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Introduction
Malignant transformation of the ovarian surface epithelium 
causes epithelial ovarian cancer.1 Ovarian cancer is 1 of the sev-
enth most common cancer affecting women worldwide and 
accounting for 295 414 new cases and 184 799 deaths annu-
ally.2 The lifetime risk of developing ovarian cancer in a woman 
is 1 in 75, with her chance of mortality due to the disease being 
1 in 100.3 It occurs in peri-menopausal and post-menopausal 
women, with 80% to 90% of cases occurring after the age of 40 
with the peak incidence of occurring at age of 60.4 Other risk 
factors for cancer include family history, BRCA1 and BRCA2 
mutations, Lynch II syndrome, infertility, nulliparity, early 
menarche and late menopause.5 The familial cases account for 
only 10% to 15% of the patients while most cases are spo-
radic.6,7 Studies have consistently reported the use of oral con-
traceptives as being inversely associated with the risk of ovarian 
cancer, with a protective effect increasing with longer duration 
of use.8,9

Ovarian cancer is staged according to the FIGO system 
(Fédération Internationale de Gynécologie et d’Obstétrique) that 
considers the extent of tissue involvement, lymph node status 
and the magnitude of metastasis.10 Accordingly, stage I and 
stage II cancers limited to the pelvic cavity are called early stage 
cancer and the stage III and stage IV cancers that spread 
beyond the pelvic cavity are called advanced stage cancer.11 
Early detection of ovarian cancer provides an opportunity for 
successful treatment; however, the disease is rarely diagnosed at 
an early stage due to lack of symptoms during the early stage. 
Only one-fourth of the patients present with the disease local-
ized to the ovaries when the 5-year survival rate is 92%, while 

in contrast more than 75% patients present with the advanced 
stage disease, with a 5-year survival ranging from 15% to 
25%.12,13 As most patients are diagnosed with advanced stage 
of the disease, it leads to a high fatality-to-case ratio among all 
gynaecologic malignancies.5

The standard treatment for advanced ovarian cancer is  
primary cytoreductive surgery followed by platinum-based 
chemotherapy.14 The cytoreductive surgery is done to accu-
rately establish a diagnosis, to remove poorly perfused tissue 
that may harbour the disease and to decrease the tumour bulk 
to enhance adjuvant chemotherapy.15,16 The amount of residual 
disease after surgery is inversely related to overall survival (OS); 
patients with optimum cytoreduction (defined as <1 cm  
residual disease) having a more superior outcome compared 
with those with sub-optimal cytoreduction (>1 cm residual 
disease).17 The chemotherapeutic strategy for treating advanced 
ovarian cancer comprises different chemotherapeutic drugs, 
and different combinations that have been tried to improve 
clinical response (CR) and OS and decrease toxicity.18 The 
chemotherapeutic regimens used to treat advanced ovarian 
cancer are comprehensively summarized in Table 1 and the 
important and most pertinent aspects of various combinations 
have been discussed below.

Melphalan as a Single Agent and Its Combinations
During the 1950s, the main therapeutic strategy for treating 
advanced ovarian cancer was cytoreductive surgery and radio-
therapy. An improvement in the treatment was achieved with 
the use of alkylating agents like melphalan which causes cyto-
toxicity against tumour cells by alkylating DNA at N7 position 
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Table 1.  First-line chemotherapeutic regimens in advanced ovarian cancer.

Chemotherapy combinations Clinical 
response

Median PFS  
(in months)

Overall survival 
(in months)

