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Abstract: The bounded rationality mainstream is based on interesting experiments showing human
behaviors violating classical probability (CP) laws. Quantum probability (QP) has been shown to
successfully figure out such issues, supporting the hypothesis that quantum mechanics is the central
fundamental pillar for brain function and cognition emergence. We discuss the decision-making
model (DMM), a paradigmatic instance of criticality, which deals with bounded rationality issues in
a similar way as QP, generating choices that cannot be accounted by CP. We define this approach
as criticality-induced bounded rationality (CIBR). For some aspects, CIBR is even more satisfactory
than QP. Our work may contribute to considering criticality as another possible fundamental pillar
in order to improve the understanding of cognition and of quantum mechanics as well.

Keywords: DMM; quantum probability; conjunction fallacy; failures of commutativity; criticality

1. Introduction

The “bounded rationality” mainstream is based on interesting results of psychological
experiments, challenging classical probability (CP) and violating its fundamental laws [1,2].
Scientific literature reports that quantum probability (QP) can correctly describe such
behaviors [3], sometimes leading to the suggestion that the unique brain capabilities should
rest on the law of quantum mechanics, thereby making it the fundamental pillar of the
emergence of the mind [4–7]. Such a debate is still open, with controversial positions (e.g.,
see the commentary debate of Pothos and Busemeyer [1], and the position of Behme [8],
Dzhafarov and Kujala [9], Houston and Wiesner [10]).

On the other hand, a growing body of work is focusing attention on the theory of
complexity, supported by evidence of critical dynamics measured in the brain [11].

A paradigmatic model employed to study criticality is the decision-making model
(DMM) [12]. The DMM has been employed as a possible model to mimic brain behavior.
We have tried to investigate whether the DMM can deal with bounded rationality issues at
least as much as QP, beyond the limit of CP.

In Section 2, we introduce the DMM with some insights into interesting features
emerging from computational simulation. In Section 3, two fundamental bounded ra-
tionality issues (the “Linda issue” and the “Gallup poll”) are discussed from the DMM
perspective. Section 4 is devoted to the final discussion and conclusion. Simulation details
are presented in Appendices A and B.

2. The Decision-Making Model and Committed Minority
2.1. The DMM on a Lattice

A paradigmatic model employed to study complexity and criticality is the decision-
making model (DMM) [12]. The DMM belongs to the universality class of kinetic Ising
models, as discussed by Turalska and West [13], in accordance with the hypothesized
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arguments by Grinstein et al. [14]. The DMM approach could resemble unsupervised
artificial neural networks (ANNs). Indeed, beyond some similar aspects, the unique roots
of a DMM should be noted, deeply based on the concept of complexity and criticality,
whereas an unsupervised ANN, e.g., the self-organizing map, is based on methods such
as linear vector quantization, and hence on a proper distance measure within its own
lattice [15].

In one of its proposed configurations, the DMM employs a network of N elements
located in a 2-dimensional square lattice. Each element (a “node” of this network) interacts
with its nearest neighbors, usually four (up, right, down and left) (Figure 1).
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Figure 1. The DMM lattice. A part of a DMM lattice where the possible interactions of a node are
shown with thicker lines.

More precisely, each element is a stochastic node described by s (i,t), a dichotomous
function, taking into account that each individual can be in one of two possible states only,
either +1 or −1. At each time step t (i.e., iteration), each node of the lattice is updated
according to master equations based on the transition rates gi:

gi(1→ 2) = g0exp
[
− K

M
(M1 −M2)

]
, (1)

gi(2→ 1) = g0exp
[

K
M

(M1 −M2)

]
, (2)

where:

g0 = constant value;
M = the total number of nearest neighbors to individual i (e.g., four);
M1 = the number of nearest neighbors in state +1;
M2 = the number of nearest neighbors in state −1;
K = coupling constant (or control parameter).

The dynamics of the single node at each time step are easily described as follows: if a
node i is in state = +1, then its probability to move to state = −1 is given by gi(1→ 2); if a
node i is in state = −1, then its probability to move to state = +1 is given by gi(2→ 1).

In order to evaluate the global state of the network, the model defines the global order
variable as follows:

ξ(K, t) =
1
N

N

∑
i=1

s(i, t), (3)

ξ(K, t) is the mean value of all of the elements, hence it is not dichotomous but can
span in the [−1; +1] interval. Interestingly, ξ(K, t) depends on the value of the coupling
constant K. If K = 0, all of the nodes in the lattice are independent Poisson processes
since gi(1→ 2) = gi(2→ 1) = g0, thereby making ξ(K, t) vanish for a very large N. As
K > 0 increases, network elements become more and more dependent on one another,
moving away from the zero average. When K reaches the value K = KC, the “critical
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value,” a kind of “phase transition” to a global majority state, occurs. This global majority
is described through the value ξeq expressing the mean value of ξ(K, t) over a proper
number of iterations (e.g., for a fixed K, the mean value is taken over 106 iterations), so that
ξeq = 〈|ξ(t)|〉 (see Figure 2).

The ξeq outcome is a real number. In order to express the population majority in brief,
we introduce the variable ξM, defined as follows:

ξeq < − 0.33 then ξM = −1;
−0.33 ≤ ξeq ≤+ 0.33 then ξM = 0;
ξeq > 0.33 then ξM = +1.

The interesting behavior is that the network shifts from a configuration dominated by
randomness to an organized state, as K is larger than KC. In fact, for a subcritical coupling
constant (K < KC), the single element is weakly influenced by its neighbors and changes
its state with a rate close to g0 such that the ξ(K, t) shows a small amplitude but very fast
fluctuations around the ξ(K, t) = 0 axis (ξM = 0). On the other hand, for the supercritical
coupling constant (K > KC), the strong interaction among elements leads to a majority state
in which almost all of the elements agree to adopt the same state (+1 or −1) and stay in that
“stable” state (ξM = −1 or ξM = +1). The coupling constant K is a kind of control parameter
whose critical value KC corresponds to a phase change. In particular, when K is close to
KC, the network is at criticality and ξ(K, t) fluctuates, alternating its stable states +1 and
−1 in a square wave fashion. In particular, ξ(K, t) either stays at +1 and −1 or crosses the
ξ(K, t) = 0 axis, with times intervals following an inverse power law.

Moreover, it has also been shown that at a critical state, the network has other notable
properties [12]; in particular, it has the highest measure of spatial influence (measured
through the correlation function), i.e., the highest long-range interaction capability.
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Figure 2. As a qualitative example of ξeq versus K, a periodic square lattice case with N = 1024, 32 by
32 is shown; two red lines are superimposed (at +0.33 and −0.33) in order to denote the threshold for
ξM. It should be noted that before the critical value (K = 1.5 for this particular DMM configuration),
the fluctuations are within the region with the two straight lines as borders. At K = 1.5, it is evident
that the fluctuations reach the borders for slightly larger values of K, and begin to go beyond them
(adapted from [16], published according to IOP Copyright policy).

