
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:13936  | https://doi.org/10.1038/s41598-021-93422-2

www.nature.com/scientificreports

Triggering avalanches 
by transverse perturbations 
in a rotating drum
Vicente Salinas1, Cristóbal Quiñinao2, Sebastián González3 & Gustavo Castillo2*

We study the role of small-scale perturbations in the onset of avalanches in a rotating drum in the 
stick-slip regime. By vibrating the system along the axis of rotation with an amplitude orders of 
magnitude smaller than the particles’ diameter, we found that the order parameter that properly 
describes the system is the kinetic energy. We also show that, for high enough frequencies, the onset 
of the avalanche is determined by the amplitude of the oscillation, contrary to previous studies 
that showed that either acceleration or velocity was the governing parameter. Finally, we present a 
theoretical model that explains the transition between the continuous and discrete avalanche regimes 
as a supercritical Hopf bifurcation.

Dry granular systems are usually defined as a collection of macroscopic particles that interact mainly through 
dissipative collisions. Despite its simplicity, they possess a wide variety of behaviors. Depending on the dissipa-
tion and injection of energy, they may behave as solids, liquids, and gases1,2. One example where this is observed 
is the case of a rotating drum. It is quite known that in the absence of external vibrations and depending on the 
rotation speed, the system presents a variety of regimes3. At very low rotation speeds, the system displays what 
is called a stick-slip or slumping behavior, where the slope of the free surface fluctuates periodically between 
two angles, the angle of marginal stability and the repose angle4–6. During the build-up, almost all the grains 
move in a rigid-solid-like way with the drum, to suddenly release the energy in the form of an avalanche. By 
increasing the rotation speed, the system undergoes a transition to a regime where there is a continuous flow of 
grains (rolling), that displays a flat free surface and whose slope depends on the angular velocity4,7. In this regime, 
only a small number of grains is involved in the flow, defining a fluid-like and a solid-like zone2. The effect of 
mechanical vibrations, in a suitable range of amplitudes and frequencies, has been proven to increase the mobility 
of grains, reducing the contact area, and thus reducing considerably the friction8,9. In the present work we show 
the dependence between the critical rotational velocity required to transit between the two states in a rotating 
drum experiment as a function of small transverse perturbations. The order parameter governing such a transi-
tion is discussed and an analytical model for such behavior is proposed based on a well known Sel’kov model.

Results
Discrete element simulations.  To study the problem of granular avalanches, discrete element method 
simulations (DEM)10 were performed. In this method, the translational and angular movement of each particle 
are described by Newton’s equation and Euler’s equations, respectively. Contacts are modelled by means of a soft-
sphere approach so that the particles can be slightly overlapped. The DEM code used in this work is the open-
source software MercuryDPM11–13. The contact model used is the standard linear spring dash-pot model11,14,15.

We consider a drum filled with N = 4500 spherical particles of d = 1 mm . The drum has a diameter R = 50d 
and length h = 10d , thus giving a filling fraction of 12% . The direction of the vibration is perpendicular to the 
gravity and parallel to the rotation axis. The system is forced sinusoidally with displacement x(t) = A sin(2π ft) 
(see Fig. 1). The forcing frequency is either f = 120 Hz or f = 240 Hz , while the amplitude A explored ranges 
from 0.0µm to 1.7µm , far smaller than a particle’s diameter. Thus, the dimensionless acceleration Ŵ = A(2π f )2/g 
ranges from 0 to 9.6× 10−2 . The total simulation time was set to depend on the rotation speed so that for each 
simulation run the drum completes two whole turns. All the walls are solid (non periodic), smooth and fric-
tional. The wall’s imposed frequency movement is obviously limited by the time-step, but we are well below this 
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limit ( 1/tc = 105 Hz ). The normal and tangential restitution coefficients are the same and set to e = 0.7 . The 
parameters used in the simulations are specified in Table 1.

Slipping to rolling transition.  To study the effect of mechanical vibrations and the grain mobility near 
the transition, we applied a transverse perturbation to the system. We observe that for a given perturbation 
amplitude, there is a critical rotation speed below which the system presents discrete avalanches. Otherwise, the 
system displays a continuous regime. To characterize this transition, we measure the total kinetic energy of the 
system, defined by K =