Reference

Melphalan 20.0%   7.7 12.3 19,20

Melphalan hexamethylmelamine 28.0%   6.0 13.5 19

Cyclophosphamide doxorubicin 32.0%   9.5 14.2 19

Cyclophosphamide doxorubicin 26.0%   7.7 15.7 21

Carboplatin Etoposide 43.0%   8.5 19.5 22

Carboplatin Hexamethylmelamine Etoposide 92.0% – – 23

Cisplatin Cyclophosphamide 60.0% 17.9 24.4 24

Cisplatin Cyclophosphamide 60.0% 13.0 24.0 24

Cisplatin Cyclophosphamide 16.0% 19.0 35.0 25

Cisplatin Cyclophosphamide Doxorubicin 51.0% 13.1 19.7 21

Cisplatin Paclitaxel 73.0% 18.0 38.0 24

Cisplatin Paclitaxel 81.4% 19.1 44.1 26

Cisplatin Ifosfamide 69.0% 14.0 25.0 27

Cisplatin Ifosfamide 67.5% – – 28

Paclitaxel 55.0%   6.1 – 29

Carboplatin Cyclophosphamide 14.0% 26.0 37.0 25

Carboplatin Ifosfamide 67.0% 24.9 30

Carboplatin Paclitaxel Hexamethylmelamine 76.0% – – 31

Cisplatin Docetaxel 69.0% – – 32

Cisplatin Docetaxel 58.0% 14.4 43.0 33

Cisplatin thio-TEPA 80.0% 12.0 18.0 34

Cisplatin Paclitaxel Topotecan 60.0% – – 35

Carboplatin Paclitaxil Epirubicin 86.0% 18.7 – 36

Carboplatin Paclitaxil Epirubicin 90.0% – 65.0 37

Carboplatin Paclitaxel Etoposide Cyclophosphamide with G-CSF 92.0%   4.0 – 38

Cisplatin Paclitaxel Ifosfamide 85.0% 22.2 52.8 39

Cisplatin Paclitaxel Ifosfamide 85.0% – 51.0 37

Carboplatin Paclitaxel Gemcitabine 94.0% 16.0 28.0 40

Carboplatin Paclitaxel Gemcitabine 97.5% 19.5 31.2 41

Cisplatin Gemcitabine 70.7% 10.4 23.4 42

Cisplatin Gemcitabine 64.9% 13.4 24.0 43

Cisplatin Irinotecan 76.0% – 30.9 44

Carboplatin Paclitaxel Epidoxorubicin 86.0% 19.5 36.0 45

Carboplatin Docetaxel 73.0% 18.0 24.4 46

Carboplatin Docetaxel 78.8% 12.0 35.3 47

Carboplatin Paclitaxel Topotecan 77.0% 10.6 22.2 48
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of guanine and induces DNA inter-strand cross-linkages, lead-
ing to inhibition of replication and transcription.63 The use of 
single-agent melphalan benefitted the patients with advanced 
ovarian cancer.64 However, the CR was 20%, median progres-
sion-free survival (median PFS) was 7.7 months and median 
OS was 12.3 months, along with toxicity manifestations such 
as myelosuppression with neutropenia.19,20 The combination of 
melphalan and hexamethylmelamine produced a CR of 28%, 
median PFS of 6 months and median OS of 13.5 months as 
compared with the combination of adriamycin and cyclophos-
phamide, which produced a slightly improved CR of 32%, 
median PFS of 9.5 months and median OS of 14.2 months; 
however, it produced significant hematologic and gastrointesti-
nal toxicity.19 The use of melphalan is limited as it causes severe 
myelosuppression.65

Cyclophosphamide as a Single Agent and Its 
Combinations
Previous studies have demonstrated the efficacy of other 
alkylating agents like cyclophosphamide and anthracycline 
doxorubicin. The GOG (Gynecologic Oncology Group) trial com-
paring cyclophosphamide, melphalan and doxorubicin demon-
strated an improvement in response rate; however, there was no 
OS advantage.19 Clinical trials studying the effect of this 
combination have shown a CR of 26% and median OS of 
15.7 months with side effects such as nausea, vomiting and leu-
kocyte toxicity.21

Cisplatin as a Single Agent and Its Combinations
The inclusion of cisplatin in the chemotherapeutic regimen for 
advanced ovarian cancer proved to be a major landmark. 
Cisplatin binds to nuclear DNA leading to interference with 
transcription and/or DNA replication and eventually cell death 
induced by cell repair machinery.66 A Cochrane review and 
meta-analysis confirmed a modest 2- and 5-year survival 
advantage in women with advanced stage epithelial ovarian 
cancer who were given platinum-based combination chemo-
therapy compared with those given combination therapy lack-
ing platinum.67 The use of cisplatin in combination with 
thio-TEPA produced an improved CR; however, OS was not 
good.34 The combination of cisplatin, cyclophosphamide and 
doxorubicin showed an increased CR of 51% and median OS 
of 19.7 months.21 Chemotherapy combinations containing an 
alkylating agent and a platinum coordination complex pro-
duced a high response rate in women with advanced ovarian 
cancer. Cisplatin-based combination chemotherapy showed 
improved CR and progression-free interval (PFS) as compared 
with alkylating agents alone or combinations without cispl-
atin.24 The CR in the cisplatin-cyclophosphamide group was 
60% and median OS was of 24.4 months.24 As long-term dis-
ease control in patients with advanced ovarian cancer was not 
significant, new drug combinations were investigated. The effi-
cacy of cisplatin-ifosfamide combination showed improved 
CR and OS.27,28 Cisplatin-docetaxel combination produced an 
improved CR of 69%; however, increasing the docetaxel dose 

