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Abstract

Focusing on sex differences is necessary to fully understand basic neurobiological pro-

cesses such as the engagement of large-scale brain networks involved in attention. Prior

work suggests that women show enhanced attention during tasks of reward/punishment rel-

ative to men. Yet, sex differences in the engagement of neural networks sub serving internal

and external focus has been unexplored in regard to reward and punishment. Using data

from a large sample (n = 190) of healthy participants from the Human Connectome Project,

we investigated sex differences in default mode network (DMN), dorsal attention network

(DAN), and frontal parietal network (FPN) activation during exposure to reward and punish-

ment. To determine if sex differences are specific to valenced stimuli, we analyzed network

activation during working memory. Results indicate that, relative to men, women have

increased suppression of the DMN and greater activation of the DAN during exposure to

reward and punishment. Given the relative roles of these networks in internal (DMN) and

external (DAN) attention, this pattern of activation suggests that women have enhanced

external attention to reward and punishment. In contrast, there were no sex differences in

network activation during working memory, indicating that this sex difference is specific to

the processing of reward and punishment. These findings suggest a neurobiological expla-

nation for prior work showing women have greater sensitivity to reward/punishment and are

more prone to psychiatric disorders characterized by enhanced attention to such stimuli.

Furthermore, given the large sample from the Human Connectome Project, the current find-

ings provide general implications for the study of sex as a biological variable in investigation

of reward processes.

Introduction

Brain responses to both reward and punishment have been studied extensively, providing criti-

cal insight into normal and pathological brain states [1–4]. However, there has been limited

investigation into how biological factors such as sex influence these processes. Such sex differ-

ences are likely, as women generally show more behavioral sensitivity to reward and punish-

ment relative to men [5–7]. Neuroimaging investigation of sex differences in reward and
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punishment processing have largely focused on limbic brain regions typically associated with

reward and emotion [8–9]. However, when considering sex differences in reward/punishment,

there is evidence suggesting that sex differences exist outside traditional reward function. Spe-

cifically, event related potential studies suggest women engage more attentional resources

when performing reward/punishment tasks [7, 10]. Such findings suggest that there may be

sex differences in the engagement of large scale attentional neural networks during reward and

punishment processing.

Attentional processes are modulated by the suppression and engagement of large-scale neu-

ral networks, such as the default mode network (DMN), dorsal attention network (DAN), and

frontoparietal control network (FPN) [11–13]. Specifically, the DMN, comprised mainly of the

medial prefrontal cortex (mPFC), posterior cingulate cortex (PCC), inferior parietal lobe, and

medial temporal lobe, modulates internally oriented attention, such as self-referential process-

ing, recalling one’s past, and planning one’s future [14,15]. On the other hand, the DAN, com-

prised primarily of the dorsal lateral prefrontal cortex (dlPFC), frontal eye fields, middle

temporal motion complex, and superior parietal lobe, modulates externally oriented attention,

such as top-down attentional control [11]. Therefore, the DMN is typically suppressed and

DAN activated during cognitive tasks requiring external attention, including those involving

rewarding stimuli [16–18]. The FPN modulates attentional processes by flexibly coupling with

the DMN and/or DAN to support internal and external attention, respectively [13,19]. Prior

work suggests that these networks may be differentially engaged in men and women during

exposure to valenced stimuli. For example, core DMN regions, such as the mPFC and PCC,

show greater activity in men versus women during exposure to monetary and appetitive drug

stimuli [20–22], which could be due to higher activation in men or increased suppression in

women. In contrast, a core DAN region, the dlPFC, shows greater activity in women versus

men during exposure to negative stimuli [23]. It is plausible that these prior regional findings

represent sex differences in DMN and DAN engagement during exposure to reward/

punishment.

