disp, asa1, asaavg, asasc1, asabb1, asabbavg 3

0.69 0.55 0.92 dpsi, asaavg, asascavg 3

0.68 0.59 0.81 sc-flip, asa2, asaavg, asasc2, asascavg, asabb1 3

0.67 0.58 0.81 Ca-disp, sc-flip, dchi1, dchi2, asasc2, asascavg, asabb1 2

0.67 0.55 0.86 dpsi, dchi1, asascavg 2

0.67 0.55 0.86 Ca-disp, sc-flip, dchi2, asa1, asaavg, asasc2 3

0.67 0.55 0.86 Ca-disp, asa1, asasc1, asascavg, asabbavg 2

0.67 0.55 0.86 Ca-disp, fI, asaavg, asasc1, asascavg, asabbavg 2

0.67 0.54 0.89 Ca-disp, dpsi, asa1, asa2 3

0.67 0.54 0.89 Ca-disp, asa1, asaavg, asasc1 2

0.67 0.57 0.81 dchi1, dchi2, asasc2, asascavg, asabb1 2

0.67 0.55 0.84 dpsi, dchi2, asasc1, asascavg, asabb1, asabb2 3

0.67 0.54 0.86 dpsi, dchi2, asaavg 3

0.67 0.54 0.86 dpsi, asaavg, asascavg, asabbavg 3

0.67 0.54 0.86 dpsi, asa2, asaavg, asascavg, asabb1, asabb2 3

0.67 0.54 0.86 dpsi, asa1, asa2, asaavg, asasc1, asabb1 3

0.67 0.54 0.86 Ca-disp, dchi2, asaavg, asascavg 2

0.67 0.54 0.86 Ca-disp, dpsi, dchi2, asa2, asascavg, asabb1 3

Each of the top 300 feature/kernel degree combinations (as determined by the leave-one-out cross-validation) was used to train a model on the entire training data set.
The resulting models were tested on the independent data set. The top 20 models are given above.
doi:10.1371/journal.pcbi.1000531.t010

Predictive Models for Allosteric Hot Spots

PLoS Computational Biology | www.ploscompbiol.org 12 October 2009 | Volume 5 | Issue 10 | e1000531



do not require long simulations or free energy calculations, which

are difficult to perform when screening a large number of residues.

After testing all possible combinations of features on the training

data set, we evaluated feature usage by the top-scoring models to

provide insights into what may be residue-level signatures of

allostery. In top-scoring models using Feature Set 1, deformation

energy, mean-squared fluctuation, B-factor, atomic density,

hydrogen bonding, and local structural entropy were predomi-

nant. In Feature Set 2, a-carbon displacement and solvent-

accessible surface area measures predominated. We then com-

bined the features that were predominant in top scoring models

(based on the training data set) of each of these two feature sets and

trained models using this feature set (Hybrid Feature Set). It was

this hybrid set that performed best on the training and

independent data sets.

Examination of Feature Usage by Top-scoring Models
Features that predominate in high scoring models should be

examined individually in the context of other work on allostery.

Our examination of feature usage suggests that deformation

energy is an important residue property in allostery. Deformation

energy reflects a residue’s participation in a protein hinge, and one

can envision that hinge regions would coincide with residues of

allosteric relevance. Others have applied residue-level constraints

and analyzed their effects on the protein structure to define

domains within a protein [105]. In a similar vein, Jacobs et al.

[106] analyzed the network of constraints in a protein to define

domains and predict flexible regions. Kovacs et al. [107] defined

deformability in a stress tensor formulation using normal modes

and applied this method to a set of kinases, two of which are

Table 11. Performance of models that used only inactive
state structure and/or sequence information from the top 300
on the independent data set.

F1 Precision Recall Feature Combination
Kernel
Degree

0.56 0.54 0.59 msf-i, lse 3

0.56 0.54 0.59 def-eng-i, msf-i, lse 3

0.55 0.54 0.57 msf-i, hbond-i, lse 3

0.55 0.56 0.54 msf-i, lse, node-deg-i, mut-info-i 3

0.55 0.56 0.54 msf-i, bfac-i, hbond-i, lse 2

0.55 0.53 0.57 msf-i, lse, mut-info-i 3

0.55 0.53 0.57 msf-i, bfac-i, lse 3

0.54 0.54 0.54 msf-i, lse, node-deg-i 3

0.54 0.54 0.54 msf-i, lse 2

0.53 0.53 0.54 msf-i, bfac-i, lse, mut-info-i 3

0.53 0.51 0.54 def-eng-i, msf-i, hbond-i, lse 3

0.52 0.53 0.51 msf-i, lse, mut-info-i 2

0.52 0.53 0.51 msf-i, bfac-i, lse, mut-info-i 2

0.51 0.57 0.46 def-eng-i, msf-i, lse, mut-info-i 2

0.50 0.55 0.46 msf-i, bfac-i, lse, node-deg-i 2

0.49 0.53 0.46 def-eng-i, msf-i, lse 2

0.49 0.57 0.43 msf-i, hbond-i, lse, node-deg-i 3

doi:10.1371/journal.pcbi.1000531.t011

Table 12. Performance of the top 20 models consisting of the top 8 features from Set 1 augmented with deformation energy of
the active state (abbreviated def-energ-a in the table) and the difference in deformation energy between the inactive and active
states (abbreviated diff-def-energ) on the independent data set (Augemented Feature Set 1).

F1 Precision Recall Feature Combination Kernel Degree

0.68 0.67 0.70 def-energ-i, msf-i, diff-at-dens, msf-a, def-energ-a 2

0.68 0.68 0.68 def-energ-i, msf-i, diff-hbond, msf-a 2

0.68 0.63 0.73 msf-i, diff-hbond, msf-a, diff-def-energ 3

0.67 0.66 0.68 msf-i, diff-at-dens, msf-a, diff-def-energ 2

0.67 0.66 0.68 msf-i, diff-hbond, msf-a, def-energ-a 2

0.67 0.63 0.70 msf-i, msf-a, def-energ-a 2

0.66 0.58 0.76 msf-i, diff-hbond, msf-a 3

0.66 0.62 0.70 msf-i, diff-hbond, msf-a, def-energ-a 3

0.66 0.64 0.68 msf-i, diff-hbond, msf-a 2

0.66 0.64 0.68 msf-i, diff-hbond, diff-at-dens, msf-a 2

0.66 0.64 0.68 msf-i, diff-hbond, diff-at-dens, msf-a, def-energ-a 2

0.66 0.67 0.65 def-energ-i, msf-i, diff-hbond, diff-at-dens, msf-a 2

0.65 0.65 0.65 msf-i, msf-a, diff-def-energ 2

0.65 0.65 0.65 msf-i, diff-at-dens, msf-a, def-energ-a, diff-def-energ 2

0.64 0.57 0.73 msf-i, diff-hbond, diff-at-dens, msf-a 3

0.64 0.66 0.62 def-energ-i, lse, msf-a, def-energ-a, diff-def-energ 3

0.62 0.62 0.62 msf-i, diff-hbond, lse, msf-a, def-energ-a 3

0.62 0.59 0.65 def-energ-i, msf-i, diff-hbond, msf-a 3

0.61 0.61 0.62 def-energ-i, msf-i, lse, diff-at-dens, diff-def-energ 3

0.61 0.63 0.59 msf-i, diff-hbond, diff-at-dens, msf-a, diff-def-energ 2

Precision, recall, and F1 scores were calculated from the results on the independent data set.
doi:10.1371/journal.pcbi.1000531.t012
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known to be allosteric (cyclin-dependent kinase and cAMP-