Chemotherapy combinations Clinical 
response

Median PFS  
(in months)

Overall survival 
(in months)

Reference

Carboplatin Paclitaxel Amifostine 38.0% 22.0 – 49

Carboplatin Paclitaxel Etoposide 75.0% 12.0 24.0 50

Carboplatin Gemcitabine 83.3% 11.6 29.2 51

Carboplatin Paclitaxel Gemcitabine Oxaliplatin 85.0% 14.5 31.5 52

Carboplatin Paclitaxel Epirubicin 60.1% 18.4 45.8 53

Carboplatin Paclitaxel Epirubicin 65.7% 16.4 42.4 54

Carboplatin Paclitaxel Bevacizumab 80.0% – – 55

Carboplatin Paclitaxel Bevacizumab 48.0% 16.9 29.9 56

Carboplatin Topotecan 71.0% – 47.0 57

Cisplatin Paclitaxel Doxorubicin 64.0% 18.1 44.3 58

Carboplatin Doxorubicin 57.0% 19.0 61.6 59

Carboplatin Paclitaxel lonafarnib – 11.5 20.6 60

Oxaliplatin Docetaxel Bevacizumab 58.6% 16.3 47.3 61

Carboplatin Paclitaxel Sorafenib 69.0% 15.4 – 62

Abbreviations: G-CSF, granulocyte colony stimulating factor; PFS, progression-free survival.

Table 1.  (Continued)



4	 Biomarkers in Cancer ﻿

caused significant hematologic toxicity to the patient.32,33 
Cisplatin with gemcitabine, a nucleoside antimetabolite, is an 
active agent in ovarian cancer and produced significantly 
increased CR.42,43 A similar study reported a 71% CR; how-
ever, 63% of patients developed high-grade neutropenia and 
28% developed high-grade thrombocytopenia.68 The combi-
nation of cisplatin with irinotecan, an inhibitor of DNA topoi-
somerase I, showed improved activity in chemotherapy-naive 
patients with advanced ovarian cancer; however, neutropenia 
was the dose-limiting adverse effect.44,69

Carboplatin as a Single Agent and Its Combinations
Carboplatin which has good efficacy and less toxicity than cis-
platin was introduced in the 1980s as first-line chemothera-
peutic agent.66,70 Carboplatin crosses the cell membrane where 
it is hydrolysed to 1,1-cyclobutanedicarboxylate and therefore 
gains a positive charge.71,72 The positively charged interme
diate interacts with nucleophilic molecules such as DNA or 
RNA by covalent bond formation with the N7 site of purine 
bases leading to formation of platinum adducts (Figure 1).73,74 
Carboplatin is less toxic than cisplatin as the former forms an 
intermediate 1,1-cyclobutanedicarboxylate which is a poorer 
leaving group as compared with chloride, which leads to low 
reactivity rate and there is therefore less adduct formation.75 
The clearance of cisplatin occurs majorly by host tissues; how-
ever, for carboplatin, it occurs by renal function, therefore tar-
geted area-under-the-curve (AUC) dosing based on estimated 
renal clearance improved safety and tolerability of carbopl-
atin.76 Carboplatin and etoposide, which showed significant 
synergistic activity in animal models of ovarian cancer, had a 
relatively low CR of only 43% along with increased toxicity 
rate.22 Combination of carboplatin, hexamethylmelamine and 
etoposide produced a very high CR of 92%; however, the study 
was on a very small sample size.23 Carboplatin and cyclo
phosphamide combination proved to be effective in optimally 
debulked advanced ovarian cancer patients; however, the  
combination did not significantly prevent tumour progression 
in a majority of patients.25 A combination of carboplatin and 
ifosfamide too has showed improved CR.30 Carboplatin  

and docetaxel produced an improved CR of 73%; however, it 
has substantial myelotoxicity.46 Gemcitabine, a nucleoside  
analogue, and carboplatin also showed significant CR.51 
Carboplatin and topotecan, which is a specific topoisomerase I 
inhibitor that causes single-stranded breaks in DNA during 
replication, showed a CR of 71%.57