2.2. The DMM and Committed Minorities

The DMM dynamics become very interesting when there are committed minorities,
namely, when a small group of elements stays in the same fixed state (+1 or −1), regardless
of the choice made by their nearest neighbors. They are also called “zealots” [17]. The
authors of [17] propose a theory where the individuals of a given network make decisions
on whether to adopt cooperation or defection through the DMM and select the control
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parameter K so as to fit their payoff. The system makes a spontaneous transition to the
critical value of K and the zealots exert a deep influence, benefitting from the properties of
criticality that we use in this paper for the main goal of exploring bounded rationality as
an effect of criticality.

We note that when the lattice is in a subcritical condition, committed minorities have
no effect on the DMM lattice. In fact, the K parameter (coupling constant) is too small and
the influence between different nodes is too weak, even the influence exerted by committed
nodes. The influence of committed minorities is also negligible when the lattice is in a
supercritical condition. After the occurrence of a phase transition, the network is in a
definite state (+1 or −1), and it stays in that state and a committed minority cannot move it
away because K is too strong, and the majority’s decision lasts.

Notably, when a system is at criticality, a very small group can drive the whole system
to a definite state. A committed minority, usually a few nodes on the lattice keeping a
fixed decision of either “yes” or “no,” either +1 or −1, can influence all of the population,
independently of the other elements’ free opinion. Interestingly, under proper experimental
conditions, a minority of just 1% can force the whole network to adopt its opinion (state).
It can be shown (see the Appendix A) that when there are no committed minorities, the
DMM lattice alternates its stable states (it alternates ξM = −1 and ξM = +1 in a square
wave fashion). On the other hand, when there is a 1% committed minority, whose nodes
are fixed in one state (e.g., +1), this minority can drive the whole DMM lattice to the
same stable state (in our example, ξM = +1). The whole network stays there (without
moving to ξM = −1) as long as the committed minority remains in action. For example, in
Appendix A, a committed minority of four nodes (e.g., fixed at +1) can drive a 400-node
DMM lattice (20 × 20) to a stable state (in the example, ξM = +1).

We investigated the influence on the system of two different kinds of committed mi-
norities at criticality. We define “sparse config” as when each committed node is randomly
distributed through the lattice and “compact config” as when the committed nodes act as a
unique square lattice, i.e., four nodes corresponding to a 2 × 2 square lattice (see Figure 3).

Entropy 2021, 23, x FOR PEER REVIEW 4 of 19 
 

 

2.2. The DMM and Committed Minorities 

The DMM dynamics become very interesting when there are committed minorities, 

namely, when a small group of elements stays in the same fixed state (+1 or −1), regardless 

of the choice made by their nearest neighbors. They are also called “zealots” [17]. The 

authors of [17] propose a theory where the individuals of a given network make decisions 

on whether to adopt cooperation or defection through the DMM and select the control 

parameter K so as to fit their payoff. The system makes a spontaneous transition to the 

critical value of K and the zealots exert a deep influence, benefitting from the properties 

of criticality that we use in this paper for the main goal of exploring bounded rationality 

as an effect of criticality. 

We note that when the lattice is in a subcritical condition, committed minorities have 

no effect on the DMM lattice. In fact, the K parameter (coupling constant) is too small and 

the influence between different nodes is too weak, even the influence exerted by commit-

ted nodes. The influence of committed minorities is also negligible when the lattice is in a 

supercritical condition. After the occurrence of a phase transition, the network is in a def-

inite state (+1 or −1), and it stays in that state and a committed minority cannot move it 

away because K is too strong, and the majority’s decision lasts. 

Notably, when a system is at criticality, a very small group can drive the whole sys-

tem to a definite state. A committed minority, usually a few nodes on the lattice keeping 

a fixed decision of either “yes” or “no,” either +1 or −1, can influence all of the population, 

independently of the other elements’ free opinion. Interestingly, under proper experi-

mental conditions, a minority of just 1% can force the whole network to adopt its opinion 

(state). It can be shown (see the Appendix A) that when there are no committed minorities, 

the DMM lattice alternates its stable states (it alternates 𝜉𝑀 = −1 and ξM = +1 in a square 

wave fashion). On the other hand, when there is a 1% committed minority, whose nodes 

are fixed in one state (e.g., +1), this minority can drive the whole DMM lattice to the same 

stable state (in our example, 𝜉𝑀 = +1). The whole network stays there (without moving to 

𝜉𝑀 = −1) as long as the committed minority remains in action. For example, in Appendix 

A, a committed minority of four nodes (e.g., fixed at +1) can drive a 400-node DMM lattice 

(20 × 20) to a stable state (in the example, 𝜉𝑀 = +1). 

We investigated the influence on the system of two different kinds of committed mi-

norities at criticality. We define “sparse config” as when each committed node is ran-

domly distributed through the lattice and “compact config” as when the committed nodes 

act as a unique square lattice, i.e., four nodes corresponding to a 2 × 2 square lattice (see 

Figure 3). 

  
(a) (b) 

Figure 3. Committed minority configurations: (a) an example of “sparse config”: each fixed node (in dark) is located in a 

random position; (b) the “compact config”: fixed nodes form a unique square lattice. 

Appendix A shows that when only one committed minority is present, it drives the 

DMM lattice to the related state, regardless of whether it is sparse or compact. 

Figure 3. Committed minority configurations: (a) an example of “sparse config”: each fixed node (in dark) is located in a
random position; (b) the “compact config”: fixed nodes form a unique square lattice.

Appendix A shows that when only one committed minority is present, it drives the
DMM lattice to the related state, regardless of whether it is sparse or compact.

Appendix A shows that, as expected, when both sparse and committed minorities
share the same opinion, the outcomes are not interesting. If both minorities are fixed at
+1, then ξM = 1, and if both are fixed at −1, then ξM = −1. If they do not share the same
opinion, but both are sparse or compact, then ξM = 0.

Interesting outcomes appear when sparse configurations versus compact configu-
rations act at the same time, with conflicting opinions. When different configurations
challenge each other, the results of Appendix A show that:

Sparse config = −1 versus compact config = +1 yield ξM= −1
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Sparse config = +1 versus compact config = −1 yield ξM= +1
In brief, the sparse config somehow “dominates” the compact config, exerting a

stronger influence on the population dynamics. This is a very important result.
It is easy to understand these results. In the sparse configurations, each committed

node influences four neighbors, thereby making the committed minorities influence 16
nearest neighbors, while in the compact configuration, the number of nearest neighbors is
just eight, hence exerting weaker influence on the system (see Figure 3).