dependent protein kinase), demonstrating good agreement with

experimentally determined hinge regions. The ability of constraint

or deformation measures to define domains taken together with

work demonstrating inter-domain communication as a basis for

allostery [43,46–48,52] is consistent with the observed importance

of deformation as a residue property in allostery in this study. We

also considered the deformation energy of a residue in the active

state along with the difference in this measure between the active

and inactive state as features, and retrained combinations of the

top 8 Feature Set 1 features supplemented with these two features.

Top models trained using this feature set performed better on the

training data set than the top models trained with all possible

combinations of the original 18 features in Set 1, suggesting that

deformation energy of the active state and changes in deformation

energy are key features in describing allosteric properties of

residues.

Measures related directly to solvent-accessible surface area

(SASA) and those that correlate with SASA were also found to be

features important for describing allostery. In Feature Set 1, the

difference between normalized B-factors and atomic densities in

the active and inactive states, along with the magnitudes of mean-

squared fluctuations in the active and inactive states, were

predominant features in the top models. Mean-square fluctuation

and B-factor indirectly reflect the degree of exposure to the

surface, while atomic density relates directly to solvent exposure.

In addition, SASA-related features were found to be especially

dominant in the top- scoring models created using Feature Set 2.

The observed prevalence of these features in top-scoring models

was confirmed by inspecting the average values of these measures

for hotspots and non-hotspots. Mean-squared fluctuation in the

inactive state, atomic density in the inactive and active states, and

most SASA measures were all significantly lower for hotspots than

for non-hotspots, suggesting that hotspots tend to be buried (Table

S5; Refer to table for p-values). Interestingly, the B-factor

difference between the two states was larger for hotspots than

non-hotspots. The difference was also moderately statistically

significant (Table S5; p = 0.056), suggesting that hotspots tend to

undergo greater changes in solvent-accessibility (and mobility)

than non-hotspots. Taken together, these results point to the

importance of residue burial or change in burial in allostery.

Allosteric hotspots may derive their unique function from their

tendency to be buried, allowing them to form internal networks

within the structure, as well as change their solvent exposure, and,

in turn, their microenvironment, during the allosteric transition.

Consistent with the importance of B-factor and mean-squared

fluctuations in our models is the fact that residue fluctuations and

correlations in fluctuations have been found computationally to

yield putative allosteric networks of communication, with

confirmation by experiment in some cases [36,37]. In addition,

other work demonstrated the importance of coupled changes in

fluctuation to allostery [108]. In an indirect fashion, one can see a

parallel between the importance of fluctuations and coupled

fluctuations and work using the COREX algorithm [39], which

revealed functionally relevant thermodynamic couplings based on

the relative distributions of residue folding states [40–42]. The key

parallel lies in the fact that this approach models the native-state as

ensembles of microstates in which residues may exist in either a

folded or unfolded state. These microstates can be considered

analogous to thermal fluctuations or local pico- to nanosecond-

scale motions that allow the protein to sample conformations

separated by low-lying energy barriers.

The observed prevalence of another feature related to changes

in solvent-accessible surface area in Feature Set 1, the difference in

Figure 3. Improvement of F1 upon successive feature addition. The bar on the far right represents a feature combination from the top 10
models. Preceding bars represent feature combinations where each bar contains one feature fewer than the bar to its right.
doi:10.1371/journal.pcbi.1000531.g003
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atomic density between active and inactive states, can also be

related to important work in allostery. In particular, this finding is

consistent with work showing the ability of networks of changes in

residue contacts to identify putative allosteric communication and

experimental hotspots [44].

A striking result from our analysis was the prevalence of local

structural entropy, which is essentially a measure of the potential

variability in protein secondary structure. The importance of the

variability of secondary structure can be related to work using

COREX [39], as this method relies on generating ensembles of

structures where contiguous groups of residues are permitted to

exist either in a folded or unfolded state, highlighting the utility of

considering local structural variability. Hotspots on average had

lower local structural entropy than non-hotspots (Table S5;

p = 0.032), suggesting that hotspots have greater stability in their

local secondary structure than non-hotspots.

Our analysis further revealed the importance of differences in

hydrogen bonding between the inactive and active states,

underscoring the role of this feature in governing processes that

require microenvironmental specificity. We found that hotspots

undergo greater changes in their hydrogen-bonding network in the

allosteric transition than non-hotspots (Table S5; p = 0.031). This

observation is consistent with the hypothesis that allosterically

important protein regions undergo changes in their microenvi-

ronments in the allosteric transition. Protein-protein binding is one

such process that requires a high degree of microenvironmental, or

residue scale, specificity and depends highly on hydrogen bonding

[109–112]. A similar dependence on microenvironmental speci-

ficity may underlie allosterically relevant domain-domain interac-

tions [43], making it reasonable to hypothesize that changes in the

domain-domain chemical microenvironment, including changes in

hydrogen bonding, could be critical for allostery. Recently, Datta

et al. [31] found a network of hydrogen bonds connecting the

allosteric site to the active site within a monomer of caspase-1,

suggesting that intradomain hydrogen bonding can mediate

allosteric effects as well.

We were surprised to observe the low occurrence in the top

models of the two network related properties, node degree and

perturbation of the clustering coefficient upon node removal of the

inactive state, given the demonstration that proteins are small-

world networks [113,114]. It may be the case that network

properties of a single static structure are insufficient to describe

allostery, which is defined by two-end state structures and potential

intermediates. This is supported by the work of Daily et al. [44], in

which important network relationships were inferred using both

end-state structures.

Models Requiring a Single Protein Structure
We examined our top scoring models from Feature Set 1 to

determine if any of them required only a single structure, since in

many systems, the crystal structure for only one conformation has

been solved. Models that required the inactive state structure alone

were found among the top 300 models, but none required only the

active state structure. This suggests that the inactive state encodes

a greater amount of relevant functional information than the

active state. This is consistent with the observation that the

inactive state is predisposed toward adopting functionally relevant

conformations and can undergo the allosteric transition in the

absence of effector [20–22].