Paclitaxel as a Single Agent and Its Combinations
In the 1990s, paclitaxel was found to be the most effective 
agent in patients with relapsed platinum-refractory disease.77 
It acts by binding to intracellular β-tubulin, which leads to 
microtubule stabilization, G2-M arrest and apoptosis, via both 
p53-dependent and p53-independent pathways.78 Earlier the 
most commonly used combination was cyclophosphamide and 
cisplatin; however, the OS was not sufficient. At this stage, 
paclitaxel was included in first-line chemotherapy for patients 
with sub-optimally debulked advanced ovarian cancer which 
led to increase in the duration of the PFS and OS.24 Paclitaxel 
used alone emerged as an effective and safe drug for first-line 
treatment of advanced ovarian cancer.29 Paclitaxel-cisplatin 
produces an overall higher CR although it has low tolerability 
than the conventional combination of carboplatin-paclitaxel.24,26 
A GOG study along with other randomized studies concluded 
that the inclusion of paclitaxel with a platinum analogue pro-
duced significant improvement in response and survival.24,79 At 
this stage, combination of paclitaxel, cisplatin and ifosfamide 
was investigated which produced a CR of 85%.39 Paclitaxel, 
cisplatin and doxorubicin combination produced a CR of 64%, 
a marginal improvement in PFS; however, there was improved 
survival benefit when compared with the standard carboplatin-
paclitaxel combination.58 It may be noted here that combina-
tions of paclitaxel and carboplatin along with a third agent 
have also been tested across various clinical trials (Table 1). 
However, these combinations have had their own limitations 
like no improvement in CR as compared with carboplatin and 
paclitaxel, increased haematological toxicities, neutropenia, 
alopecia and thrombocytopenia.53,80,81

Carboplatin and Paclitaxel as a Combination
Carboplatin and paclitaxel have been a standard chemotherapy 
combination used and the related clinical studies summarizing 
its efficacy are provided in Table 2. It is seen that the combina-
tion therapy of carboplatin-paclitaxel achieves a CR ranging 
from 50% to 81% and median PFS range of 13.6 to 19.3 months. 
Numerous trials have established that a combination of pacli-
taxel and carboplatin is well tolerated in advanced ovarian can-
cer.90 A few earlier randomized trials too demonstrated that 
the combination of cisplatin and paclitaxel was superior to cis-
platin and cyclophosphamide in advanced ovarian cancer.91 
Also, trials have showed that carboplatin and paclitaxel was a 
less toxic and highly effective combination regimen.92 A study 
conducted by GOG in patients with optimally debulked 
advanced ovarian cancer revealed that the median PFS and 

Figure 1.  Mechanism of action of cisplatin. Double stranded DNA is 

shown in black; Cisplatin is shown as a brown oval; and purine bases are 

shown as blue coloured lines.
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OS were 19.4 and 48.7 months, respectively, for the cisplatin-
paclitaxel as compared with 20.7 and 57.4 months, respectively, 
for carboplatin-paclitaxel. In addition, gastrointestinal, renal, 
metabolic toxicity and leukopenia were significantly more in 
cisplatin-paclitaxel group as compared with carboplatin-
paclitaxel.92 Another clinical trial compared carboplatin-
paclitaxel and carboplatin, paclitaxel and cisplatin combination. 
The median PFS and OS were not statistically different, 
although carboplatin-paclitaxel combination was associated 
with better tolerability and quality of life (median PFS: 17.2 vs 
19.1 months; median OS: 43.3 vs 44.1 months). The mean 
global quality-of-life scores at the end of treatment were statis-
tically significantly better with the use of carboplatin-paclitaxel 
(65.25 vs 51.97).26 In the HeCOG (Hellenic Cooperative 
Oncology Group) study comparing carboplatin-paclitaxel and 
cisplatin, paclitaxel and doxorubicin, the latter showed a slight 
increase in PFS; however, there was no additional survival ben-
efit (CR: 69% vs 64%; median PFS: 13.25 vs 18.13 months; 
median OS: 37.97 vs 44.33 months).58 Previous trials compar-
ing cisplatin and paclitaxel against carboplatin and paclitaxel, 1 
using different paclitaxel schedules on the 2 arms suggested 
that carboplatin and paclitaxel had more favourable toxicity 
profile and convenience of a shorter schedule.93,94 Other stud-
ies have demonstrated that quality of life was better during 
treatment with carboplatin and paclitaxel as compared with 
cisplatin and paclitaxel.95,96 Such landmark studies established 
the combination of carboplatin-paclitaxel as the standard of 
care in advanced ovarian cancer.