∑

i Ki =
∑

(1/2)miv
2
i  where mi and vi represent the mass and speed of each particle 

respectively. The kinetic energy is presented in Fig. 2a for both discrete and continuous cases.
We observe that, once the system has reached a steady state, for the slumping regime, the potential energy 

displays a sawtooth behavior related to the start and end of the avalanches. In contrast, for the continuous 
regime, K reaches a constant value, related to the position of the centre of mass of the system. Something similar 
is observed in the total gravitational energy, see Fig. 4a and Supplementary Material. We observe that, once the 
system has reached a steady state, for the discrete avalanche regime, the kinetic energy displays huge peaks, while 
for the continuous regime, K presents much smaller oscillations. The rapid increase and decrease of the kinetic 
energy correspond to an avalanche event (sudden change in the bed slope), while the time where K remains 
almost constant corresponds to the build-up process (gradual change in the bed slope). By defining �Kmin as the 
difference between the base energy and the minima of the kinetic energy when the system has reached the steady 
state (see Fig.  2a), we study how the system transits from the discrete to the continuous regime. In Fig. 2b we 

Figure 1.   Snapshot of the rotating drum obtained with MercuryDPM. The imposed transverse forcing is along 
the x−direction, such that the movement of the walls is x(t) = A sin(2π ft) . In this case, � = 1 rpm and A = 0.

Table 1.   Parameters used in DEM simulations.

Density 2500 kg/m3

Coefficient of restitution 0.7

Sliding friction particle–particle 0.74

Sliding friction particle–wall 0.40

Rolling friction particle–particle 0.15

Rolling friction particle–wall 0.01

Collisional time 5× 10−4 s

Time-step 1× 10−5 s
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show the behavior of �Kmin as a function of � for different forcing parameters. It is observed that, depending on 
the forcing, there are two clearly distinguishable behaviors. As the forcing amplitude is increased, at some value 
A ∼ 1µm , �Kmin changes its behavior and jumps to much larger values. It is worth noting that for very large 
forcing amplitudes, for the rotation speeds explored, we observe only the continuous regime.

We propose that the control parameter for transitioning from stick-slip to continuous flow is the forcing 
amplitude. To support this statement, we will analyze Fig. 2b in detail: (1) It is possible to verify that for measure-
ments with amplitudes smaller than 1µm , the same behavior is observed when the system is forced at a different 
velocity or acceleration. For example, as shown by Table 2, the dataset e) has twice the speed of b), however they 
show the same behavior. (2) the dataset b) has the same acceleration as h), but their behaviors are different. (3) 
e) has the same velocity as h), but they show different behavior. This analysis allows us to rule out velocity and/or 
acceleration as the relevant parameter to control the regime change in the system, leaving the forcing amplitude 
as the control parameter.

As a probable explanation for this behavior, we propose that the fact that this transition occurs at such small 
amplitudes is related to the typical size of the asperities, the roughness of the grains. Once the amplitude of the 
forcing is larger than the asperity size, the grains are no longer locked up, the force chains break up, and the 
system transits to the continuous regime. Notice that, even though there is no explicit rugosity in the simula-
tions, friction plays an analogous role. According to16, for particles with diameter d ≃ 1 mm , the rugosity is of 
the order ≃ 1µm , which is consistent with our interpretation. For our simulations, the number of contacts with 
an overlap smaller than 1µm is around the 27% of the contacts in the system (see Supplementary Material). This 
means that a significant fraction of the particles can be “freed” of their contacts when exciting at this amplitude. 
In the real world, this scale is associated to the rugosity of the particles and therefore the viscoelastic model 

(a) (b)

Figure 2.   (a) Total kinetic energy of the system for both discrete and continuous cases. The discrete regime 
corresponds to A = 0.8µm and � = 2 rpm , whereas the continuous regime corresponds to A = 0.8µm and 
� = 10 rpm . (b) �Kmin for different forcing amplitudes and frequencies. It is observed that, depending on the 
forcing amplitude, there are two distinguishable data sets. �Kmin is very similar for low amplitudes, whereas it 
jumps for amplitudes larger than A ≈ 1µm . The increment of �Kmin at the smallest value of � is just apparent; 
it is the energy of just one particle falling a distance of one diameter. The continuous black curve corresponds to 
a smoothing spline of all the collapsing data (blue data).

Table 2.   Forcing parameters imposed on the system. The maximum speed and acceleration imposed on the 
drum are vmax = (2π f )A , and amax = (2π f )2A respectively. Note that the data {a, b, c, d, e, f, g, h} have blue 
markers in Fig. 2b, whereas the data {i, j, k} have red markers.
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(linear or Hertz) is not applicable since the particles have not had the chance to deform yet; only their surface 
roughness is in contact. The veracity of this claim remains to be experimentally validated yet seems plausible.