To determine whether there are sex differences in network engagement during the process-

ing of reward/punishment, we used functional magnetic resonance imaging (fMRI) data from

a large group of healthy participants from the Human Connectome Project (HCP) [24]. We

analyzed DMN, DAN, and FPN activity during the incentive processing task, which involves

exposure to monetary reward and punishment. Because women generally show greater atten-

tion to valenced stimuli [7,10,25,26], we hypothesize that women will show greater suppression

of brain networks related to internal attentional processes (i.e., greater DMN suppression) and

greater activation of brain networks related to external attentional processes (i.e., greater DAN

activation) during reward and punishment exposure. To determine if sex differences are spe-

cific to the processing of valenced stimuli, we also analyzed network activity during an object

n-back working memory task (0-back and 2-back) which is known to reliably suppress the

DMN and activate the DAN [18,27]. Men and women typically show equivalent behavioral

performance on similar n-back tasks [28–31], though similar working memory performance

could still be modulated by different brain regions in men versus women [32]. Indeed, a meta-

analysis of sex differences during working memory have found that women show greater acti-

vation of limbic and prefrontal structures, such as the amygdala, left superior and right inferior

frontal gyri, while men show greater activation of parietal areas such as the superior parietal

lobule and left precuneus [33]. However, sex differences in attentional networks during work-

ing memory have not been investigated. Together, these results will clarify the neurobiological

factors underlying sex-specific processing of reward and punishment, and whether these sex-

specific processes are specific to reward/punishment or extend to other cognitive domains.
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Methods

Participants

Secondary analysis of data collected from the first 500 participants in the Human Connectome

Project (S500 data release) was done for the present study. Recruitment details for the HCP

are provided in Van Essen et al. [24]. Study was approved by Washington University in the

St. Louis’ Human Research Protection Office (IRB #201204036, "Mapping the Human Con-

nectome: Structure, Function, and Heritability"). Briefly, individuals were excluded by the

HCP if they reported having a significant history of psychiatric disorders, neurological or car-

diovascular disease, if they were pregnant, or if they had unsafe metal in their body. Inclusion/

exclusion criteria were assessed by a screening questionnaire developed explicitly for the HCP

and using the Semi-Structured Assessment for the Genetics of Alcoholism (SSAGA) [34].

Additional criteria were used to exclude HCP participants from the current analyses, including

testing positive for illicit drug use, having a breath alcohol level above zero, use of any tobacco

products, irregular menstrual cycles, or head motion> 2.00 mm during the tasks. To attain

two groups with equal numbers of men and women, the remaining participants were matched

based on age and education level. The final group of participants included 190 individuals

(n = 95 per sex, age range 22–36). See Table 1 for detailed participant demographics.

To assess for potential menstrual cycle phase effects, we also categorized women to be in

either the follicular phase (n = 52) or luteal phase (n = 43) of their menstrual cycle. The regu-

larly cycling women included in this study were considered to be in the follicular phase of

their menstrual cycle if the number of days since their last period was 1–12 (for reported men-

strual cycle lengths <25 days), 1–14 (for reported menstrual cycle lengths 25–35 days), and

1–17 (for reported menstrual cycle lengths > 35 days). All others were considered to be in the

luteal phase of their menstrual cycle.

Experimental task design

Incentive processing. The incentive processing task conducted by the HCP was adapted

from Delgado et al. [35] and is described in detail in Barch et al. [36]. Participants were shown

a card with a question mark (“?”) and were told the number on the back of the card was

between 1–9. Participants guessed whether the number was either lower or higher than 5 by

pressing one of two buttons on a response box. Participants were then given feedback to indi-

cate whether they were correct and won money or incorrect and lost money. Although partici-

pants believed that they were correct or incorrect based on the accuracy of their responses,

feedback was predetermined to create either a reward trial, a punishment trial, or a neutral

Table 1. Participant demographics.