We make the interpretation of these results more interesting by adopting the perspec-
tive of lookout birds [18]. According to the authors of [17], the DMM lattice is interpreted
as a flock of birds (each node is a bird). Each bird has to make a choice between flying
right (+1) or left (−1). When K is subcritical, the decision rate is given by g0 and there is no
cooperation. When K is supercritical, the flock stays with its decision, with no significant
change at all. However, when K is at criticality, we use the comparison metaphor to explain
the influence of lookout birds on the decision made by the flock. As stated earlier, the
lookout birds are either compact or sparse. If they are sparse, they perceive a wider target,
namely, they have a better understanding of the environment. They may perceive either
a more abundant source of food, exerting an influence on the flock to move toward it, or
a more dangerous predator, thereby exerting an influence on the flock to move far away
from it. The compact lookout birds, due to their smaller angle view, may perceive fewer
resources than the sparse lookout birds. The flock makes a comparison between the two
conflicting choices and decides to either move towards the more abundant source of food
or to move far away from the more dangerous predator.

The metaphor of sparse lookout birds can be used not only to realize a faster infor-
mation transmission, adopting the information paradigm, but also an improved computa-
tional capability, adopting the computational paradigm. In fact, the swarm (or flock) can
be viewed as a device where the committed minorities (either sparse or compact) are the
inputs and the global value ξM is the output of an operation, namely, a comparison.

2.3. The Model

The well-known Ising model describes a phase transition, moving the system with a
control parameter (K) from a subcritical, to a critical and, next, to a supercritical stage (or
vice versa). Now, let us consider the DMM. Let us suppose the same dynamics describing,
in a sense, a phase transition: K moves the DMM from subcriticality (stage 0) to criticality
(stage 1) and, next, to supercriticality (stage 2). This latter stage is a sort of collapse,
reminiscent of quantum mechanical wave function collapse, representing the decision
made by the DMM system (see Figure 4).

Entropy 2021, 23, x FOR PEER REVIEW 6 of 19 
 

 

Figure 4. The proposed steps of how a DMM makes a “decision.” 

• At “stage 0,” the lattice is at subcriticality (the order parameter K < KC) where com-

mitted minorities have no effect. 

• At “stage 1,” K increases to KC and the lattice is at criticality, where committed mi-

norities can operate (in a type of superposed state) and drive the lattice to a definite 

configuration, or at best, to a global state 𝜉𝑒𝑞 , of course characterized by a definite 

number of nodes in state 1 and others in state −1. 

• In “stage 2,” K is moved to supercriticality (K > KC) so that the lattice obtained from 

criticality can somehow “collapse” to one of the possible states (only +1 or −1 states 

are allowed). 

As stated earlier, at stage 0, committed minorities have no effect. At criticality (stage 

1), the choices made by the committed minorities are not yet the system’s decision: they 

are the source of a sort of superposition of states. Only at stage 2 does the system collapse 

to a definite state. In conclusion, within the DMM perspective, making a decision means 

increasing K, as in a phase transition. 

Now, let us consider the supercritical stage only (stage 2). As the DMM goes to K>KC, 

it moves to a definite equilibrium state (+1 or −1 only). In Appendix A, we show that at 

supercriticality, a DMM collapses to a definite state (+1 or −1) according to the majority of 

the states expressed by its elements: if its nodes at +1 are more than 50%, then the DMM 

goes to +1; if its nodes at −1 are more than 50%, then it goes to −1. Therefore, the final 

layout at stage 2 depends on the layout of the DMM at the beginning of stage 2, which is 

the same as at the end of stage 1. Committed minorities can influence the structure of this 

layout. 

Let us consider the lattice at stage 1 (at criticality) and its layout. Although its mean 

value is given by 𝜉𝑒𝑞 , it changes in any iteration, slightly or extensively. Therefore, the 

subsequent and final “collapsed state” at the supercritical stage will depend on the par-

ticular iteration when the lattice at criticality is considered as the starting point for stage 

2. 

Let us consider the lattice at criticality (stage 1) and an interval of 106 iterations (this 

magnitude order is in line with simulation standards of [12]): it corresponds to 106 possi-

bly different lattice output layouts. According to the dynamics described above (see de-

tails in Appendix A), a good approximation is realized as follows: for each iteration at 

stage 1, if its layout is 𝜉𝑒𝑞  > 0 (more +1 than −1 nodes within the lattice), the supercritical 

lattice will “collapse” to a +1 stable state, while when 𝜉𝑒𝑞 < 0, the supercritical lattice will 

“collapse” to −1. 

The dynamics can now be expressed in terms of probability. As an example, consider 

a lattice at criticality (stage 1) with a sparse minority at +1. Now, let us look at its 106 lay-

outs. In a real simulation of 106 iterations, we found that only n = 1805 layouts (about 0.2%) 

were 𝜉𝑒𝑞  < 0. This result leads us to state that the probability that a sparse minority at +1 

drives the supercritical system to +1 is p = 0.998, namely, the system collapses to the +1 

state 99.8% of the time (see Figure 5). It is like a “phase transition” where there are two 

possible alternatives (e.g., think of magnetization in an Ising model) and they are chosen 

probabilistically. 

Figure 4. The proposed steps of how a DMM makes a “decision”.

• At “stage 0,” the lattice is at subcriticality (the order parameter K < KC) where commit-
ted minorities have no effect.

• At “stage 1,” K increases to KC and the lattice is at criticality, where committed
minorities can operate (in a type of superposed state) and drive the lattice to a definite
configuration, or at best, to a global state ξeq, of course characterized by a definite
number of nodes in state 1 and others in state −1.
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• In “stage 2,” K is moved to supercriticality (K > KC) so that the lattice obtained from
criticality can somehow “collapse” to one of the possible states (only +1 or −1 states
are allowed).

As stated earlier, at stage 0, committed minorities have no effect. At criticality (stage 1),
the choices made by the committed minorities are not yet the system’s decision: they are
the source of a sort of superposition of states. Only at stage 2 does the system collapse
to a definite state. In conclusion, within the DMM perspective, making a decision means
increasing K, as in a phase transition.

Now, let us consider the supercritical stage only (stage 2). As the DMM goes to K >
KC, it moves to a definite equilibrium state (+1 or −1 only). In Appendix A, we show that
at supercriticality, a DMM collapses to a definite state (+1 or −1) according to the majority
of the states expressed by its elements: if its nodes at +1 are more than 50%, then the DMM
goes to +1; if its nodes at −1 are more than 50%, then it goes to −1. Therefore, the final
layout at stage 2 depends on the layout of the DMM at the beginning of stage 2, which
is the same as at the end of stage 1. Committed minorities can influence the structure of
this layout.

Let us consider the lattice at stage 1 (at criticality) and its layout. Although its mean
value is given by ξeq, it changes in any iteration, slightly or extensively. Therefore, the sub-
sequent and final “collapsed state” at the supercritical stage will depend on the particular
iteration when the lattice at criticality is considered as the starting point for stage 2.