Combining Feature Set 1 and 2: Hybrid Feature Set
Because neither Feature Set 1 nor 2 appeared to be absolutely

superior in performance, we created an optimal ‘‘hybrid’’ feature

set by combining the top features of each. The hybrid set

outperformed either set 1 or set 2 individually. Specifically, top

Hybrid Feature Set models achieved the highest F1 scores on the

training data set and independent data sets with a statistically

significant (p,2.2e-16; for both data sets) improvement over the

non-mixture feature set that scored best on the training data, Set 2.

This result suggests that optimal predictions of allosteric functional

properties from protein structure and sequence must account both

for dynamic properties of the protein structure and for structural

differences between the end-states. Moreover, one can say that

empirical structural observations can work synergistically with

dynamical properties that are based on a simple mechanical

model, i.e., the elastic network model for normal mode

calculations.

Comparison of SVM models with Statistical Coupling
Analysis (SCA)

Top-scoring SVM models trained using Feature Set 1, Set 2,

Augmented Set 1, and the Hybrid Feature Set outperformed SCA

in sensitivity and accuracy of class prediction. The difference in

performance could be due to two reasons. First, SCA is based strictly

on sequence, whereas our methods rely on sequence, structural,

dynamical, and network features. Second, SCA was not originally

developed as an allosteric hotspot-prediction method per se, but as a

method for revealing thermodynamic coupling between residues

more generally. Thermodynamic coupling underlies diverse protein

Table 13. Feature/kernel degree combinations from the top
300 models that used only two or three features.

F1 Precision Recall Feature Combination
Kernel
Degree

0.68 0.54 0.91 msf-i, diff-hbond, msf-a 3

0.65 0.55 0.82 msf-i, diff-hbond, msf-a 2

0.65 0.56 0.80 msf-i, lse 3

0.65 0.54 0.82 msf-i, msf-a, diff-msf 3

0.65 0.55 0.80 msf-i, lse, diff-msf 3

0.65 0.55 0.80 msf-i, lse, mut-info-i 3

0.65 0.55 0.80 msf-i, diff-hbond, lse 3

0.65 0.55 0.80 msf-i, hbond-i, lse 3

0.65 0.56 0.77 msf-i, lse, mut-info-i 2

0.65 0.56 0.77 msf-i, lse, node-deg-i 3

0.64 0.54 0.80 msf-i, hbond-a, msf-a 3

0.64 0.55 0.77 msf-i, lse, diff-bfac 3

0.64 0.55 0.77 msf-i, diff-hbond, lse 2

0.64 0.55 0.77 msf-i, hbond-a, lse 3

0.64 0.52 0.82 msf-i, mut-info-i, msf-a 3

0.63 0.55 0.75 msf-i, lse 2

0.63 0.56 0.73 msf-i, lse, at-dens-a 3

0.63 0.56 0.73 def-energ-i, msf-i, lse 3

0.63 0.56 0.73 def-energ-i, msf-i, lse 2

0.63 0.53 0.77 msf-i, lse, diff-at-dens 3

0.63 0.53 0.77 msf-i, bfac-i, lse 3

0.63 0.54 0.75 msf-i, hbond-i, msf-a 2

0.63 0.54 0.75 msf-i, bfac-i, msf-a 3

Precision, recall, and F1 scores calculated from the results of the nine-fold cross-
validation on the training set.
doi:10.1371/journal.pcbi.1000531.t013
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properties, in particular folding, not just allostery. Indeed, observed

patterns of evolutionary coupling in the WW domain family have

been successfully used to design stably folding novel WW domain

sequences [115]. While SCA lent early insights to residue-level

thermodynamic coupling in key systems, we see that features based

on protein structures provide the essential information for

describing allostery. Nonetheless, the elegance and utility of the

SCA method, which yields relevant information with a single

measure, qualifies it as an important and complementary tool.

Structural Analysis of Predicted Hotspot Residues Using
Hybrid Feature Set Models

To shed light on the pattern of hotspots in the structures, we

applied a voting scheme to the Hybrid Feature Set models with the

highest precision on the independent data set to make predictions

for every residue of each protein in the independent data set. This

voting among models was adopted to avoid the limitations of any

single model in predictive power. Furthermore, this scheme yields

a continuum of predictions based on how many models predict a

hotspot or non-hotspot for each residue. That is, this method not

only predicts which residues are strong hotspots or non-hotspots,

in which cases the models cast a unanimous or nearly unanimous

vote for hotspot or non-hotspot, but it also uncovers residues with

intermediate relevance to allostery, where there is not a large

majority of models predicting either class.

Predicted hotspots tended to occur at highest densities in the

interior of the structures, while non-hotspots tended to be found in the

periphery of the proteins studied, consistent with the work of others

demonstrating the importance of internal networks of residues

connecting distant sites in allosteric proteins [25,30,44,50–52]. Our

predictions were found to be consistent in many cases with point

mutant data and with experimentally elucidated functionalities of the

various structural motifs in the proteins that we studied. While the

analyses in this work suggest that perturbation of buried residues is

more likely to disrupt allostery than is perturbation of exposed

residues, we caution against taking this conclusion generally. For

example, most of the known hotspots in glutamate dehydrogenase

were close to the protein surface, and our top-precision models missed

some of these residues. Similarly, in thrombin, the known hotspots

that were more buried were classified as hotspots, while solvent

exposed hotspots were not.

We examined the topology of all residues whose substitution

with any residue has been found experimentally to cause IS in lac

repressor [61] and compared it with the topology of hotspots

predicted by the top precision Hybrid Feature Set models. This

system is noteworthy in that all residues were substituted with 12–

13 others in the study of Markiewicz et al., thus enabling us to

compare our predictions with a case in which hotspots were

exhaustively examined through experimental study. We found that

the pattern of residues that cause IS is dense and shows significant

overlap with the predicted hotspots, suggesting that our method

can yield insight into the true distribution of hotspots in a protein.

One notable observation was that in one of the proteins,

glucokinase, residues that made contacts with the synthetic

allosteric activator, Compound A, were all predicted hotspots

and some of these were known hotspots included in the

independent data set. Compound A enhances the activity of

glucokinase and has been considered as a therapy for diabetes, as

glucokinase acts as a glucose sensor that plays a role in the

regulation of serum glucose levels. This result suggests that

predicted solvent-accessible hotspots might be candidates for

binding sites of small-molecule effectors that can rescue the

Table 14. Top 20 highest performing feature/kernel degree combinations (as ranked by F1) using all possible combinations of a
mixture of Set 1 and Set 2 features that were found most frequently in the top-scoring models made using all possible
combinations of each of the two feature sets separately (Hybrid Feature Set).