Chemotherapy Resistance in Advanced  
Ovarian Cancer
First-line chemotherapy with carboplatin and paclitaxel 
achieves an improved CR; however, recurrence occurs in 25% 
of patients with early stage disease and more than 80% of 
patients with advanced disease.97 A majority of advanced ovar-
ian cancer patients experience disease relapse within 2 years of 
the initial treatment of combination chemotherapy.98 The  
heterogeneity of tumour cells leads to molecular variations in 
signalling pathways including oncogene activation, tumour 
suppressor inactivation and various pro-survival genetic muta-
tions.99 Therefore, chemo-resistance to standard chemotherapy 
regimen has emerged as a major challenge.100 Whereas the cur-
rent therapeutic regimens are fixed linear protocols, cancer 
biology is a highly dynamic system. Adapting a therapeutic 
strategy using systems biology approach based on temporal 
and spatial variations in tumour is a futuristic goal in oncol-
ogy.101 Other studies including poly (ADP-ribose) polymerase 
inhibitors and anti-angiogenic agents have shown that trial 
design with restricted eligibility criteria rather than testing 
chemotherapeutic agents in unselected populations can lead to 
improved clinical outcomes in the targeted populations.102–104 
Drug resistance is 1 of the most important factors for failure 
of chemotherapy in advanced ovarian cancer. Chemotherapy 

resistance is of 2 types: (a) intrinsic chemo-resistance, where 
the cancer cells are inherently resistant to drug treatment, and 
(b) acquired chemo-resistance, which can be acquired during 
the course of treatment.105 Intrinsic chemo-resistance is caused 
due to cancer cells possessing several biological modifications 
including inhibited drugs uptake, increased drug efflux, 
increased detoxification of chemotherapeutic drugs, inhibition 
of apoptosis and so on.106 While acquired chemo-resistance 
can arise due to genetic and epigenetic alternations that assist 
the cancer cells to adapt to chemotherapy induced effects such 
as stress, DNA damage and apoptosis.106 Therefore, chemo-
resistance, which is a multifactorial phenomenon, is being 
investigated with the view to decipher chemo-resistance mech-
anisms and develop drugs to overcome it.107,108 However, the 
major problem is that identification of patients pre-disposed to 
chemo-resistance is challenging as there are no available tests 
to guide clinicians to make an informed decision to alter treat-
ment course before chemotherapy.

Biomarkers and Chemotherapy Resistance in 
Advanced Ovarian Cancer
Despite initial responsiveness to combination chemotherapy of 
carboplatin and paclitaxel, the occurrence of chemo-resistant 
tumours is a major hurdle and therefore demands elucidation of 
its pathogenesis. The delineation of molecular signatures from 

Table 2.  First-line chemotherapeutic treatment with carboplatin-
paclitaxel in advanced ovarian cancer.

Clinical 
response

Median PFS  
(in months)

Overall  
survival  
(in months)

Reference

57.0% – – 82

75.0% – – 83

70.0% – – 83

57.0% – – 25

74.0% – – 84

81.0% – 20.0 85

50.0% – – 86

67.7%, 17.2 43.3 26

60.0% 17.9 41.0 53

69.0% 18.1 38.0 58

77.5% 19.3 51.5 87

59% 16.8 53.2 88

80.0% 16.0 40.2 54

56.2% 18·3 – 89

74.0% 16.3 – 62

Abbreviation: PFS, progression-free survival.



6	 Biomarkers in Cancer ﻿

these tissues has paved the way for biomarker discovery. 
Biomarkers are biological macromolecules that can be objec-
tively measured and evaluated and indicate the functioning of 
biological processes and pharmacologic response in the human 
body.109 Biomarker discovery has made many strides in the field 
of medicine and health.110–112 Over the past decade, clinical 
proteomics has helped in biomarker discovery in the field of 
advanced ovarian cancer.113,114 An understanding of biomarkers 
in chemotherapy resistance in advanced ovarian cancer will have 
the following benefits: (a) to elucidate the molecular mecha-
nisms at a cellular level that dictate drug resistance, (b) design 
new therapeutic strategies to overcome drug resistance, (c) plan 
the best chemotherapeutic strategy and improve patient man-
agement, (d) help to improve patient compliance and reduce 
financial expenditure and (e) predict the sensitivity of tumour to 
chemotherapeutic regimen allowing chemotherapy administra-
tion to the patient who would benefit and prevent the toxic 
effects of chemotherapy to non-responder patients.