On the other hand, the timescale of this vibration is also relevant for a successful breaking up of the force 
chains. The typical timescale in a granular system may be estimated as the time it takes for one grain to fall over 
another grain due to gravity, which in our case is τg =

√

2d/g = 14.3 ms . This corresponds to a frequency of 
fg = 1/τg = 70 Hz . When applied to rocks of ∼ 10 cm , the associated frequency is 7 Hz . Thus, in order to suc-
cessfully break up the force chains and prevent the system from rearranging itself, the forcing should be done 
at frequencies larger than fg . Therefore, we can conclude that as long as the forcing frequency is larger than fg , 
the governing parameter in the slumping-rolling transition at a fixed rotation speed is the imposed amplitude.

Additionally, by taking a closer look at what happens at rotation speeds near the transition, we get a very 
distinctive change of behavior in �Kmin . From Fig. 3a we can see that, for amplitudes where the transition is 
observed ( A � 1µm ), �Kmin presents two clear distinguishable linear behaviors. For each forcing, �Kmin dis-
plays a slow linear trend for low rotation speeds, while at higher rotation there is a break in the slope. By fitting a 
piecewise linear function (the equation �Kmin = max (c, c + a(�−�c)) , where max represents the maximum 
function), we can obtain the critical rotation speed �c . This is shown in Fig.  3b. We can see that the critical 
speed, �c , above which the system displays continuous avalanches, decreases as the forcing is increased. Thus, as 
the forcing is increased, it becomes easier to reach the rolling regime. In other words, less energy coming from 
the rotation is required to reach the transition. Moreover, it is also observed that there is a maximum value of A 
above which it is impossible to observe discrete avalanches, regardless of how small the rotation is. There is so 
much energy injected into the system by means of the imposed forcing, constantly breaking up the chain forces 
that might form, that the system is always in the continuous regime.

When the system is in the stick-slip regime, it shares some key elements with self-oscillation dynamics. 
Indeed, at the start of an avalanche, the kinetic energy increases due to the falling particles. The larger the 
number of falling particles is, the more it grows. Eventually, it becomes so large that no more particles can fall. 
In a self-oscillator system the faster the object moves, the more it is pushed along the direction of its motion. 
The oscillation amplitude grows exponentially with time until it becomes so large that nonlinear effects become 
relevant, resulting in a self-regulated periodic motion. The framework has been successfully used to describe, 
among other phenomena, the human voice and clocks, musical instruments, the heart, motors, and the theory 
of lasers17. Using this analogy, by modifying the classical Sel’kov model18 (which itself is an extension of the well 
known Lotka-Volterra model) we find that the critical rotational speed can be characterised by a Hopf transition; 
from a continuous avalanche for large amplitudes, to a two-regime region for low enough amplitudes.

Self‑oscillation theoretical analogy.  We present a simple model that captures the essence of the two 
regimes and the transitions between them as discussed previously. Starting with the well-known model of 
Sel’kov18 to describe self-oscillations in Glycolysis, we propose that the most prominent properties of the energy 
dynamics (see Fig. 2) can be described qualitatively by a two dimensional, slow-fast system of ordinary differen-
tial equations. In order to study the unperturbed rotating drum, consider the following model:

The variable u has to be understood as a functional representation of the gravitational potential energy of the 
system, while v is representing the total kinetic energy. The function g(�) is related to the supply of gravitational 

u̇ = ǫ
(

g(�)− (1+ v2)u
)

,

v̇ = −v + (1+ v2)u .

(a) (b)

Figure 3.   (a) Minimum of the total kinetic energy for A = 0.416µm . For the sake of clarity in the figure, the 
other amplitudes are not plotted. By fitting the linear piecewise function �Kmin = max (c, c + a(�−�c)) 
it is possible to obtain the critical rotation speed, �c , for each amplitude where the transition is observed 
( A � 1µm ). (b) Critical rotation speed, �c , as a function of the forcing amplitude A . The continuous black line 
corresponds to the theoretical model described in the following section.
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potential energy due to the drum rotation. From a kinetic perspective, g(�) acts as a source term to the u variable 
that increases with the angular velocities � . The constant ǫ acts as a slow-fast dimensionless quantity. We observe 
that the time-scale of avalanches is much faster than the change in potential energy from experiments. By taking 
ǫ small and fixed, we force the system to allow slow variations on u by maintaining v relatively constant on the 
respective manifold. However, the bifurcation results here exposed remain true for ǫ close to zero.