Let us consider the lattice at criticality (stage 1) and an interval of 106 iterations (this
magnitude order is in line with simulation standards of [12]): it corresponds to 106 possibly
different lattice output layouts. According to the dynamics described above (see details in
Appendix A), a good approximation is realized as follows: for each iteration at stage 1, if
its layout is ξeq > 0 (more +1 than −1 nodes within the lattice), the supercritical lattice will
“collapse” to a +1 stable state, while when ξeq < 0, the supercritical lattice will “collapse”
to −1.

The dynamics can now be expressed in terms of probability. As an example, consider
a lattice at criticality (stage 1) with a sparse minority at +1. Now, let us look at its 106

layouts. In a real simulation of 106 iterations, we found that only n = 1805 layouts (about
0.2%) were ξeq < 0. This result leads us to state that the probability that a sparse minority
at +1 drives the supercritical system to +1 is p = 0.998, namely, the system collapses to
the +1 state 99.8% of the time (see Figure 5). It is like a “phase transition” where there
are two possible alternatives (e.g., think of magnetization in an Ising model) and they are
chosen probabilistically.
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Figure 5. The graph shows the ξeq value of a DMM (106 iteration) at criticality with a sparse committed minority set at +1.
In particular, it can be seen that only in a few cases (0.2%) is the layout ξeq < 0, thus leading in step 2 to a −1 state. Hence,
for almost all of the cases, the system will collapse to a +1 state.

We simulated three cases at criticality in order to evaluate the probability of having
ξeq < 0 for each of them:

1. A compact committed minority set at −1,
2. A sparse committed minority set at +1,
3. A compact committed minority set at −1 and a sparse committed minority set at +1.
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Each case is simulated starting from a random DMM layout and the first 106 iterations
are considered. The number of nodes selecting +1 or −1 over the 106 steps allows us to
evaluate their percentage over time. For each of the three cases, this evaluation is repeated
10 times and mean values (over this 10 times) are reported in Table 1. In particular, Table 1
reports data on the number of nodes selecting −1 (i.e., the case ξeq < 0).

Table 1. Nodes selecting “−1.” The second column (named “% of−1”) reports the average value over
10 trials of the percentage of nodes selecting “−1”in a 106-timestep simulation, the third column the
standard deviation (SD) over the 10 trials and the fourth and fifth the minimum and the maximum
results over the 10 trials. The first row (“Compact −1”) is related to a compact committed minority
set at −1; the second row (“Sparse +1”) is related to a sparse committed minority set at +1; the third
row (“Compact −1 vs. Sparse +1”) is related to a compact committed minority set at −1 and a sparse
committed minority set at +1.

Minorities % of −1 SD Min Max

Compact −1 95.60 1.97 92.09 97.67
Sparse +1 0.30 0.16 0.02 0.55

Compact −1 vs. Sparse +1 4.29 2.35 1.35 9.14

Using probability arguments, we conclude that a DMM with a compact minority in
the state −1 has the probability 0.956 of driving the majority of its elements to the same
state. Moving to the supercritical condition has the effect of setting the whole lattice to
the definite −1 state. In other words, moving from a random initial layout with compact
committed minority established in the subcritical condition to the critical condition and
finally to the supercritical condition has the effect of making the system collapse to the same
state as the committed minority with probability p = 0.956. Note that a sparse minority
set at +1 has probability p = 0.003 of leading to a −1 state while a compact (at −1) vs. a
sparse minority (+1) has probability p = 0.043 (note, one order of magnitude greater than
the sparse minority only) of leading to a −1 state.

We adopt the following interesting interpretation of the results of the numerical
simulation. The stage 1 is the step at which the system “compares” (calculates, processes
information) and makes a decision which becomes “real” with a clear, definite and known
probability, in the supercritical state (i.e., in stage 2).

Stage 1 (criticality) can be viewed as a sort of coherent, superposed quantum state;
think of 106 iterations where the DMM layout changes continuously (like a sort of wave
function) but with a probability of having a definite ξeq or even with a probability that ξeq
would be in a definite range, e.g., (ξeq < 0 or >0) somehow as the probability of an electron
and an orbital.

Stage 2 (supercriticality) is interpreted as a sort of “wave function collapse,” a form of
“quantum decoherence”; once in this stage, the lattice is set in a “stable” definite state in
which it stays. In other words, the dynamics of a DMM phase change yields interesting
properties, usually described by quantum mechanics and quantum probability. In a sense,
the DMM dynamics resemble quantum coherence, in line with [19]: “Quantum coherence
refers to the ability of a quantum state to maintain its entanglement and superposition in
the face of interactions and the effects of thermalization”.

Let us stress an interesting similarity with quantum mechanics. When both minorities,
sparse and compact, are set in a DMM at criticality, the cloud of fluctuations is asymmetrical
with a negative component more intense than the positive one (see Table 1). This is a
property similar to quantum mechanics generating a superposition of two states, with
different expansion coefficients. If we increase K, we generate a collapse of the wave
function and this collapse yields the state |−1> with a higher probability than the state |1>.

Of course, there is a significant difference between quantum and complex perspectives,
but this difference is worthy of discussion. The DMM “superposition of states” does not
set any limit on our knowledge. We know any iteration, we can see it, we can “handle”
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it, whereas in quantum mechanics, the coherent superposed state cannot be observed
at all. We state that the DMM superposition describes a kind of “transparent” (non-
quantum) coherence.

2.4. The Model: A Graphic Representation

We can represent this model with a graph in which the horizontal axis represents the
“+1” outcome probability while the vertical one represents the “−1” outcome probability
(see Figure 6). Therefore, e.g., the outcome of “sparse and compact committed minorities”
(case 3 of the above) can be expressed with the point S (red dot on the graph), where 4.29%
of the “−1” outcome can be read in the vertical axis while, of course, 95.71% of the +1
outcome can be seen in the horizontal axis. Please note the blue line is the locus of all
possible probabilities whose extremes are −1 and +1 which correspond to p = 1.0 of being
at status −1 and +1. Once the system goes towards supercriticality, the points must move
towards the −1 or the +1 point, therefore collapsing to a “definite” state.
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Figure 6. The graph where in the horizontal axis shows the “+1” outcome probability while the
vertical one shows the “−1” outcome probability. The outcome of sparse and compact committed
minorities is expressed with the point S (red dot on graph), where 4.29% of “−1” outcome can be
read on the vertical axis while, of course, 95.71% of the “+1” outcome can be seen on the horizontal
axis. The blue line represents the possible probabilities of stage 1 while the two extreme points (+1
and −1, see figure) are the 2 possible “stable” states in supercritical conditions.