All Males Females

n = 190 n = 95 n = 95

Race % (n)

White 69 (131) 67 (64) 71 (67

Black 16 (31) 16 (15) 17 (16)

Other 15 (28) 17 (16) 13 (12)

Age (years) 29.6 ± 0.3 29.6 ± 0.4 29.6 ± 0.4

Education (years) 15.3 ± 0.1 15.3 ± 0.2 15.3 ± 0.2

Data depicts average ± SEM. No differences were found between males and females using t-tests with non-parametric

permutation testing via Permutation Analysis of Linear Models (PALM).

https://doi.org/10.1371/journal.pone.0199049.t001
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trial. Feedback was either a green upward facing arrow and “+$1.00” to indicate a reward, a

red downward facing arrow and “-$0.50” to indicate a punishment, or a bidirectional gray

arrow pointing left and right and the number “5” to indicate neither a reward nor punishment

(neutral trial). The experimental design was a block design with two 3 min 12 s runs. Each run

had four 28 s blocks (2 reward blocks and 2 punishment blocks) interleaved with a 15 s fixation

cross. Each block consisted of eight 3.5 s trials with presentation of the “?” for 1.5 s, feedback

for 1.0 s, and an inter trial interval (ITI; fixation cross) for 1.0 s. Reward blocks consisted of 6

reward trials pseudo randomly interleaved with 2 out-of-set trials (1 neutral and 1 punishment

trial, 2 neutral trials, or 2 punishment trials). Punishment blocks consisted of 6 punishment tri-

als pseudo randomly interleaved with 2 out-of-set trials (1 reward and 1 neutral trial, 2 neutral

trials, or 2 reward trials). Upon completion of the task, all participants were given a standard-

ized amount of money. Since reward and punishment conditions were predetermined and not

based on the accuracy of participant responses, there is no behavioral accuracy to be reported.

Working memory. The working memory task conducted by the HCP is described in

detail in Barch et al. [36]. Participants were shown pictures as part of a 0-back working mem-

ory task and a 2-back working memory task. For the 0-back working memory task, a target

cue was presented at the start of each block and participants were instructed to press a button

on a response box whenever the stimulus was the same as the target cue. For the 2-back work-

ing memory task, participants were instructed to press a button on a response box whenever

the current stimulus was the same as the stimulus two back. Stimuli were pictures of faces,

places, tools and body parts, and each stimulus type was presented in separate blocks. The

experimental design was a block design with two 5 min 1 s runs. Each run had eight 25 s blocks

interleaved with a 15 s fixation cross. Within each run, ½ of the blocks used the 0-back work-

ing memory task and ½ of the blocks used the 2-back working memory task. Each block con-

sisted of ten 2.5 s trials with presentation of the picture stimulus for 2 s, followed by a fixation

cross ITI for 500 ms. At the start of each block, a 2.5 s cue indicated the task type (and target

stimulus for 0-back).

fMRI data acquisition

HCP data were acquired with a 32-channel head coil on a Siemens 3T Skyra modified to

include a Siemens SC72 gradient coil to achieve a maximum gradient strength of 100 mT/m.

Whole brain images were acquired using echo-planar imaging (EPI) with the following param-

eters: repetition time (TR) = 720 ms, echo time (TE) = 33.1 ms, flip angle = 52˚, BW = 2290

Hz/Px, in-plan FOV = 208 x 180 mm, 72 slices, 2 mm isotropic voxels, with a multi-band accel-

eration factor of 8. For each task, there were two runs, one with right-to-left phase encoding

and one with left-to-right phase encoding to minimize signal dropout in the combined results.

Details of scanner modifications and data acquisition parameters are further described in

Ugurbil et al. [37].

fMRI data preprocessing and analyses

Imaging data were pre-processed and analyzed using FMRIB Software Library (FSL) 5.0.8

(http://fmrib.ox.ac.uk/fsl) [38] and group-level statistical analyses were implemented using

Permutation Analysis of Linear Models (PALM) [39]. The current study used the “minimally

preprocessed” Quarter 3 release of the HCP data, which included gradient unwarping,

motion correction, fieldmap-based EPI distortion correction, brain-boundary-based regis-

tration of EPI to structural T1-weighted images, non-linear FNIRT registration to the

MNI152, and grand-mean intensity normalization using tools from FSL and Freesurfer [40].

