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Editorial on the Research Topic

Targeting Cardiac Proteotoxicity

Misfolded proteins not only lose their normal functions but also perturb other proteins, organelles,
and cellular processes, causing cell malfunction and cell death (Wang et al., 2008). Proteotoxicity
refers to all damaging effects exerted by misfolded proteins in the cell (Sandri and Robbins, 2014).
To sense and minimize the level and toxicity of misfolded proteins, the cell has developed multi-
layered protein quality control (PQC)mechanisms. PQC is performed by the intricate collaboration
between molecular chaperones and targeted protein degradation; the latter involves primarily the
ubiquitin-proteasome system (UPS) and autophagy (Wang et al., 2008). Both increased production
of misfolded proteins and PQC impairment can lead to an increased proteotoxic stress state
(IPTS), which can result from genetic mutations, environmental stressors, aging process, and even
chemotherapies (Wang and Wang, 2020).

Over the last two decades, it is increasingly evident that IPTS contributes to the genesis of a large
subset of heart failure (HF) (Willis and Patterson, 2013, Wang and Wang, 2020). During cardiac
IPTS, the accumulation of misfolded proteins and resultant aberrant protein aggregation further
impair PQC, compromise the integrity of contractile apparatus and organelles (e.g., mitochondria),
and cause cardiomyocyte death, eventually leading to HF (Wang et al., 2008). Recent advances in
the molecular mechanisms regulating proteasome- and lysosome-mediated protein degradation
promise new strategies to prevent or more effectively treat HF via targeting cardiac proteotoxicity.
This is exciting as there are no current HF therapies aimed at targeting cardiac proteotoxicity. The
present Research Topic,Targeting Cardiac Proteotoxicity, not only reports newwork of cardiac IPTS
but also discusses the current understanding, knowledge gap, potential molecular mechanisms and
targets, and the obstacles to broad clinical implementation.

Autophagy is pivotal to both PQC and organelle quality control. Hence, suppressing autophagy
is generally detrimental and, conversely, enhancing autophagy protects against IPTS (Wang and
Cui, 2017). This is well-reflected in this Research Topic. LMP10 (β2i) is a proteolytic subunit
of the immunoproteasome, which is the primary form of proteasomes in immune cells and an
inducible form in non-immune cells (Aki et al., 1994). Yan et al. reveal that LMP10 deficiency
attenuates maladaptive cardiac remodeling induced by angiotensin-II infusion in mice, perhaps
through enhanced autophagic degradation of insulin growth factor receptor 1 and glycoprotein
130. This study supports the notion that proteasome malfunction activates autophagy (Pan et al.,
2020); however, a direct anti-inflammatory effect from inhibition of immunoproteasomes remains
possible. Consistent with this possibility, Guo et al. show that shikonin, an anti-inflammatory
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compound extracted from natural herbs, protects the heart
from sepsis-induced injury. Notably, shikonin was shown by
others to inhibit proteasome activities in macrophages (Lu et al.,
2011). Occasionally a normally protective factor may become
detrimental when autophagy becomes impaired or insufficient
in the cell (Wang and Cui, 2017). This is exemplified by the
perplexing effect of nuclear factor erythroid factor 2-related
factor (Nrf2) in cardiac disease, as reviewed by Zang et al.

Since late 2019, all of humanity has been afflicted by the
COVID-19 pandemic caused by the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2). A timely review by
Gupta and colleague summarizes what we have learned during
the 12 months following the first report of COVID-19,
particularly the interaction between SARS-CoV-2 and autophagy.
They describe that once SARS-CoV-2 enters the host cell, it
can be degraded via autophagy or highjack the replication
machinery. After evading degradation in the lysosome SARS-
CoV-2 can replicate in an autophagosome, thereby reducing the
influence of lysosomes on COVID-19 pathogenesis, which helps
explain why autophagosome-lysosome fusion inhibitors (e.g.,
hydroxychloroquine) failed to meet the promises made early in
the COVID-19 pandemic.