The blue line represents the possible probabilities of stage 1 while the two extreme
points (+1 and −1, see picture above) are the two possible “stable” states in supercritical
conditions towards which the system must move. This resembles the description of
the Bloch sphere (Figure 7) for a qubit: the sphere surface represents all of the possible
superposed states (as does the blue line in our graph) while the two extremes |0> and
|1>, the “North Pole” and the “South Pole” (as the two extremes of the blue line), are the
classical bits where a qubit must collapse (e.g., see [20]).
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3. Bounded Rationality Issues
3.1. The “Linda” Issue

Bounded rationality is a wide and deeply studied field of research. Tversky and
Kahneman worked on many of its aspects. In particular, they [21,22] defined and described
the so-called “conjunction fallacy” through interesting experiments. The most studied is
perhaps the “Linda issue.” In their work, they submitted to a group of subjects personality
sketches of a woman called Linda followed by a set of possible occupations or avocations.

This was the description “L” of Linda: Linda is 31 years old, single, outspoken and
very bright. She majored in philosophy. As a student, she was deeply concerned with issues
of discrimination and social justice, and also participated in anti-nuclear demonstrations.
Three of the proposed occupations/avocations were:

1. Linda is active in the feminist movement (F),
2. Linda is a bank teller (T),
3. Linda is active in the feminist movement and a bank teller (F & BT).

As reported by Tversky and Kahneman, “the description of Linda was constructed to
be representative of an active feminist (F) and unrepresentative of a bank teller (BT)” [22].
In fact, the result reported that the most probable description order (85% of the population
investigated) is: F > F & BT > BT.

Interestingly, beyond the confirmation of F > BT, it is impressive that the great majority
of subjects also rank the conjunctions (F & BT) as more probable than their less representa-
tive constituent (BT). This is a non-rational behavior within the theory of decision making
because it violates the classical probability (CP), according to which the probability of a
conjunction (P [F & BT]) cannot exceed the probabilities of its constituents (P [BT]). Tversky
and Kahneman named this phenomenon the “conjunction fallacy.”

A strong body of scientific literature made the proposal of using quantum probability
(QP) to explain the results of this experiment [1,7,23,24], showing that QP can account for
P [F] > P [F&BT] > P [BT] where CP cannot.

3.2. The DMM and the “Linda” Issue

Let us go back to the DMM and let us consider the “concept” of Linda as a feminist
(F) as a sparse committed minority at “+1” and the “concept” of Linda as a bank teller
(BT) as a compact committed minority at “−1.” Of course, the case of Linda as F & BT
occurs when both committed minorities are active. In a sense, such a view is similar to
the one proposed in the QP models where the “concepts” of F and BT were considered as
vectors on multidimensional subspaces [1]. Using the DMM perspective, we can use the
same vector representation to express the intensity of the opinions of committed minorities
(we take “sparse” and “compact” just as two paradigmatic examples). In the same way,
note that the concept of “F & BT” is a superposition: a vector superposition in the QP
perspective, and a DMM minority superposition within our criticality perspective.
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The “lookout birds” image affords another attractive interpretation based on looking
at the “concepts” of “F” and “BT” as indications of a source of food for the flock. Let us
interpret the “F” concept as a large source of food to the right of the flock: a sparse minority
sees it and says “turn right” (namely, set the state to +1), thereby making the flock turn
accordingly. Let us interpret the “BT” concept as a small source of food to the left, and a
compact minority sees it and says “turn left” (namely, set the state to +1). Let us consider
the case where both sources of food are present, with the sparse minority perceiving the
large one and the compact minority perceiving the small one. According to the results
of the numerical simulation, the flock will turn in a direction between “left” and “right.”
Think of the direction of the flock as ξeq , i.e., the global DMM status (see Appendix A). In
the case of a sparse committed minority only, it is a value next to 1, in the case of a compact
minority, it is a value next to −1 and when both the committed minorities are present, it is
a value between the two extremes.

Let us go back to the DMM and consider it in terms of probability. The DMM at
criticality, with the “pure” concept of “F” (with a sparse committed minority at +1), will
dynamically activate all of its lattice nodes (at +1). Most of the time (i.e., 99.7% of the
time—see the previous section and Appendix A), the majority of the nodes will be “+1”
so that once the system moves to a supercritical stage, its final global state variable will
be fixed at +1 with probability p = 0.997. On the other hand, facing the “pure” concept of
BT (with a compact minority at −1), the majority of DMM nodes will be in the state “−1”
95.60% of the time, so that in a supercritical state, the final global variable will be −1 with a
probability of 95.60%. When both committed minorities are present (F & BT), the DMM
will yield “+1” 95.71% of the time (going to the supercritical state, the final global variable
will be +1 with a probability of 95.71%). The three cases are reported in Figure 8 as point F,
BT and F & BT and it should be noted that the F & BT concept has a probability between F
and BT.
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Figure 8. Graphical representation of DMM critical dynamics of Linda as a feminist (point F), Linda
as a bank teller (point BT) and Linda as both of them (point F & BT). The area in which the full
description of Linda (L) should occur is shown with the arrow L.

It should be noted that this superposition (F & BT) leads the DMM to a “dynamic
state” which can occur at criticality only (it cannot be seen in a supercritical state). In fact,
in the supercritical state, the DMM will always collapse to +1 or −1 because F & BT is not a
“pure” dynamical state but a superposition of states. This is in line with quantum cognitive
models (e.g., see [1]). A possible interpretation is that in the brain, the concept of F and
the concept of BT occur. Of course, one subject can think about both of them at the same
time, but it is a superposition of known concepts and not a new one, so it seems hard to
think of F & BT as a stable cognitive supercritical state. F & BT could be seen as a kind of
“artifact” (maybe as a bi-stable figure: one can deal with it knowing that it is made up of
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two figures, but one can “see” just one of them at a time). Note that, besides disappearing
at a supercritical stage, at criticality, it behaves as a dynamic state in the sense that it is
related to its own particular DMM dynamics, just as F and BT are. It seems noteworthy
that the superposed state F & BT “lives” at criticality only, just as in the QP model [1] it
lives as a coherent state.

Now consider a 4th dynamical state and let us call it Linda (L). Note that that L is
a brand new dynamical state, and at criticality, it behaves just as F, BT and F & BT (L is
related to its own particular DMM dynamics). Therefore, the DMM, coping with L, will
activate a dynamical process of the same kind as that activated to deal with F, BT and F &
BT. As a consequence, the system at criticality will spend a certain percentage of its time on
the value +1 and −1, referring to L, and in the supercritical regime it will collapse with the
corresponding probabilities, as we have discussed for the other states.

Tversky and Kahneman [21,22] described the new state (L) as different from F, BT or F
& BT and, in their experiment, asked people to order the probabilities that L is like F, BT
or F & BT. This is a fundamental point: they compared L versus F, BT and F & BT (they
did not compare F, BT and F & BT!). The formal question is to compare the probability of
similarity between L and F, versus L and BT and versus L and F & BT. Stating P(F) > P(F
& BT) > P (BT) could be misleading because they did not find that. Instead, they found
that, according to our formalism: |P(L) − P(F)| > |P (L) − P(F&BT)|> |P (L) − P(BT)|.
In Kahneman’s words [2]: “ . . . the judgments that subjects made about the . . . Linda
problem substituted the more accessible attribute of similarity (representativeness) for the
required target attribute of probability.”.