Qualitatively, the dynamical system behaves as follows: In the first stage, u increases almost linearly at a rate 
ǫg(�) . At some point, the term (1+ v2)u dominates, and v increases rapidly. As v increases, the right-hand side 
of the first equation becomes negative, and a sudden decrease in u occurs. Finally, the second equation comes 
back to equilibrium, and the cycle starts again. In order to obtain the sawtooth behavior of the variable related 
to the potential energy, we have used the notion of self-excitation and cross-inhibition dynamics. There are two 
effects related to the term v2u : as the drum rotates, some of the particles start to fall, thus decreasing the gravi-
tational potential energy and, at the same time, increasing the total kinetic energy of the system. As the kinetic 
energy increases, more and more particles start to move, showing a well-known self-excitation phenomenon19. 
However, this effect decreases the total potential energy until no more particles can fall, i.e. the slope of the 
system becomes flat.

Now we discuss how to modify the original system to incorporate horizontal vibrations. As the drum rotates, 
we have stated that the energy is injected mainly as a gravitational potential source term that later is transformed 
by an internal dynamical process into kinetic energy. Therefore, if we perturb the system through vibrations, 
we have to incorporate a new source term into the mathematical description. The general form to add this new 
configuration is to plug a source term on the form f(A) on the second equation. To summarise, we propose to 
change the unperturbed model as follows:

The chosen term captures the most prominent aspect of the system (steady states depending on A and � ), 
and it is still simple enough to have tractable analytical conditions to (1) the apparition of a limit cycle and (2) 
bifurcations/stability conditions. To go further in the understanding of the apparition of a limit cycle, we solve 
the system by adapting some classical techniques for two-dimensional systems (see e.g., Strogatz, S.20).

The transition between the continuous and discrete regimes defines a curve in the (f (A), g(�)) space. 
Using classical bifurcation analysis, we see that the transition happens in the two following cases: either 
through large enough vibrations A or fast enough rotating speeds � . We propose the following functions 
f (A) = Ak , g(�) = r1(�+ r2) . By fixing ǫ = 0.01 , the parameters that best fit the phase diagram from Fig. 3b 
are r1 = 1.4109 , r2 = 2.7767 , and k = 5.6663 . As it can be seen, there is a good qualitative agreement between 
the simulation data and the proposed analytical model. For � < �c the regime of discrete avalanches is present, 
whereas for � > �c the limit cycle looses its stability and the continuous regime emerges. It is important to 
remark here that ǫ controls the rate at which u changes. Any choice of ǫ smaller than 0.125 displays the same 
qualitative behavior (See Supplementary Material). Please note that this model is not the only one that fits the 
data set. However, it additionally fits the bistability behavior of the kinetic and potential energies, characteristic 
of the stick-slip system.

Figure 4 shows a comparison between the DEM simulations and the numerical solution to the theoretical 
model for two different values of � at fixed A = 0.8 . The numerical solutions are obtained through a Runge–Kutta 
4 scheme for � = 2, and � = 10 . We obtain a similar qualitatively behavior in terms of the two states, discrete and 
continuous, albeit the scales of the variables are different. Furthermore, the discrete state has the same sawtooth 

u̇ = ǫ
(

g(�)− (1+ v2)u
)

,

v̇ = f (A)− v + (1+ v2)u.

(a) (b)

Figure 4.   (a) Potential energy of the system for both continuous and discrete regimes. The discrete regime 
corresponds to A = 0.8µm and � = 2 rpm , whereas the continuous regime corresponds to A = 0.8µm and 
� = 10 rpm . (b) Numerical solution of u(t) to the proposed theoretical model for ǫ = 0.01 , A = 0.8 and � = 2 
and 10.
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structure of the potential energy. Finally, notice that in the experiment the continuous state is noisy whereas our 
model is lacking noise in the equations and thus remains constant.

Conclusions
We have presented evidence that the stability of a pile of grains, hence the macroscopic friction of the system, 
might be altered by means of tiny transverse vibrations. By using the minimum of the kinetic energy of the 
system as a key parameter to describe the transition, we found that for very low perturbations (� 1µm) , the 
system transits from a slumping to a rolling regime. This highlight the importance of how local rearrangements 
affect the macroscopic response of granular media. In other words, through small perturbations and without 
fluidizing the system, we could modify the avalanche angles6 and hence the effective friction coefficients in the 
system. From the simulations, by using a quite clean method, we could also obtain the critical rotation speed 
�c . We also found that the governing parameter behind the transition is the forcing amplitude, as opposed to 
previous research has stated that the quantity that controls the frictional properties of similar granular systems 
are either the imposed acceleration21 or the imposed velocity22.

Additionally, we presented a model that captures the essential physics behind the observed regimes. It 
describes the transition as a Hopf bifurcation, and with it, we get oscillatory/continuous behaviors in good cor-
respondence with what we get from the simulations. These results could shed some light on the understanding 
of how and under what circumstances earthquakes destabilize sandpiles on hills to produce landslides23.
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