Various biomarkers and their mechanism of action that help 
to understand chemotherapy resistance are summarized in 
Table 3. Even though chemo-resistance has plagued the CR 
and survival in advanced ovarian cancer since the beginning of 
chemotherapy administration, the research investigating pre-
dictive biomarkers began much later. It can be observed that 
much of the research in chemo-resistance biomarker discovery 
has focussed on transcriptomics and proteomics with very few 
genomic studies investigating the same.

The field of genomics encompasses the systematic study of 
the genome of an organism. In advanced ovarian cancer, genom-
ics has been primarily used to reveal chromosomal abnormali-
ties or mutations such as insertions and deletions or abnormal 
chromosomal numbers in a process.125,128,155,156 Other studies 
have focused on the study of single nucleotide polymorphisms 
(SNPs) in deciphering individual response to the chemothera-
peutic drugs.157,158 In the past, very few studies have explored 
the frontier of genomics in the field of biomarker discovery for 
chemo-resistance in advanced ovarian cancer. The major limita-
tion of genomics approach is that the investigation of mutation 
and SNPs does not correlate with the level of proteins. For 
instance, in a previous study 12 genes were identified using 
DNA microarray technology; however only HSP-10 could be 
validated using immunohistochemistry.159

Transcriptomics is the study of the complete set of mRNA 
(messenger RNA) transcripts produced by a tissue or an organ-
ism under specific conditions at a particular point in time. 
Messenger RNA detection and estimation have been widely 
used in the study of chemo-resistance in advanced ovarian can-
cer (Table 3). However, many studies have suffered from a 
major limitation of inaccurate correlation between gene expres-
sion and protein expression. Correlation between mRNA and 
protein level is insufficient to predict protein expression levels 
from quantitative mRNA data.159 For some genes with similar 
mRNA levels, the protein levels may vary by more than 20-fold 
and conversely, for proteins with similar levels, corresponding 

mRNA levels may vary by as much as 30-folds.160 Such dis-
crepancy can be explained by taking into account post-transla-
tional events such as alternative splicing, translational regulation 
and differences in protein in vivo half-lives.161,162

Proteomics is the study of the set of all expressed proteins in 
a cell, tissue or organism at a specific time under specific condi-
tions. It can be used to characterize the flow of information in 
biological pathways and their networks to establish functional 
relevance of proteins. The proteome of a biological entity rep-
resents the dynamic relationship between the genes, environ-
ment and pathological states. Proteins are the macromolecules 
that are majorly affected in diseases and participate in the sub-
sequent disease response. It is evident that proteins have the 
advantage to be used as biomarkers in various clinical states 
and to assess associated therapeutic response due to the follow-
ing advantages: (a) genome is largely similar in individuals of 
the same species, whereas protein expression is specific to a cell 
type under specific conditions; (b) effect of environment is 
reflected in proteome more easily than genome which remains 
stable; (c) protein expression level is result of transcriptional 
activation, transcript degradation and translation efficiency and 
(d) proteins are the key downstream effectors and affecters in 
various cellular functions. Therefore, a majority of the studies 
have used proteomics to study the phenomenon of chemo-
resistance in advanced ovarian cancer.

Post-translational modifications are important determi-
nants of protein functionality and are an important mecha-
nism to increase the diversity of proteome along with 
regulatory interactions with the various cellular functions.163 
Several studies have investigated the role of post-translational 
modifications as potential biomarkers in cancer.164 Some post-
translational modifications also play a role in chemo-response 
mechanisms in ovarian cancer and is summarized in Table 4. 
These modifications have an effect on cytoskeletal integrity, 
protein folding, metabolic function and apoptotic activity of 
tumour cells that in turn determines the response of ovarian 
cancer cells to the chemotherapeutic drug.

Biomarkers and Their Biological Functions
The identified genes, mRNA or proteins are involved in 
various biological functions such as cell cycle and check-
point proteins, protein folding, chaperones, DNA repair 
proteins, cytoskeletal proteins, metabolic enzymes, tran-
scriptional activators, drug-efflux pumps, and cellular redox 
protein and regulators of the apoptotic pathway as can be 
seen in Table 3.