Mitophagy removes damaged mitochondria to limit reactive
oxygen species production, crucial tomaintainingmitochondrial,
thus cardiomyocyte health (Tong et al., 2020). Impaired
mitophagy contributes to doxorubicin-mediated cardiotoxicity,
where the development of cardiomyopathy limits the clinical
use of this powerful anti-neoplastic drug. Xu et al. report that
Luteolin, a natural product extracted from plants alleviates
doxorubicin-induced cardiotoxicity via enhancing mitophagy,
effects that were abrogated with concomitant treatment with a
Drp1 inhibitor, Mdivi-1. Kobayashi et al. explore the interplay of
mitochondrial fission and mitophagy in a hyperglycemic model.
Cultured cardiomyocytes subjected to high glucose displayed
a marked reduction in mitophagy and mitochondrial health.
Both genetic and pharmacological interrogations unveil that
increasing mitophagy flux protects against high glucose induced
cardiomyocyte injury. These studies add new evidence to the
cardioprotective potential of enhancing mitophagy. The latter
is comprehensively reviewed by Alam et al. which describes
the potential role of mitochondrial proteostasis in cardiac
IPTS, provides new insights into the mechanisms regulating
mitophagy, and highlights potential targets for enhancing
mitochondrial proteostasis to treat cardiac disease.

The contractile apparatus is central to themechanical function
of cardiomyocytes and is thereby under constant stress (Chung
et al., 2016). Islam et al. review systematically small heat shock
proteins that chaperone cytoskeletal integrity and the turnover
of sarcomeres in cardiomyocytes. They propose a provocative
“sarcostat” concept, a PQC mechanism located within the
sarcomere that oversees sarcomere proteostasis. The authors also
discuss potential targets for therapeutic intervention to enhance
sarcomeric PQC. Further testing of the sarcostat model will be
interesting. Mutations in genes encoding sarcomeric proteins
cause cardiomyopathy, where pathogenesis likely involves IPTS
as sarcomeric proteins are the most abundant proteins in
cardiomyocytes (Willis and Patterson, 2013). McNamara et al.

uncover an intronic variant of TNNT2 that leads to the
development of hypertrophic cardiomyopathy in felines. Distal
arthrogryposis (DA) is another disorder that can be caused by
genetic mutations affecting striatedmuscle, characterized by joint
contractures, with the heart often affected. Desai et al. summarize
the different forms of DA, their clinical features, and associated
genetic mutations. It will be interesting to investigate how would
the DA-linked mutations affect cardiac PQC.

Recent advances in the regulation of the protein degradation
pathways have dramatically expanded our understanding of
cardiac PQC. Li et al. review the role of a ubiquitin-like
protein NEDD8. The covalent attachment of NEDD8 to substrate
proteins is known as neddylation, critical to cardiac development
and found to be dysregulated in vascular disease, liver disease,
obesity, and HF. Oeing et al. highlight the newly identified
roles of protein kinase G (PKG) in cardiac PQC that provide
exciting new mechanism for PKG-mediated cardioprotection
unveiled since early 2000s. Activation of PKG improves PQC
via both priming the proteasome and increasing autophagy.
The ability to activate PKG with drugs already in clinical use
elevates the interest surrounding PKG as a therapeutic target for
cardiac proteotoxicity.

Emerging evidence suggests inter-organ communication in
proteotoxicity (Liu et al., 2021). To this end, Evangelisti et al.
comprehensively contrast IPTS pathophysiology between the
central nervous and the cardiovascular systems and nicely
highlight the shared pathological features of IPTS diseases in the
heart and brain, calling for studying IPTS in the two systems
in parallel. Intriguingly, augmenting protein kinase A- or PKG-
mediated proteasome activation reduces both cardiac and neural
proteotoxicity in animal models (Zhang et al., 2019, Wang and
Wang, 2020).

As illustrated by this series, the cardiac PQC field is
bourgeoning and recently has made significant and exciting
advances, providing new therapeutic targets that can be
potentially translated into the clinic in the near future.
Meanwhile, our understating of the molecular mechanisms
underlying cardiac proteotoxicity remains quite limited.
Continuing effort in defining pathways that regulate chaperones,
the UPS, and autophagy is warranted for discovering new
nodal points and methods for therapeutic intervention while we
facilitate the translation of some of the most promising strategies
to the clinic.
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