Therefore, what we have to do is evaluate the distance between L and F, BT and F &
BT. In particular, Kahneman and Tversky found that almost all the subjects said Linda is F;
indeed, they built the experiment so that Linda the feminist is the description that best fits
the description given. Therefore, it is very likely that the probability describing L is a point
very close to the point F (see Figure 8). Given that, it could be easily understood that the
second closest point is F & BT, not BT, in line with the well-known “conjunction fallacy.” In
fact, the distance |L − F| is very short, thus the second closer state must be F & BT and
finally BT, in third place. Therefore, our model is clearly in line with the experimental result
of the “conjunction fallacy.” Moreover, such an approach seems to evaluate the closeness
between the state from the initial information and the state from the various questions, in a
way analogous to the influential and well-known “representativeness heuristic,” suggested
by Kahneman and Tversky [25].

It should be noted that this comparison occurs at criticality because any decision (or
comparison or evaluation) in DMM occurs at the criticality stage only, as shown in the
previous section. We do not make a comparison between definite states, because they are
properties of the supercritical condition. These properties are outcomes, and we aim at
evaluating the intelligent “decisions” behind them.

We try to explain these concepts with an image: suppose you are sitting on dock of
a bay, looking at the sky. You are just under the route of migrating birds so you can see
flocks of birds coming from the south to north again and again (i.e., year after year). You
know that in the area there is a farmer seeding his fields and the birds like it as food.

When the farmer seeds food 1 in the left field (field F), the flock turns left 99.7% of
the time.

When the farmer seeds food 2 in the right field (field BT), the flock turns right 95.6%
of the time.

When the farmer seeds both of the fields (fields F & BT), the flock turns left 95.71% of
the time (because field 1 is larger or maybe they prefer food 1).

Now, in the new season, you can see the flock’s directions (e.g., turn left/right percent-
age) but you do not know what fields and foods have been chosen by the farmer. Suppose
the flock turns left in new percentage, e.g., 98.0% (let us call this behavior “L”), what are
the probabilities that the flock has seen field F, F & BT or BT? If you list them, of course you
will find the same order of probabilities.
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The Linda description (L state), being based on dynamics at criticality, is very close to
the F state. As a consequence, the second closest state must be F & BT.

The described approach to bounded rationality, involving a DMM and having critical-
ity as a core element, leads us to introduce the term criticality-induced bounded rationality
(CIBR) to identify it.

3.3. Superposition in the “Linda” Issue

The “bounded rationality” outcome found by Tversky and Kahneman [21,22] can be
described with QP or with CIBR and not with CP. The main issue is the experimental result
that P [F & BT] is more probable than the single probability P [BT], in conflict with the
theoretical laws of CP.

The reason why QP [1] yields an interpretation of F & BT fitting the outcomes of
psychological experiments is that QP allows us to interpret F & BT as a superposition of
two different states rather than as a classical sum. CIBR yields the same benefit as QP of
making F and BT live together in one dynamical superposition of states, bypassing the
limits of CP. This is reminiscent of QP with a noteworthy difference.

In fact, the superposed state of F and BT can be clearly seen in the lattice of a DMM so
that a clearly definite probability is observed and evaluated in space and time. Instead, in
QP models [1], BT and F are described only as separated projections: their superposed state
cannot be observed (of course, because it is a quantum superposition, so to speak, a model
of coherent state) and must be described through conjectures. Pothos and Busemeyer
write: “As it is impossible to evaluate incompatible questions concurrently, quantum
conjunction has to be defined in a sequential way, . . . that is, we have Prob(F ∧ then BT)
= Prob(F)·Prob(BT|F)” [1]. In other words, the QP model cannot directly compare the
case F & BT (which is a superposed state) because it has to be considered as a sequence of
“collapsed” states of F and BT. Moreover, in order to evaluate this in a sequential way, in QP,
other assumptions must be made, and the same authors write “an additional assumption
is made that in situations such as this, the more probable possible outcome is evaluated
first.” On the contrary, the CIBR superposition of the states F and BT corresponds to a
well-defined cluster of decisions made at criticality.

QP is based on the superposition of F and BT, a condition inaccessible to observation
if the wave function collapse is not involved. We note that the wave function collapse
is still an open problem for quantum mechanics. The adoption of CIBR allows us to use
both quantum mechanical concept of state superposition, at criticality, with no limits on
observation, and the counterpart of wave function collapse, in the supercritical condition.

In other words, in QP, one can deal with a collapsed state only (F and BT) and the
superposed state is inaccessible, whereas with the CIBR approach, one can work with a
collapsed state (e.g., in the supercritical stage) as well as with the superposed state (e.g., in
the critical stage). If one considers a superposed state in QM, e.g., a qubit, it could have a
value of α and β as a point in the Bloch sphere, but one will never know where it is in a
definite moment, while on a DMM lattice, one can always know where the point is; only
in CIBR can one see what happens in the decision process, in space and time. Note that
CIBR does not necessarily imply a DMM, which is just an instance. Our approach can be
defined as a non-linear stochastic theory, as are the approaches mentioned by Breuer and
Petruccione [26], to account for the wave function collapses in quantum mechanics.

QP and CIBR can both correctly describe the Linda issue because they seem to operate
with superposition in a similar way, as opposed to the CP approach. In particular, CIBR
seems to offer a better way because of its clearer approach, unlike the inaccessible quantum
coherent state of QP.

3.4. Failures of Commutativity in Decision Making

Another interesting issue raised within the “bounded rationality” domain is the
“failures of commutativity” in decision making, whereby asking the same two questions in
different orders can lead to changes in responses. As an example, consider the questions “Is



Entropy 2021, 23, 745 13 of 18

Clinton honest?” and “Is Gore honest?” and the same questions in a reverse order. When
the first two questions were asked in a Gallup poll, the probabilities of answering “yes”
for Clinton and Gore were 50% and 68%, respectively. The corresponding probabilities
for asking the questions in the reverse order were 57% and 60% [27]. Such order effects
are puzzling according to CP theory because they seem to violate the commutativity laws.
The QP approach, as is known, can describe the experimental result, suggesting that the
quantum approach accounts for the fact that thinking about one “concept” (e.g., Clinton
being honest) changes the basis when the second one (e.g., Gore being honest) is evaluated.

Let us consider this issue using the CIBR perspective. If we just ask: “Is Clinton
honest?”, we must consider that the complex system has to make a “decision.” Thus, the
system will move from its undercritical stage to criticality when the decision is made
and then it will move to a supercritical stage when the decision is fixed (the system will
collapse), just a phase change as described above. It is likely that it will start from a
subcritical “random” layout of nodes with, probably, p [+1] = 0.5 and p [−1] = 0.5.