The different mechanisms that cause chemo-resistance  
are explained. (a) Apoptosis is 1 of the main mechanisms 
employed by the cells to evade drug-induced cytotoxicity  
and subsequently manifest as chemo-resistance. PI3K/AKT  
and ERK1/2 pathway are at the centre stage of mediating 
anti-apoptotic activity in chemo-resistance. Various proteins 
interact with this pathway to prevent cell death such as 
increased expression of insulin-like growth factor I receptor 
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(IGF1R), phosphatidylinositol-3-OH kinase (PIK), A-kinase 
anchoring protein 12 (AKAP12), chitinase 3-like 1 (CHI3L1), 
leptin (LEP), epithelial cell adhesion molecule (EpCam) and 
colony-stimulating-factor-1 receptor (CSF1R) that causes 
evasion of apoptosis as a downstream effect of PI3K/AKT and 
ERK1/2 pathway activation.125,126,127,143,147 Other proteins like 
cyclooxygenase-2 are known to increase production of prosta-
glandin E2 which is involved in resistance to apoptosis.119 
Proteins like endoplasmic reticulum resident oxidoreductase 
57 (ERp57) show class III β-tubulin (TUBB3) mediated 
anti-apoptotic activity.123 (b) Drug efflux from the cells plays 
an important role in the response of tumour cells to chemo-
therapy. Some of the interesting mechanisms include HER2 
mediated increase in activity of drug-efflux pumps including 
the adenosine triphosphate (ATP)–binding cassette, sub-fam-
ily B, member 1 (ABCB1) and ABCC3.14 Other mechanisms 
include increased activity of drug-transporters like lung resist-
ance protein and ATP-driven P-glycoprotein (Pgp).115,119,132 
(c) Cell adhesion and tumour invasion pose a challenge to the 
efficacy of chemotherapeutic drugs. For example, down-regu-
lation of isoform 1 of collagen XII alpha-1 chain (COL12A1) 
causes extracellular matrix remoulding and tumour migra-
tion.132 Other cytoskeletal modulations include actinin 
alpha-4 (ACTN4) up-regulation that enhances cell motility 
by bundling the actin cytoskeleton causing metastasis.153 
Other proteins like mesothelium vascular cell adhesion mole-
cule-1 (VCAM1) is up-regulated in non-responders and is 
known to mediate tumour invasion by the epithelial and 

mesenchymal transition. (d) Drug metabolism is common in 
chemo-resistant tumour cells as an important pathway to 
eliminate active drug molecules and evade cytotoxic effect. 
Human epidermal growth factor receptor-2 (HER2) up-regu-
lation increases expression of drug metabolism proteins 
including glutathione S-transferase P1 (GSTP1) and 
cytochrome P450 3A4 (CYP3A4).117 In contrast, down-regu-
lation of thiopurine S-methyltransferase reduces the metabo-
lism of thiopurine chemotherapeutic agents, such as 
6-mercaptopurine. (e) Increase in pathways involved in 
tumour angiogenesis contributes to increased vascularity and 
nutrient supply to cells under stress condition induced by 
chemotherapy. For instance, up-regulation of vascular 
endothelial growth factor and nestin provide the tumour with 
a replenished microenvironment to enhance survival.122,141 (f ) 
Increased cell proliferation and survival pathways are an 
important marker for chemotherapy resistance. An interesting 
observation is the up-regulation of HER2 mediated activation 
of pro-survival proteins such as survivin, p21 and p53.117

Research has been done to understand these aspects using 
an array of human tissue samples. Some of the sources include 
ascitic fluid, serum, ovarian cancer cell lines and ovarian cancer 
tissue samples. A comprehensive review by Kaur and group 
revealed that pharmacological studies using cell lines suffer 
from some major drawbacks191: (a) Cell lines get genetically 
altered, and this sometimes alters their phenotype, native func-
tions and their response to stimuli; (b) genotypic and pheno-
typic variation may occur due to serial passage of cell lines over 

Table 4.  Effect of post-translational modifications on chemo-response carboplatin and paclitaxel in ovarian cancer.