For the current analyses, data was also re-registered to subject specific T1-weighted scans,

Sex differences in default mode and dorsal attention network engagement
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spatially smoothed with a 4 mm full-width half-maximum Gaussian kernel, and a high-pass

temporal filter of 200 s was applied. First-level analyses were conducted on each participant’s

individual task runs separately (2 runs per task). Using the general linear model (GLM),

task-related regressors (corresponding to either reward or punishment blocks for the incen-

tive processing task or the 0-back and 2-back blocks for the working memory task) were con-

volved with the gamma hemodynamic response function. For the working memory task, the

task-related regressors were modeled to include only the correct trials for each participant.

Confound regressors representing motion were also included in the models for each task.

Contrasts between each task condition (reward, punishment, 0-back and 2-back) and the

baseline fixation were calculated. Lower level individual runs within each task were then

combined using a second level fixed effects analysis to generate the average brain activation

map for each participant for each contrast. For each contrast of interest, a contrast “subject-

series” was then created by concatenating the contrast maps for all subjects together into a

4D (volume x subjects) data matrix for further processing. This was done for each contrast

independently.

To calculate network activation strength, we defined our networks of interest (DMN,

DAN, FPN) using independent component analysis (ICA) via FSL’s Multivariate Explor-

atory Linear Optimized Decomposition into Independent Components (MELODIC) on an

independent group of healthy participant resting state scans (see Supporting Information).

Brain networks of interest identified from the group ICA are shown in Fig 1. The DMN was

comprised of the mPFC, PCC, precuneus, parahippocampus, and lateral parietal lobe. The

DAN was comprised of the frontal eye fields, inferior precentral sulcus, dlPFC, middle tem-

poral motion complex, and left superior parietal cortex. The FPN was comprised of the lat-

eral prefrontal cortex, anterior insula, precuneus, middle frontal gyrus, and anterior inferior

parietal lobe. Multivariate spatial regression of the template ICA networks against the sub-

ject series for each contrast was done to calculate the strength of activation of each network

during each task condition (reward, punishment, 0-back and 2-back, each versus baseline

fixation) [41]. This analysis results in the network activation strengths for each subject for

each contrast.

Statistical analyses

All statistical analyses were run using t-tests with non-parametric permutation testing via

FSL’s PALM to account for family structure in the HCP data. The HCP focused on recruiting

twins and siblings, so there is a significant amount of family structure. PALM has specialized

functionality for analyzing HCP data, thus this tool was used for inference, and all results are

reported with control of family-wise error, p<0.05. Demographic variables (age and educa-

tion) were assessed using a two-group t-test using PALM (p<0.05, corrected for family struc-

ture). Behavioral scores (0-back accuracy and 2-back accuracy) were compared between

males and females using a two-group t-test using PALM (p<0.05, corrected for family struc-

ture, number of tasks [2: 0-back, 2-back], and number of contrasts [2: males > females,

females > males]). For the incentive processing and working memory tasks, sex differences

in network activation were assessed for each task contrast using a two-group t-test using

PALM (p<0.05, corrected for family structure, number of networks [3: DMN, DAN, FPN],

and number of contrasts [2: males > females, females >males]). Influence of menstrual

cycle phase (reported at the time of MRI data collection) on network activation was also

assessed by a two-group t-test using PALM (p<0.05, corrected for family structure, number

of networks [3: DMN, DAN, FPN], and number of contrasts [2: follicular > luteal, luteal >

follicular]).

Sex differences in default mode and dorsal attention network engagement
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Results

Demographic variables and task behavior

As our sample was matched based on age and education, there were no sex differences in either

variable (Table 1, p> 0.4 for all contrasts). There were no sex differences in accuracy on the

0-back (males: 91.3 ± 1.1%; females: 91.1 ± 1.0%) or 2-back (males: 84.8 ± 1.0%; females:

81.7 ± 1.2%) working memory tasks (p> 0.05 for all contrasts).

Sex differences in network activation

Incentive processing task. Females showed greater suppression of the DMN during

reward (t(188) = 3.16, p = 0.006) and punishment (t(188) = 3.22, p = 0.004) trials compared to

males (Fig 2). On the other hand, females showed greater activation of the DAN during reward

(t(188) = 3.07, p = 0.008) and punishment (t(188) = 2.80, p = 0.017) trials compared to males (Fig

2). There were no sex differences in FPN activation during either reward or punishment trials.