F1 Precision Recall Feature Combination Kernel Degree

0.73 0.65 0.84 def-energ-i, msf-i, diff-hbond, lse, diff-at-dens, bfac-a, diff-bfac, asa2, asaavg, asasc1, asascavg, asabb1 3

0.73 0.65 0.84 def-energ-i, msf-i, diff-hbond, lse, diff-at-dens, bfac-a, diff-bfac, asa2, asaavg, asasc1, asascavg, asabb1 3

0.72 0.68 0.77 def-energ-i, diff-hbond, lse, bfac-a, Ca-disp, asasc1, asasc2, asascavg, asabb1, asabbavg 2

0.72 0.68 0.77 def-energ-i, diff-hbond, lse, bfac-a, Ca-disp, asa2, asaavg, asasc2 2

0.72 0.66 0.80 def-energ-i, diff-hbond, lse, diff-at-dens, diff-bfac, asascavg 3

0.72 0.66 0.80 def-energ-i, msf-i, lse, diff-at-dens, bfac-a, diff-bfac, asa1, asa2, asasc1, asasc2, asabb1 3

0.72 0.64 0.82 def-energ-i, msf-i, lse, diff-at-dens, bfac-a, diff-bfac, asa1, asa2, asasc1, asascavg, asabb1 3

0.72 0.64 0.82 def-energ-i, msf-i, diff-hbond, lse, diff-at-dens, bfac-a, diff-bfac, asa2, asaavg, asasc1, asasc2, asascavg, asabb1 3

0.72 0.64 0.82 def-energ-i, msf-i, diff-hbond, lse, diff-at-dens, bfac-a, diff-bfac, asa1, asaavg, asasc1, asasc2, asabbavg 3

0.72 0.64 0.82 def-energ-i, msf-i, diff-hbond, lse, diff-at-dens, bfac-a, diff-bfac, asa1, asaavg, asasc1, asasc2, asabbavg 3

0.72 0.64 0.82 def-energ-i, msf-i, diff-hbond, lse, diff-at-dens, bfac-a, diff-bfac, asa1, asa2, asasc1, asascavg, asabbavg 3

0.72 0.64 0.82 def-energ-i, msf-i, diff-hbond, lse, diff-at-dens, bfac-a, diff-bfac, asa1, asa2, asasc1, asascavg, asabbavg 3

0.72 0.69 0.75 def-energ-i, diff-hbond, lse, bfac-a, asasc1, asasc2, asascavg 2

0.72 0.61 0.86 def-energ-i, lse, Ca-disp, asasc2, asabb1, asabbavg 3

0.72 0.61 0.86 def-energ-i, diff-hbond, lse, asasc2 3

0.72 0.67 0.77 def-energ-i, diff-hbond, lse, bfac-a, Ca-disp, asa1, asa2, asasc1, asasc2, asabbavg 2

0.72 0.67 0.77 def-energ-i, diff-hbond, lse, bfac-a, Ca-disp, asa1, asa2, asaavg, asasc2, asascavg, asabbavg 2

0.72 0.67 0.77 def-energ-i, diff-hbond, lse, bfac-a, diff-bfac, asa2, asaavg, asasc2 2

0.72 0.67 0.77 def-energ-i, diff-hbond, lse, bfac-a, asasc2, asascavg, asabbavg 2

Precision, recall, and F1 scores were calculated from the results of the nine-fold cross-validation on the training set.
doi:10.1371/journal.pcbi.1000531.t014
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behavior of mutant proteins. Liu and Nussinov [116] suggest in

their study of mutants that modulate the function of von Hippel-

Lindau protein allosterically (that is, the effects of the mutations

are manifested distally) that such mutations can be mimicked by

drugs. Moreover, allosteric approaches to targeting of G-protein-

coupled receptors are increasingly recognized to be highly selective

and have low propensity for side effects [117].

Conclusion
We have demonstrated that machine-learning models using

dynamical, structural, informatic, and network features can

discriminate between allosteric hotspots and non-hotspots with

high sensitivity and accuracy, that the patterns of predictions form a

network of residues within the structures, and that hotspots correlate

with regions of known functional relevance. In our structural

analysis, we exploited the exhaustive nature of an experimental

mutagenesis study of lac repressor [61] to approximate the ‘‘true’’

topological distribution of allosteric hotspots in the protein and

compared this with the distribution of predicted hotspots. We have

shown that our hotspot predictions overlap appreciably with

experimental hotspots. One key observation is noteworthy, which

is that the pattern of experimental hotspots is dense. Although this seemingly

conflicts with the sparse networks observed by others [50,51,118],

one must keep in mind that computational studies that rely on a

single property like evolutionary co-conservation may yield

incomplete information [50,51], and that many experimental

studies focus on only a few sites of interest [118].

We hope our methods can help experimentalists identify

residues that contribute to mechanisms of allostery in proteins of

interest. Typically, residues thought to participate in the allosteric

transition are those that undergo significant structural alterations

between the inactive and active states or those that interact at

subunit interfaces. Thus, site-directed mutagenesis studies probing

the allosteric transition tend to target these residues. However,

other residues may play key roles in the transition yet are not

targeted, since they do not undergo obvious structural rearrange-

ments. The observed importance of dynamics in addition to

structure suggests that traditional structure-based approaches to

selecting candidate residues for mutagenesis may not give a

complete picture of allosterically relevant residues. Our methods

overcome this shortcoming by including dynamical as well as

structural features. Predictions made by our methods may be used

to guide experimentalists in their choice of residues to target in

mutagenesis studies, in particular, residues that would not be

considered relevant to allostery based on structural methods alone.

An important test of our methods will be whether predicted

hotspot residues correlate with those whose mutations result in

significant perturbation of the allosteric coupling free energy

between sites, DDDG, defined as follows:

DDDG~DDGmut{DDGwt, ð11Þ

where DDGmut and DDGwt are the site-site coupling free energies of

the mutant and wildtype, respectively. Due to the paucity of such

measures in the experimental literature, our training data was

chosen based on indirect measures of coupling free energies.

However, the most appropriate validation of our predictions

would be the demonstration of a correlation between hotspot

predictions and perturbation of coupling free energy averaged

over all 19 possible mutations, DDDG.

Table 15. Performance of the top models consisting of mixtures of the top Set 1 and Set 2 features on the independent data set
(Hybrid Feature Set).