Protein Post-translational 
modification

Effect of post-
translational modification 
on cellular function

Phenotype References

Tubulin De-tyrosination Microtubule stabilization that is 
essential for apoptosis

Chemo-sensitive 165,166

p53 Phosphorylation Leads to apoptosis Chemo-sensitive 167,168

Tumour rejection antigen Glycosylation Tumour proliferation, anti-
apoptotic activity, metastasis

Chemo-resistance 169,170

Triose phosphate Isomerase Glycosylation Facilitates glycolysis that helps 
to keep up with the increased 
energy demand in rapidly 
growing tumour

Chemo-resistance 170,171

Palmitoyl-protein thioesterase 1 
precursor

Glycosylation Anti-apoptotic activity Chemo-resistance 170,172

ER-associated DNAJ Glycosylation Protein folding, transport, 
translational initiation and gene 
expression

Chemo-resistance 170,173–175

Fas-associated death domain-like 
interleukin-1b-converting enzyme 
(FLICE)-like inhibitory protein

Ubiquitination Suppressor of apoptosis Chemo-resistance 176,177

Peptidyl-prolyl cis-trans isomerase A N-terminal acetylation Conformational maintenance of 
oncogenes, cell proliferation, 
anti-apoptotic activity

Chemo-resistance
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an extended period of time and (c) unsuspected heterogeneity 
may occur due to genetic drift. Therefore, cell lines do not pro-
vide the actual reflection of molecular events as compared with 
tissue-based experiments. Also, most of the ovarian cancer cell 
line studies have been done for individual drugs such as cispl-
atin and paclitaxel, which may not correspond with the actual 
use of drug combinations in patients. It is of interest to note 
that the standard protocol for advanced ovarian cancer is a 
debulking surgery followed by chemotherapy. The procure-
ment of the ovarian cancer tissue offers a window of opportu-
nity for discovering biomarkers for innate resistance.

Studies have looked into the role of biomarkers to evaluate 
patient response to carboplatin and paclitaxel. This has been 
summarized in Table 5. Some of the important observations are 
as follows: (a) Genomic and transcriptomic studies that have 
been done to understand chemo-resistance to carboplatin and 
paclitaxel in ovarian cancer do not correspond to protein expres-
sion; (b) the chemotherapy response results from cell-cycle path-
ways that include apoptosis, drug-efflux mechanisms, regulation 
of innate immunity and cell survival; (c) observed chemo-
response outcomes were mostly intrinsic by nature, indicating 
pre-mediated cellular mechanisms that determine clinical phe-
notypes and (d) metabolic proteins, chaperones, transporters, 
transcription regulators and cytoskeletal proteins are up-regu-
lated in ovarian cancer tissues of patients who had chemo-resist-
ance. Although proteomics was used to study the problem of 
chemo-resistance in advanced ovarian cancer, substantial pro-
gress was not made due to the absence of whole cell proteome 
comparison between chemo-resistant and chemo-sensitive 
patient tissue samples. To address this, our group has sought to 
delineate distinct protein signatures that could red flag an innate 
chemotherapy resistance in advanced ovarian cancer. In this 
endeavour, we employed fluorescence-based differential in-gel 
expression coupled with mass spectrometric analysis to identify 
differentially expressed proteins in the advanced ovarian cancer 
tissue of patients resistant and sensitive to carboplatin and pacli-
taxel combinations.114 Aldehyde reductase, hnRNP, cyclophilin 
A, heat shock protein-27 and actin that were expressed in the 
chemo-sensitive state are proteins intricately involved in apopto-
sis, and prohibitin, enoyl-coA hydratase, peroxiredoxin, fibrin-β 
and fibrin-γ that were expressed in the chemo-resistant state are 
proteins that dictate cell survival.225,226 This clearly establishes 
the importance and relevance of biomarker discovery for chemo-
response in ovarian cancer. This is a positive step that can pave 
the way for better patient management and compliance.

Conclusions
Clinical research for chemotherapy combinations in advanced 
ovarian cancer has progressed over the years with a view to 
achieve better CR and tolerability. Currently, carboplatin and 
paclitaxel combination is widely used to treat advanced ovar-
ian cancer globally. Even though there has been significant 
improvement in the CR and OS, a large proportion of the 

patients relapse due to chemo-resistance. A lot of progress has 
been made in the fields of genomics, transcriptomics and pro-
teomics to understand the molecular processes that determine 
and dictate chemotherapy response. Clinical proteomics holds 
a lot of promise for biomarker discovery that can pave the way 
for development of diagnostics that can help monitor chemo-
therapeutics in patients with advanced ovarian cancer.
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