Fig 1. Network ICA maps. Sagittal, coronal and axial images showing the independent components from the

MELODIC analysis that correspond to the default mode network (DMN), dorsal attention network (DAN) and

frontoparietal control network (FPN). Because two DMN sub-networks and two FPN networks (left and right) were

identified, the maps of these networks were added together to show a single DMN and FPN. Networks are shown

overlaid on the MNI standard brain image.

https://doi.org/10.1371/journal.pone.0199049.g001

Sex differences in default mode and dorsal attention network engagement

PLOS ONE | https://doi.org/10.1371/journal.pone.0199049 June 14, 2018 6 / 13

https://doi.org/10.1371/journal.pone.0199049.g001
https://doi.org/10.1371/journal.pone.0199049


Working memory task. There were no sex differences in DMN, DAN, or FPN activation

during the 0-back (p> 0.3 for all contrasts) or 2-back (p> 0.1 for all contrasts) working mem-

ory tasks (Fig 3).

Menstrual cycle phase effects

When comparing women in the follicular and luteal phases, no differences were found within

any of the networks and contrasts of interest for either the incentive processing task (p> 0.5

for all contrasts) or the working memory task (p> 0.3 for all contrasts).

Discussion

Our results show that women have a pattern of neural activity indicative of enhanced attention

to external valenced stimuli. Specifically, during the processing of reward and punishment, but

not working memory, women showed increased suppression of the DMN and increased acti-

vation of the DAN compared to men. These results suggest that women may have neural pro-

cessing biases toward stimuli representing reward and punishment.

Greater attention to reward and punishment in women versus men is inferred given the

roles of the DMN and DAN in attentional processing. Specifically, the DMN is typically

engaged during internally-focused attention, such as self-focused thought, autobiographical

memory, and mind wandering [15,42,43]. On the other hand, the DAN plays a role in

Fig 2. Network activation during reward and punishment trials of the incentive processing task. Females show

greater suppression of the default mode network (DMN) and greater activation of the dorsal attention network (DAN)

during reward and punishment trials compared to males. There is no sex difference in frontoparietal control network

(FPN) activation. � p< 0.05, ��p<0.01, t-tests with non-parametric permutation testing via Permutation Analysis of

Linear Models (PALM). Bars represent mean ± SEM.

https://doi.org/10.1371/journal.pone.0199049.g002
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externally-focused attention, and modulates goal-oriented attentional control [11]. Therefore,

greater suppression of internal attentional processes coupled with greater activation of external

attentional processes may suggest that women are paying greater attention to reward and pun-

ishment stimuli compared to men. These data support previous behavioral and electrophysio-

logical studies that show greater attention to valenced stimuli in women versus men in both

healthy [7,10,25,26] and clinical [44] populations. We extend these findings by suggesting that

sex-specific attention to valenced stimuli are in part modulated by sex differences in the

engagement of the DMN and DAN.

Sex-specific activation of attentional networks during reward and punishment processing

may be due to sex differences in reward and punishment sensitivity. Specifically, meta-analyses

show that women generally show greater reward and punishment sensitivity compared to men

[5,6]. Greater reward sensitivity has been specifically linked with DMN suppression during

exposure to reward cues [16]. Therefore, the greater DMN suppression in women in the cur-

rent study may reflect the heightened reward sensitivity that is found in women versus men.

Though regions of the FPN also play a role in attention [11,45], there was no sex difference

in FPN activity during exposure to reward and punishment. A major role of the FPN is to facil-

itate the interplay between the DMN and DAN. Specifically, the FPN is anatomically inter-

posed between the DMN and DAN [19], and flexibly couples with either the DMN or DAN

during internally driven versus externally driven goal-directed cognition, respectively [13].