F1 Precision Recall Feature Combination Kernel Degree

0.73 0.67 0.78 msf-i, diff-at-dens, msf-a, asaavg, asascavg, asabb1, asabbavg 2

0.73 0.67 0.78 msf-i, diff-hbond, msf-a, Ca-disp, asasc1, asabbavg 2

0.73 0.67 0.78 msf-i, diff-hbond, msf-a, Ca-disp, asasc1, asabb1 2

0.73 0.67 0.78 msf-i, diff-hbond, msf-a, Ca-disp, asa1, asabbavg 2

0.73 0.67 0.78 msf-i, diff-hbond, msf-a, asaavg, asasc1, asabb1 2

0.72 0.71 0.73 diff-hbond, msf-a, Ca-disp, asaavg, asasc2, asascavg, asabbavg 3

0.72 0.68 0.76 diff-hbond, msf-a, Ca-disp, asa1, asa2, asaavg, asasc1, asascavg, asabbavg 3

0.72 0.66 0.78 msf-i, diff-hbond, msf-a, Ca-disp, asa1, asabb1 2

0.71 0.64 0.81 msf-i, diff-at-dens, asaavg, asascavg, asabb1, asabbavg 3

0.71 0.64 0.81 msf-i, diff-hbond, msf-a, Ca-disp, asa1, asabb1, asabbavg 3

0.71 0.64 0.81 msf-i, diff-hbond, msf-a, asa1, asabbavg 3

0.71 0.64 0.81 msf-i, diff-hbond, msf-a, asa1, asasc1, asabbavg 3

0.71 0.64 0.81 msf-i, diff-hbond, diff-at-dens, msf-a, asa1, asascavg, asabb1, asabbavg 3

0.71 0.62 0.84 msf-i, diff-at-dens, msf-a, asa2, asaavg, asasc2, asascavg, asabb1 3

0.71 0.67 0.76 msf-i, diff-hbond, msf-a, Ca-disp, asasc1, asabb1, asabbavg 2

0.71 0.67 0.76 msf-i, diff-hbond, msf-a, Ca-disp, asaavg, asasc1, asabb1 2

0.71 0.67 0.76 msf-i, diff-hbond, msf-a, Ca-disp, asa1 2

0.71 0.67 0.76 msf-i, diff-hbond, msf-a, Ca-disp, asa1, asasc1, asabbavg 2

0.71 0.67 0.76 msf-i, diff-hbond, msf-a, Ca-disp, asa1, asasc1, asabb1, asabbavg 2

0.71 0.67 0.76 msf-i, diff-hbond, msf-a, asa1, asabbavg 2

Precision, recall, and F1 scores were calculated from the results on the independent data set. Listed are the top scoring feature/kernel degree combinations as ranked by
F1 on the independent data set.
doi:10.1371/journal.pcbi.1000531.t015
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Table 16. The top 9 models with the highest precision on the independent data set that were used in the structural analysis.

F1 train P train R train F1 ind P ind R ind Feature Combination
Kernel
Degree

0.65 0.54 0.84 0.70 0.75 0.65 msf-i, diff-hbond, msf-a, Ca-disp, asa2, asaavg, asasc1, asasc2, asascavg, asabbavg 3

0.65 0.55 0.80 0.70 0.74 0.68 msf-i, diff-at-dens, Ca-disp, asaavg, asabb1, asabbavg 2

0.64 0.57 0.73 0.69 0.73 0.65 msf-i, diff-hbond, bfac-a, Ca-disp, asa2, asasc1, asabb1, asabbavg 2

0.63 0.56 0.70 0.69 0.73 0.65 msf-i, diff-hbond, diff-at-dens, msf-a, bfac-a, diff-bfac, asa1, asa2, asaavg, asasc2, asabbavg 2

0.63 0.52 0.80 0.69 0.71 0.68 msf-i, diff-at-dens, Ca-disp, asa1, asaavg, asabbavg 2

0.65 0.55 0.80 0.69 0.71 0.68 msf-i, diff-at-dens, msf-a, asa1, asa2, asaavg, asasc2, asabbavg 3

0.64 0.57 0.73 0.69 0.71 0.68 def-energ-i, msf-i, diff-hbond, bfac-a, diff-bfac, asa1, asa2, asasc1, asascavg, asabbavg 2

0.64 0.56 0.75 0.69 0.71 0.68 def-energ-i, msf-i, diff-hbond, msf-a, Ca-disp, asa2, asasc1, asasc2, asascavg, asabb1 3

0.64 0.57 0.73 0.69 0.71 0.68 def-energ-i, msf-i, diff-hbond, diff-at-dens, bfac-a, diff-bfac, asa2, asaavg, asasc2, asabb1 2

The performance on both the training (abbreviated train) and independent (abbreviated ind) data sets are given. The F1, Precision (P) and Recall (R ) values for each
model are reported based on their performance on the training and independent data sets.
doi:10.1371/journal.pcbi.1000531.t016

Figure 4. Hotspot predictions mapped to the inactive state structure of lac repressor. (A) Predictions made by the top 9 highest-precision
Hybrid Feature Set models according to the voting scheme for lac repressor mapped onto the inactive state structure (1tlf). Experimentally tested
residues rendered in van der Waals spheres, with known non-hotspots in small van der Waals spheres and known hotspots in larger ones. For other
residues, the prediction is shown along the backbone trace, but no experimental data is available to test the prediction. Each residue in the structure
is colored according to a blueRgreenRred heat map, where the extremes are as follows: red represents residues predicted to be hotspots by 9/9 of
the models and blue residues to be predicted hotspots by 0/9 models (predicted non-hotspots by 9/9 models). (Refer to color bar above for exact
mapping of the number of predicted hotspots to the color.) For ease of viewing only one set of dimers (chain A and B) is shown. His 74 and Asp 278,
residues not in the independent data set but were studied experimentally and found to be allosterically active, are rendered in van der Waals mode
as well [63]. Correct positive (hotspot) and negative (non-hotspot) predictions are colored according to the heat map, while false predictions are
colored gray. The inducer molecule IPTG is rendered as sticks and colored by element. (B) Here the complete set of residues that caused the IS

phenotype are rendered in van der Waals spheres. The hotspots depicted in A. are a subset of these for which no substitution caused an I2

phenotype (completely nonfunctional). Incorrect predictions, i.e. false negatives, are colored in gray.
doi:10.1371/journal.pcbi.1000531.g004
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The fact that one of the proteins we studied, glucokinase,

exhibited extensive contacts of hotspot residues with a drug that

shifts the protein to an active state suggests that hotspot residues

could be candidates for drug targets. There exist enzymes in the

drug discovery field for which finding active site inhibitors has

been difficult [119], thus making allosteric sites an attractive

alternative. Although the purpose of the current work was not

allosteric site prediction per se, we posit that small molecules might

be used to target residues that are putatively involved in allosteric

communication, with the goal of modulating the allosteric

transition. That is, binding of small molecules to hotspot residues

might mimic the effect of mutations that shift the protein to either

an inactive or active state, in cases where causing a shift in a

protein’s conformational distribution would be therapeutic.

Conversely, binding of small molecules to hotspot residues may

rescue the normal allosteric regulation in cases where an altered

active-inactive distribution of a mutant protein is pathological;

naturally, we realize this would be very challenging in practice.

For multimeric proteins, subunit interfaces may be appropriate

targets, as they often contain allosterically relevant residues and

have sufficient solvent exposure to provide binding access for small

molecules. Indeed, drugs targeting multimeric proteins have been

shown to bind at subunit interfaces and exert their effects by

stabilizing the inactive state [119–123].