On the other hand, if we make the question “Is Clinton honest?” just after asking
“Is Gore honest?” the starting layout will be the one left by the previous answer (or, best,
decision) or at least be influenced by it. In other words, the starting layout of the second
question for CIBR could not be a “neutral” one (p [+1] = 0.5 and p [−1] = 0.5) but of course
related to the outcome layout of the previous answer. For instance, suppose the first
question drove the system to a supercritical “+1” state. Now, for the second question, the
system goes back to the critical phase (in order to make a second decision) from the +1
supercritical branch; the critical “decision” will not start from a random layout but from
a layout with, somehow, a clear and definite majority of +1 elements so it is likely to be
influenced by that.

Actually, it could be argued that in the “long term” (after one hundred thousand
iterations), it is expected that the CIBR with a committed minority at criticality will reach a
definite ξeq (a definite number of +1 and −1 elements) independently from the initial con-
dition, being mainly influenced by the committed minority. Indeed, it is also expected that,
at least in the early iterations, that the story of the system would be different, depending
on the starting layout.

In order to verify this, we carried out two different simulations:
Scenario A: a committed minority at −1 in a sea of +1 elements (i.e., all the elements

not in the committed minority are in the state +1);
Scenario B: a committed minority at −1 in a sea of −1 elements (i.e., all the elements

not in the committed minority are in the state −1).
Simulation results strongly agree with our prediction (see Appendix B): there is an

initial interval that is different according to the initial starting layout so it can lead to
different outcome probabilities.

Therefore, the failures of commutativity in decision making (whereby asking the same
two questions in different orders can lead to changes in responses) could be due to the
different CIBR dynamics. When we ask: “Is Clinton honest?”, the system at criticality leads
to a layout (stage 1) which “collapses” to a definite supercritical state (stage 2). Just after
that, the second question “Is Gore honest?” will move the system again to a critical state in
order to make a second decision, but coming from a supercritical state where almost all
elements have a definite value −1 (or +1), thus changing the outcome probability of the
second question, having different outcomes at least in the first iterations.

It should be pointed out that this difference becomes evident only when there are very
different initial layouts (e.g., when coming from different supercritical phases). Notably,
this is consistent with the QP interpretation of different bases cited above.

4. Discussion and Conclusions
4.1. Criticality-Induced Bounded Rationality

Both the “Linda issue” and the “Gallup poll” indicate the failure of CP and both of
them can be successfully addressed using QP and CIBR. Indeed, the “bounded rationality”
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mainstream discusses other issues and as QP is suggested as a possible unique way to
describe them, so CIBR can now be suggested as well. For the latter, the two pillars seem
to be the “superposition” (described to figure out the Linda issue) and the “commutativity”
dynamics (described for the “Gallup poll” issue).

As an example, consider the “sure thing principle” [1]. It is the expectation that human
behavior ought to conform to the law of total probability, e.g., in a one-shot prisoner’s
dilemma task, participants violate the sure thing principle. In fact, usually, the player does
not know the opponent’s move but when participants were told that the opponent was
going to cooperate, they decided to defect; when they were told that the opponent was
defecting, they decided to defect as well. The expectation from the sure thing principle
is that, when no information is provided about the action of the opponent, participants
should also decide to defect. However, surprisingly, in the “no knowledge” case, many
participants reversed their judgment and decided to cooperate. This is named the “violation
of the sure thing principle.”

In our CIBR, the knowledge of the opponent’s move could be a second committed
minority (e.g., sparse) activating (e.g., at −1) and thus dominating the decision that would
be made by a first committed minority (e.g., compact and set at +1) which drives the
decision for collaborating. Therefore, without the knowledge of the opponent’s decision,
the CIBR expresses its “natural” trend to collaborate, according to the known principle
called “wishful thinking,” represented by the compact committed minority fixed at +1 but
possibly dominated by a −1 sparse committed minority related to the knowledge of the
opponent’s move.

In a similar way, other issues could be addressed. Tversky [28] showed that similarity
judgments violate metric axioms. For example, in some cases, the similarity of A to B
would not be the same as the similarity of B to A: the similarity of Korea to China was
judged greater than the similarity of China to Korea. This could be viewed as a comparison
between two minorities coming from the +1 or from the −1 branch of the supercritical
stage, leading to different results, of course in probability terms.

4.2. Conclusions

Bounded rationality violates CP, making researchers suggest QP models as one of the
most convincing ways to describe issues such as, e.g., the “Linda problem” or the “Gallup
poll.” We have seen that this may be not a correct conclusion. The adoption of the CIBR
perspective affords an alternative way of accounting for bounded rationality.

As the final remarks concerning future research work, we want to stress that to fully
benefit from the adoption of the CIBR perspective, in future work, we shall adopt self-
organized temporal criticality (SOTC) [29]. In fact, in the discussion of this paper related to
Figure 4, we made the assumption that the control parameter K moves from the subcritical
to the supercritical condition, crossing back and forth to the critical condition KC. The
adoption of SOTC spontaneously generates that process, remaining at the level of CIBR.

This would require additional computer calculations but the comparison between
CIBR and QP will not change. We are therefore inclined to draw the main conclusion
that CIBR is an alternative approach to bounded rationality that for some aspects is even
more satisfactory than QP. CIBR goes beyond the “uncertainty” imposed by quantum
mechanics, at least in some cases. In a sense, criticality may yield a sort of non-quantum
coherence, more “transparent” than quantum coherence, leading to a better understanding
of cognition emergence.

The discussion about the incompleteness of quantum mechanics is out of the scope
of this paper. It is still the subject of debate and we limit ourselves to mentioning a recent
paper by Evans [30]. We believe that our paper proves that CIBR affords an explanation of
bounded rationality that does not require quantum probability without giving up classical
ontology, thereby suggesting that CIBR deserves some attention in the debate on quantum
mechanical incompleteness.
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Appendix A. The DMM Numerical Simulations

A DMM has been considered according to literature suggestions [11]. It features a
20 × 20 lattice of agents (total n = 400 agents) with periodic boundary condition settings
and g0 = 0.1. For each simulation, in line with suggested dimensions in the literature,
the total iteration number has been set to 106 and the ξeq has been evaluated on the last
5 × 105 iterations. All simulations have been performed using R [31].

Two sets of simulations have been performed, with the first set at criticality, the second
set at supercritical dynamics.

Appendix A.1. (a) Simulations at Criticality

All simulations within this set have been considered at criticality, with K = 1.66.
Starting conditions have been set initializing 50% of nodes at state = +1 and the other half
at state = −1, with randomly selected positions (unless otherwise specified).