Therefore, though both the FPN and DAN mediate attentional control, the DAN more directly

modulates voluntary goal-directed stimulus response selection and serves to shift and maintain

focus on relevant cues [11,27]. Therefore, the greater activation in women versus men in the

Fig 3. Network activation during the working memory task. There are no sex differences in default mode network

(DMN), dorsal attention network (DAN), or frontoparietal control network (FPN) activation during the 0-back or

2-back working memory tasks. Bars represent mean ± SEM.

https://doi.org/10.1371/journal.pone.0199049.g003
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DAN but not the FPN suggests that women show an enhanced voluntary shift in attention

towards reward and punishment. While FPN activation did not differ between the sexes across

all tasks, it was suppressed during the 0-back task while activated during the 2-back task and

showed relatively little activation during the gambling task. It is plausible that these patterns

relate to cognitive load. Specifically, the 2-back task is more challenging than the 0-back task,

and FPN regions typically increase in activation during working memory and decision-making

tasks [46–48].

The lack of sex differences in network activation during working memory suggests that sex

differences in attentional network activity are specific to the processing of valenced stimuli.

However, a few studies have found sex differences in DMN activation during cognitive tasks

that don’t include valenced stimuli. For example, women showed increased DMN suppression

versus men during mental arithmetic [49] and cognitive interference [50]. Because greater

DMN suppression is associated with increased task demands and difficulty [18,51], sex differ-

ences may emerge when task demands become more challenging for women than for men.

Therefore, the mental arithmetic [49] and cognitive interference [50] tasks, but not the work-

ing memory task, may have been more challenging for women than men. Indeed, the lack of

sex difference in n-back working memory performance in the current study and other studies

[28–31] may suggest that the working memory task had a similar level of difficulty for both

men and women. However, cognitive effort was not assessed during any of these tasks.

Whether sex differences in DMN and/or DAN activation are associated with sex differences in

cognitive effort requires further testing.

Knowledge of sex differences in attentional network function during the processing of

reward and punishment may help us gain a better understanding of sex biases found in numer-

ous neuropsychiatric disorders. For example, depression and anxiety are more prevalent in

women compared to men [52,53]. These disorders are characterized by dysfunctional reward

processing [54,55], including attentional bias to negative information [56–58]. It has been

hypothesized that women’s enhanced attention to negative information may contribute to

their greater prevalence of depression and anxiety [59,60]. It is then possible that sex differ-

ences in attentional network engagement during reward and punishment processing may in

part underlie this increased vulnerability of women to develop these disorders. Further

research is required to test this hypothesis.

There are several limitations of the current work that warrant discussion. First, the HCP

dataset was collected to represent a normative sample of relatively young adults and thus there

is some heterogeneity in the sample. For example, variables such as a family history of psychi-

atric/neurological disorders were not considered in the current study. Given the richness of

the dataset there are many other variables that could have been taken into account, yet not

overly restricting the dataset allows us to suggest the current findings represent sex differences

within a general population. Nevertheless, future studies aimed at investigating other factors

are warranted. In addition, though we found no difference in network activity between men-

strual cycle phases, menstrual cycle was assessed by the HCP via self-report measures, which is

an indirect measure of menstrual cycle phase and therefore subject to reporting errors. Given

evidence of differences in attentional processing of negative stimuli across menstrual cycle

phases [61], further investigation of the effect of menstrual cycle phase on network activation

using a more direct assessment of menstrual cycle phase (i.e., hormone measurement) is

warranted.

In conclusion, we found that attentional network engagement during the processing of

reward and punishment is different in men and women. During exposure to reward and pun-

ishment, women showed increased suppression of the DMN, which modulates internally-ori-

ented attention, and increased activation of the DAN, which modulates externally-oriented

Sex differences in default mode and dorsal attention network engagement

PLOS ONE | https://doi.org/10.1371/journal.pone.0199049 June 14, 2018 9 / 13

https://doi.org/10.1371/journal.pone.0199049


attention. Therefore, women show a pattern of neural activity that reflects enhanced attention

to reward and punishment compared to men. Because of disturbances in reward function that

are present in numerous sex-biased psychiatric disorders [54,55,62], a greater understanding

of how sex influences reward and punishment processing may give insight into the etiology of

these disorders.
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