An advantage of our techniques over other computational

methods is that they are ‘‘meta-methods’’ that incorporate a variety

of features. In contrast, many computational methods for inferring

allosteric coupling derive their predictions from measurements of

only single features. However, allostery is arguably a complex

phenomenon that requires a more detailed model. Here, we have

taken into account a number of features putatively relevant to

allostery and combined them using a machine-learning algorithm to

determine their relative importance in discriminating hotspots from

non-hotspots. An advantage of these features is that most of them,

with the exception of mean-squared fluctuation, deformation

energy, and mutual information, can be calculated directly from

the structures or sequences without the use of calculations that

require heavily parameterized force fields or expensive simulations.

Even the features that do rely on a parameterized model are

calculated using the elastic network model, which has only two

adjustable parameters. Thus, in creating a complex model for

allosteric communication, we have striven to keep the individual

features of the model as simple as possible.

Materials and Methods

Criteria for Classification as Hotspot or Non-hotspot
In the case of multimeric proteins, allosteric function is

considered perturbed if, upon mutation: the Hill coefficient, a

measure of cooperativity, is significantly altered; the protein is

locked in either an inactive or active state (Hill coefficient of 1)

even in the presence of effector; the concentration of allosteric

inhibitor required to cause 50% inhibition is increased; binding or

activity curves are altered from sigmoidal (characteristic of

multimeric allosteric enzymes) to hyperbolic; or if inducibility is

altered as measured by expression of a reporter gene in vivo, in the

case of allosteric transcription factors whose response elements are

designed to control expression of the reporter gene. In the latter

case, care was taken to not include mutations that completely

abolished inducibility, as this case cannot be distinguished from

the case where the protein fails to fold or to be transcribed/

translated in vivo.

Since a classification model must distinguish between positive and

negative data, mutations that have no effect on allostery are

included in the training data as controls. An additional criterion for

inclusion in the training data set is that the mutation not be located

in an effector or substrate-binding site. Naturally, it is possible for

mutations that perturb binding to perturb the allosteric transition.

In this study, the aim is to predict mutations that disrupt or alter the

communication between effector and substrate sites (in the case of

heterotropic cooperativity) or between substrate sites (in the case of

homotropic cooperativity). Our training data set is a subset of those

allosteric proteins compiled by Daily and Gray [1] for which

sidechain substitution data is available. The training data consist of

44 hotspots and 50 non-hotspots from a set of allosteric enzymes,

transcription factors, and signal transduction proteins (Table S1).

The independent data set consists of 37 hotspots and 50 non-

hotspots from a set of three allosteric enzymes, a transcription factor

(lac repressor), and myosin II (Table S2).

Calculation of Features
Eighteen attributes are computed for each protein in the

training and independent data sets (Feature Set 1). Dynamical

attributes are calculated with the program DIAGRTB, which

Figure 5. Hotspot predictions mapped to the inactive state
structure of myosin II. Predictions made by the top 9 highest-
precision Hybrid Feature Set models according to the voting scheme for
myosin II motor domain mapped onto the inactive state structure
(1vom). Refer to Figure 4 above for an explanation of the coloring.
Residues that met our criteria for classification as hotspot and included
in the independent data set are rendered in van der Waals spheres.
Switch-II (a region with high homology to the switch region of G-
proteins that couples GTP hydrolysis to effector-domain conformation)
residues (454–459) are depicted in van der Waals spheres as well, and
colored according to the heat map.
doi:10.1371/journal.pcbi.1000531.g005
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calculates all-atom elastic network model (ENM) normal modes

with rotational-translation blocking [124–127]. Here we used one

residue per block. This method was used due to the fact that the

large size of most proteins in the data sets necessitated a

computationally cheap, yet accurate, method. The normal

mode-based dynamical attributes are as follows:

Mean squared fluctuation. Atomic mean square fluctuations

were calculated for both inactive and active conformers using the

following formula:

Sx2
i T~

X200

k~7

1

3

X3

j~1

W 2
ijk

v2
k

, ð12Þ

where Æx2
iæ is the mean square fluctuation of the ith atom, Wik is the

jth component of the ith atom in the kth normal mode, and vk is the

frequency of the kth normal mode. The summation occurs over the

nontrivial normal modes up to mode 200, since these correspond to

the largest amplitude fluctuations that are most accurately

calculated by ENM.

Since the actual numerical values of the mean square

fluctuations are only meaningful within a protein and not across

proteins, a method to determine the relative degree of fluctuation

was required. To this end, the atoms were ranked according to the

magnitudes of their fluctuation. The decile rank was determined

for each atom of each of the mutant residues in the dataset, and a

score for each residue was taken to be the average of the decile

ranks for each atom in the residue. The difference in scores

between mean squared fluctuation in the inactive and active states

as well as the individual values were ascertained.

Deformation energy. Deformation energy was calculated

for the inactive and active conformers as follows [128–130]:

Dik~
Xni

j~1

1

2
c(j~RR0

ijzWjk{Wikj{j~RR0
ij j)2

(Nv2
k)

, ð13Þ

where Dik is the deformation of the ith atom due to the kth normal

mode, c is the spring constant (set equal to1), and Rij
0 is the

distance between atom i and atom j in the structure, N is the total

number of atoms, and all other terms are as previously described.

Scoring for each mutation site was performed as for mean square

fluctuation. (Deformation energy score of the active state as well as

the difference in scores between the inactive and active states were

not part of Feature Set 1, but were included in the training of

models consisting of the top eight highest performing Set 1 features

supplemented with these two features.)

Mutual Entropy. Mutual entropy, or mutual information,

between two coordinates xi and xj is defined as:

I ½xi,xj �~H½xi�zH½xj �{H½xi,xj �, ð14Þ

where H[xi] is the entropy given the marginal distribution p(xi) and

H[xi,xj] is the entropy given the marginal distribution p(xi,xj). Here,

the coordinates are inactive state alpha carbon atoms. The entropy

H[xi] is as follows:

{

ð
p(xi) ln p(xi)dxi: ð15Þ

In this work, an approximation for estimating H[xi] was used,

taken to be [131]:

1

2
ln ( det C(i)), ð16Þ

where Ci is the marginal covariance for the ith atom, and Cij is the

same for the ith and jth atoms. Mutual information is thus

estimated as:

Ilin(~xxi,~xxj)~
1

2
ln ( det C(i))z ln ( det C(j)){ ln ( det C(ij))
� �

: ð17Þ

For each residue, a mutual information score was taken as the

number of instances a given residue (represented by its alpha

carbon) had an off-diagonal Ilin greater than a threshold of 5.0,

normalized by (i.e., divided by) the number of alpha carbons in the

protein structure.