Three stages of simulations have been planned and performed.
In stage 1 of the simulations, the model has been firstly tested without any committed

minority. Simulations confirmed what have been reported in the literature: in the critical
state, without a committed minority, the global value jumps from state +1 to state −1,
alternating between them without any “domination.” In particular, five simulations have
been performed whose descriptive statistics were ξeq = 0.09 ± 0.16 (m ± SD), clearly
confirming ξM = 0 when there were no committed minorities.

In stage 2 of the simulations, the model has been tested with one committed minority.
As suggested in the literature [11], the committed minority has been considered as 1%
of the total population, namely, just four nodes. Therefore, in stage 2, simulations have
been performed fixing just four nodes at state = +1. At the first step, each fixed node has
been located at a random position on the lattice, named “sparse config.” Secondly, fixed
nodes have been considered as a unique 2 × 2 square lattice, with fixed state = +1, named
“compact config.” The same simulations have been symmetrically performed with fixed
node = −1, for a second check.

Stage two simulations confirmed that 1% of the randomly positioned committed
minority move the global variable to the same value as the minority. Repeating the same
simulations using a compact minority layout, the outcome is the same as the randomly
positioned (sparse) fixed elements. In particular, each simulation has been performed five
times (fixing state of the minorities at +1), leading to:

(a) sparse config: ξeq = 0.76 ± 0.01 (m ± SD)
(b) compact config: ξeq = 0.71 ± 0.01 (m ± SD)

In both cases, it is clearly confirmed that a committed minority (independently of its
sparse or compact configuration) of fixed values set to +1 (or symmetrically −1) led the
majority to ξM = +1 (or symmetrically, −1).

In the third stage of the simulation, two minorities have been fixed in the same 20 ×
20 lattice in order to see how the dynamics would evolve. All possible combinations have
been evaluated, in particular:

sparse config = −1 versus sparse config = −1
sparse config = +1 versus sparse config = +1
sparse config = +1 versus sparse config = −1
sparse config = +1 versus sparse config = +1
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compact config = −1 versus compact config = −1
compact config = +1 versus compact config = +1
compact config = +1 versus compact config = −1
compact config = +1 versus compact config = +1
compact config = −1 versus sparse config = −1
compact config = +1 versus sparse config = +1
compact config = +1 versus sparse config = −1
compact config = +1 versus sparse config = +1

Therefore, stage three simulations accounted for a couple of minorities in the same
network (population).

It can be showed that, as expected, similar configurations led to trivial outcomes,
namely, when both of the committed minority configurations are compact (or both sparse),
if both are fixed at +1, then ξM = 1, if both are fixed at −1, then ξM = −1 and if one is +1
and the other −1, then ξM = 0.

Interesting outcomes appeared when sparse config versus compact config were simu-
lated. In particular, when the same value was fixed for both configurations, the global value
of course confirmed the minority value. On the other hand, when different configurations
challenge each other, the results were the following:

Sparse config = −1 versus compact config = +1 led to ξeq = −0.56 ± 0.02 hence ξM = −1;
Sparse config = +1 versus compact config = −1 led to ξeq = 0.59 ± 0.03 hence ξM = +1.

In brief, the sparse config somehow “dominated” the compact configuration, showing
a clearly stronger influence on the population dynamics.

It could be argued that ξeq seems to be “weak” because although it is in the proper
range (e.g., we have ξeq = −0.56 ± 0.02, so ξeq < −0.33, hence ξM = −1) and with a small
SD, it is not close to the reference value −1. In this regard, it should be considered that we
are simulating with four elements only in each committed minority group, corresponding
to only 1% of the population. It can be easily shown that when slightly increasing elements,
ξeq can increase as well. For instance, when performing the same simulations with the
committed minority group at 3%, we have:

Sparse config = −1 versus compact config = +1 led to ξeq = −0.65 ± 0.02;
Sparse config = +1 versus compact config = −1 led to ξeq = 0.60 ± 0.03.

Therefore, without a loss of generality, we should keep the 1% minority as a kind
of standard minimum, in order to show properties becoming stronger and just slightly
increasing the number of individuals within the committed minorities.

Appendix A.2. (b) Simulations at Supercriticality

When the lattice is in a supercritical condition (e.g., K = 2.7), it “collapses” down to
the “+1” or “−1” global state (i.e., to ξeq > 0.95 or, respectively, ξeq < −0.95). The “decision”
depends on the lattice’s initial condition and not on possible committed minorities, as we
can show through two sets of five trials.

In the first part (first five trials), we set any element of the lattice with initial values
at +1 and a compact committed minority at −1. We found a final ξeq = 0.96 ± 2.89 × 10−5

(m ± SD).
Secondly, (second five trials), setting the initial values at −1 and a sparse committed

minority at +1, we found ξeq = −0.96 ± 4.90 × 10−4, showing that, in supercritical condi-
tions, the lattice initial condition is the main point, stronger than any committed minority.
Hence, the majority of the nodes dominate in any committed minority. In particular, when
the lattice is in a supercritical condition, it “collapses” down to the “+1” or “−1” global
state according to the state of the majority in the initial condition. In order to further verify
this, we performed 10 trials with an initial lattice value at +1 for 55% of the nodes (random
starting position). We found ξeq = +0.97 ± 3.31 × 10−2 and that 100% of them went to
ξM = +1.
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On the other hand, we then performed 10 trials with an initial lattice value at −1 for
55% of the nodes (random starting position). We found ξeq = −0.98 ± 1.28 × 10−2 and that
100% of them went to ξM = −1.

Appendix B. The DMM Starting Point Dependence at Criticality

We simulated two different scenarios at criticality:
Scenario A: a committed minority (−1) in a sea of +1 elements (all of the elements not

in the committed minority are +1);
Scenario B: a committed minority (−1) in a sea of −1 elements (all of the elements not

in the committed minority are −1).
Simulation conditions and parameters are the same as in Appendix A unless otherwise

specified. In particular, the K parameter is K = 1.66.
We analyze the iteration dynamics in the first 104 iterations (we performed 10 simula-

tions for each scenario). Descriptive statistics results are reported in Table A1. In the second
column (named “% of −1”) the mean percentage of iterations with ξeq < 0 (in a total of 104)
is reported. It is clearly shown that, considering the first 10,000 iterations, the probability
of having the majority with a −1 status is very much larger in Scenario B (namely, starting
from a fully −1 layout).

Table A1. Results of simulation for two scenarios at criticality. The second column reports the mean
percentage of iterations with ξeq < 0, the third column reports the standard deviation (SD) over the
10 trials and Min and Max columns are the minimum and the maximum resulting from the 10 trials.

Scenarios % of −1 SD Min Max

Scenario A 68.95 21.09 38.39 88.36
Scenario B 98.78 3.52 88.80 100

A qualitative comparison reporting an example of Scenario A and Scenario B (first 104

iterations) can be seen in Figure A1.
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This 10 + 10 set of simulations for Scenario A and B clearly shows that, at criticality,
different starting layouts lead to different outcomes, at least in the first iterations: the final
outcome depends on the starting layout.
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