In addition to dynamic information based on normal modes, the

following static-structure attributes were calculated:

B-factor. Mutation sites were ranked according to their B-

factors in the same manner as applied in the case of mean-square

fluctuation and deformation energy, that is, a decile rank score was

used to normalize for variability in global protein flexibility. This

was performed using both active- and inactive-state structures.

The difference in scores between B-factor in active and inactive-

states as well as the individual values were ascertained.

Atomic density. An average atomic density was determined

for each residue in both the active and inactive states using FADE

(Fast Atomic Density Evaluator; [132]), as well as the absolute

difference in density between active and inactive states. The

algorithm uses the fast Fourier transform to rapidly calculate

atomic density. Here, the density at the grid point nearest each

atom is determined, followed by averaging over the density of each

atom in the residue.

Hydrogen bonding. Potential hydrogen bonds for residues in

both active- and inactive-state structures were determined using

the What-if program [133]. The absolute difference in the number

of hydrogen bonds between bound and unbound structures was

determined.

A number of network-based features were calculated for the

inactive-state structure:

Node degree. Node degree was taken to be the total number

of residues that contain at least one heavy atom within 5.0 Å of the

residue (node) of interest.

Perturbation of the clustering coefficient. The clustering

coefficient is defined as follows [114]. If residue k has Nk residues

in contact with it, the maximal number of possible contacts

between the Nk neighbors is Nk (Nk-1)/2. The clustering coefficient

for the entire protein is

C~
1

N

XN

k~1

nk

Nk Nk{1ð Þ=2
, ð18Þ

where nk is the actual number of contacts that exist between the Nk

neighbors of residue k and N is the total number of residues. The

perturbation in the clustering coefficient is the change in this value

after a given residue of interest has been removed from the protein

network.

Finally, a number of informatics features were calculated:

Local structural entropy. Local structural entropy is a

measure of the propensity for variability in secondary structure

within a given 4-residue site [134]. It is based on the probability of

occurrence of a given secondary structure type at a 4-residue
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primary sequence site, which is used to compute a local structural

entropy score. Eight secondary structure types are recognized by

the algorithm: b-bridges, extended b-sheets, 310-helices, a-helices,

p-helices, bends, turns, and others. A local structural entropy score

is obtained for a residue as the average over the four 4-mer

windows containing the given residue.

Evolutionary conservation. The Consurf web server was

used to determine a residue’s conservation score, as determined by

multiple sequence alignment [135].

Change in average structure. Calculations of features

related to the change in average structure between active- and

inactive-state conformations (Feature Set 2) were originally

performed by Daily and Gray [1]. They are differences in various

structural metrics between the active and inactive-state structures,

and are as follows a-carbon displacement, side-chain root mean

squared distance relative to the backbone atoms, angle between the

a-b carbon bond in the inactive and active states, difference in the

w- and y-angles as well as the maximum of the two, difference in x1

and x2 side-chain torsion angles as well as the maximum, difference

in the fractional change in a residue’s contact environment as well as

the maximum, secondary-structure type in inactive and active

states, percent all-atom solvent-accessible surface area (SASA;

relative to a model peptide) in inactive and active states and the

average of the two, percent side chain SASA in inactive and active

states and the average, and percent backbone SASA in inactive and

active states and the average. Daily and Gray [1] used the program

NACCESS [136] to calculate solvent-accessible surface area. These

data were downloaded from Dr. Gray’s laboratory website at

http://graylab.jhu.edu/allostery/.

Machine-Learning Algorithm
Support-vector machine learning was implemented using the

Weka machine-learning package [57]. Second- and third-degree

polynomial kernels were used. All possible combinations of the 18

features were input into the algorithm using either of the two

kernel functions. A nine-fold, leave-one-out cross-validation of the

data was used to learn a support-vector model for each fold, where

the training of the model is performed using 8 of the 9 folds of the

data, and the model tested on the remaining one. The

performance of each feature/kernel combination was evaluated

using metrics described under ‘‘Evaluation of Learned Models.’’

This cross-validation is performed to avoid a biasing of the SVM

parameters due to overtraining. The same method was applied to

the features calculated by Dr. Jeffrey Gray’s laboratory. However,

due to the size of the latter feature set (21 in all), training using all

possible combinations taking 8–14 at a time could not be

accomplished, as the number of such combinations requires an

astronomical amount of computing time. Subsequent rounds of

training using optimized combinations of features were performed

using all possible combinations of these features and either of the

two kernel functions.

The feature/kernel degree combinations that performed best in

the training set were tested on the independent data set. Here, a

single model was trained on the entire training data set using each of

these highest performing feature/kernel degree combinations, and

this model was subsequently tested on the independent data set.

Statistical Coupling Analysis
We used position-specific iteration BLAST [137] with an E-

value cutoff of 0.001 as previously prescribed by the developers of

the SCA method in other allostery studies [50,51] in assembling

the sequences to be used for multiple-sequence alignment with

ClustalW [138]. SCA and subsequent hierarchical clustering were

performed using codes associated with methods outlined in

previous work [33,50–52].

For the case of myosin II, we used the results of the SCA

analysis published by Yu et al. ([139]; Table 3).

Evaluation of Learned Models
Precision, recall and F1 were calculated for each feature set and

polynomial kernel combination used in the support vector machine

learning, using a nine-fold cross validation for each combination.

These same measures were calculated when evaluating the

performance of models on the independent data set and when

evaluating SCA on the training or independent data sets. Precision is

the fraction of predicted hot spots that are true hot spots:

P~
TP

TPzFP
, ð19Þ

where P is the precision, TP is the number of predicted true

positives, and FP is the number of predicted false positives.

Therefore, precision is essentially a measure of specificity. Recall is

the fraction of true hot spots that are predicted hot spots:

R~
TP

TPzFN
, ð20Þ

where R is the recall and FN is the number of predicted false

negatives. The denominator of this equation is equal to the number

of actual positives. It is clear from this that recall is a measure

of sensitivity of a method at detecting hotspots. The F1 score

measures the balance between precision and recall, and it is defined

as follows:

F1~
2:P:R

PzR
: ð21Þ

The feature/kernel degree combinations were ranked according

to F1. For the calculation of these measures in evaluating the

results of the cross-validated training, we pooled the TP, FP, TN,

and FN of each of the nine models generated by the nine-fold

cross-validation to calculate a P, R, and F1 for each feature/kernel

degree combination tested in the training process.

To measure the statistical significance of differences between the

performance measures of sets of models, a one-tailed, unpaired

Student’s T test was used.

Supporting Information

Figure S1 Predictions made by the top 9 highest-precision

Hybrid Feature Set models according to the voting scheme for

glucokinase mapped onto the active state structure (1v4s). Each

residue in the structure is colored according to a blueRgreenRred

heat map, where the extremes are as follows: red represents

residues predicted to be hotspots by 9/9 of the models and blue

residues to be predicted hotspots by 0/9 models (predicted non-

hotspots by 9/9 models). Experimentally determined hotspots and

non-hotspots included in the independent set are rendered in van

der Waals spheres (non-hotspots in small van der Waals spheres).

For other residues, the prediction is shown along the backbone

trace, but no experimental data is available to test the prediction.

Correct true positive (hotspot) and true negative (non-hotspot)

predictions are colored according to the heat map, while false

negatives and false positives are colored gray. Glucose, the effector

and substrate for this enzyme, is rendered in sticks and colored by
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element. Some correctly predicted true hotspots depicted in

spheres in the figure (Met 210, Tyr 214, Val 452, and Val 455),

along with two predicted hotspots not in the independent data set

(Arg 63 and Tyr 215) also contact the allosteric drug Compound A

(rendered in sticks and colored by element), which enhances the

activity of the enzyme.

Found at: doi:10.1371/journal.pcbi.1000531.s001 (0.21 MB PDF)

Figure S2 Predictions made by the top 9 highest-precision

Hybrid Feature Set models according to the voting scheme for

glutamate dehydrogenase mapped onto the inactive state

structure (1nr7). Each residue in the structure is colored

according to a blueRgreenRred heat map, where the extremes

are as follows: red represents residues predicted to be hotspots by

9/9 of the models and blue residues to be predicted hotspots by

0/9 models (predicted non-hotspots by 9/9 models). Experimen-

tally determined hotspots and non-hotspots included in the

independent set are rendered in van der Waals spheres (non-

hotspots in small van der Waals spheres). For other residues, the

prediction is shown along the backbone trace, but no exper-

imental data is available to test the prediction. Correct true

positive (hotspot) and true negative (non-hotspot) predictions are

colored according to the heat map, while false negatives and false

positives are colored gray.

Found at: doi:10.1371/journal.pcbi.1000531.s002 (7.20 MB PDF)

Figure S3 Predictions made by the top 9 highest-precision

Hybrid Feature Set models according to the voting scheme for

thrombin mapped onto the structure of the slow form (1sgi). Each

residue in the structure is colored according to a blueRgreenRred

heat map, where the extremes are as follows: red represents

residues predicted to be hotspots by 9/9 of the models and blue

residues to be predicted hotspots by 0/9 models (predicted non-

hotspots by 9/9 models). Experimentally determined hotspots and

non-hotspots included in the independent set are rendered in van

der Waals spheres (non-hotspots in small van der Waals spheres),

along with two additional residues that are part of the allosteric

core, Tyr 225 and Tyr184A, but did not meet the criteria for

inclusion in the independent data set. For other residues, the

prediction is shown along the backbone trace, but no experimental

data is available to test the prediction. Correct true positive

(hotspot) and true negative (non-hotspot) predictions are colored

according to the heat map, while false negatives and false positives

are colored gray.

Found at: doi:10.1371/journal.pcbi.1000531.s003 (5.63 MB PDF)

Figure S4 SCA data. Results for SCA are present for each protein

from the training and independent data sets, except for myosin II

where we relied on the previously published analysis by Yu et al.

[F1]. a. Hierarchically clustered matrix of DDG values and

dendrogram where terminal branches correspond to residue indices

of the protein sequence. Branches of the dendrogram corresponding

to regions in the matrix containing clusters of high DDG (regions

with high fraction of points greater than or equal to 1.6 kT) are

highlighted. The color scale is once displayed for CheY and applies

to the subsequent protein systems. b. Magnification of the ends of

the highlighted branches to display the residue indices, which are

based on the numbering in the corresponding PDB file (except for

thrombin, where negative numbers are for residues cleaved from

prothrombin chain B and thrombin residues start at 1).

Found at: doi:10.1371/journal.pcbi.1000531.s004 (1.78 MB PDF)

Table S1 Training data set. Given are the protein name, the PDB

ID of the inactive state, the PDB ID of the active state, the residue

that was mutated, the reference(s) where the effect(s) of the mutation

is (are) described, and, in the final column, details of the

experiment(s) in which the mutation was characterized. In the final

column, first the point mutation(s) is (are) given, and this is followed

by a brief synopsis of the experimental results. Abbreviations used:

wt = wild type; coef. = coefficient; repr. = repression.

Found at: doi:10.1371/journal.pcbi.1000531.s005 (0.11 MB RTF)

Table S2 Independent data set. Given are the protein name, the

PDB ID of the inactive state, the PDB ID of the active state, the

residue that was mutated, the reference(s) where the effect(s) of the

mutation is (are) described, and, in the final column, details of the

experiment(s) in which the mutation was characterized. In the final

column, first the point mutation(s) is (are) given, and this is

followed by a brief synopsis of the experimental results, except for

lac repressor where at least 12 amino acid substitutions were made

for each residue (The reader may refer to Markiewicz et al. [T44]

and Suckow et al. [T45] for details.). Abbreviations used: wt = wild

type; coef. = coefficient; repr. = repression; Is = not responsive to

inducer (allolactose or isopropyl–D-thiogalactoside); I- = abolished

DNA binding or misfolded.

Found at: doi:10.1371/journal.pcbi.1000531.s006 (0.09 MB RTF)

Table S3 Classification of residues in the independent data set

according to the voting scheme of the top 9 highest-precision

Hybrid Feature Set models that was used in Structural Analysis of

Predicted Hotspots. The numbers in the columns to the right of the

true classification are the number of models out of the nine that

predicted a hotspot for each residue. *hotspot = residues that

perturb allostery for certain mutations, but did not meet our

criteria for inclusion as hotspots in the independent data set.

NA = residues not included in the independent data set but have

structural properties relevant to allostery.

Found at: doi:10.1371/journal.pcbi.1000531.s007 (0.16 MB RTF)

Table S4 Classification of residues whose mutation caused the IS

phenotype in at least one residue substitution. The voting scheme

of the top 9 highest-precision Hybrid Feature Set models that was

used in Structural Analysis of Predicted Hotspots was used for this

classification. The numbers in the columns to the right of the

residue index are the number of models out of the nine that

predicted a hotspot for each residue.

Found at: doi:10.1371/journal.pcbi.1000531.s008 (0.07 MB RTF)

Table S5 Average values of features of interest for hotspots and

non-hotspots, along with the p-value (unpaired Student’s T-test)

signifying the statistical significance of the difference in the average

value of each feature between hotspots and non-hotspots. Values

with a strongly statistically significant difference (p,0.05) between

the two classes are indicated by ** and in bold, and those with a

moderate statistical significance are indicated by * and in bold

italic. For Feature Set 1, dotted lines separate features that are

based on dynamic structural features, local contact geometry,

network-based features and conservation.

Found at: doi:10.1371/journal.pcbi.1000531.s009 (0.02 MB RTF)
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